ervasive

COMIPUTING

MOBILE AND UBIQUITOUS SYSTEMS

www.computer.org/pervasive

Wizard of Oz Support throughout an Iterative
Design Process

Steven Dow, Blair Maclntyre, Jaemin Lee, Christopher Oezbek,
Jay David Bolter, and Maribeth Gandy

Vol. 4, No. 4
October—December 2005

This material is presented to ensure timely dissemination of scholarly and technical
work. Copyright and all rights therein are retained by authors or by other copyright
holders. All persons copying this information are expected to adhere to the terms and
constraints invoked by each author's copyright. In most cases, these works may not be
reposted without the explicit permission of the copyright holder.

IEEE

COMPUTER IEEE N
SOCIETY

iy

© 2005 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for
creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained

from the IEEE.

For more information, please see www.ieee.org/portal/pages/about/documentation/copyright/polilink.html.

Design Process

'RAPID PROTOTYPING ||

Wizard of Oz Support
throughout an lterative

A case study of a location-aware audio experience using the authors’
DART design environment shows how the Wizard of Oz prototyping

method can work throughout an iterative design process.

Steven Dow, Blair Maclntyre,
Jaemin Lee, Christopher Oezbek,

Jay David Bolter, and
Maribeth Gandy

Georgia Institute of Technology
|

PERVASIVE computing

he Wizard of Oz prototyping

approach, widely used in human-

computer interaction research, is

particularly useful in exploring user

interfaces for pervasive, ubiquitous,
or mixed-reality systems that combine complex
sensing and intelligent control logic. The vast
design space for such nontraditional interfaces
provides many possibilities for user interaction
through one or more modalities
and often requires challenging
hardware and software imple-
mentations. The WOz method
helps designers avoid getting
locked into a particular design
or working under an incorrect
set of assumptions about user
preferences, because it lets them explore and eval-
uate designs before investing the considerable
development time needed to build a complete
prototype.

As with other throwaway tools, most WOz
interfaces aren’t conceived to evolve with the sys-
tem. So, designers tend to use WOz studies once
(or perhaps twice) during a system’s evolution, in
sharp contrast to other evaluation methods that
might be used repeatedly as the system evolves.
This is unfortunate, as WOz studies can help
designers evaluate partially complete systems and
advance the underlying technology’s design.

One reason for the method’s limited use is the
effort required to engineer a successful WOz
interface and integrate it with an incomplete sys-

tem. To address this problem, we built explicit
WOz support into the Designer’s Augmented
Reality Toolkit,! a design environment for aug-
mented and mixed-reality systems. Because
designers using DART will find it easier to create
and reuse WOz interfaces throughout the design
cycle, they’ll be more likely to use this evaluation
method.

Based on our work and our survey of the liter-
ature (see the sidebar), we believe opportunities
exist to better exploit the WOz strategy. This arti-
cle expands on our initial work? by introducing
a preliminary framework for wizard roles, pro-
viding more detail about wizard tool support in
DART, and supporting post-WOz data analysis.
If WOz tools become a fluid component of a nat-
ural design process, wizards can take on various
roles with differing levels of responsibility for
facilitating interaction between computing sys-
tems and users.

WOz roles in iterative design

Interactive system design typically involves an
iterative process of brainstorming, prototyping,
development, user testing, and evaluation. This
isn’t a clear-cut process; it often iterates through
many cycles before reaching a final system. Fig-
ure 1 illustrates how we can use WOz through-
out the design process, as a system evolves. In
practice, the development cycle is much more
complicated, including the likelihood that the
vision for the system will change at various points,
altering the technology development curve.

Published by the IEEE CS and IEEE ComSoc M 1536-1268/05/$20.00 © 2005 IEEE

Figure 1. One general view of design
evolution and the role WOz simulation
can play in facilitating evaluation of an
envisioned experience. The WOz method
has traditionally been used early to
simulate undeveloped technology
(examples indicated as red dots) or near
the end of design, when the wizard can
supervise a full implementation or
simulate a small piece of the technology
(blue dots). We can also use WOz
simulation in the middle ground as a
means for transitioning to a final design.

In WOz studies, a wizard operator
generally plays some role in a work-in-
progress computer system—he or she
might simulate sensor data, contextual
information, or system intelligence. We
use the complementary word puppet to
refer to the mocked-up user experience
that the wizard controls through the wiz-
ard interface. During a WOz-based eval-
uation, the wizard essentially becomes a
crutch for simulating the envisioned
interface and interactions before the sys-
tem works entirely. As technology devel-
opment progresses, the gap filled by the
wizard shrinks.

Traditionally, a wizard operator plays
one of two roles. A controller fully sim-
ulates an unbuilt system component
(perhaps a sensor or system intelligence),
whereas a supervisor oversees a work-
ing system and, if necessary, overrides
decisions that the system or user makes.
The blue and red dots in figure 1 repre-
sent examples of previous work with the
WOz method.

A less common role, that of modera-
tor, lies between the controller and
supervisor roles. When a technology or
system component is working but is still
not trusted, instead of hooking it into the
system, you can take on the moderator
role to observe this component’s output
and then send that output as input to the
rest of the system. However, because the
moderator can override the system com-
ponent or sensor before the output
reaches the rest of the system, a moder-
ated evaluation can still give you the

OCTOBER-DECEMBER 2005

Envisioned system

State of technology

Time

Our goal was to make it easier for designers to

integrate live video, tracking technology, and

other sensor data within new media applications.

envisioned user experience. This lets you
obtain useful evaluation feedback while
collecting a rich set of metadata for eval-
uating the development of the system
component or sensor in question (assum-
ing the system logs the evaluation ses-
sion, and the wizard operator implicitly
tags the log when he or she either fol-
lows the action the component suggests
or overrides it). By using the moderator
role to ensure that the user receives the
envisioned experience, you can perform
a much more realistic evaluation despite
the underlying system behaving unex-
pectedly (perhaps behaving erratically
or completely failing). By analyzing
what was happening when the wizard
diverged from system decisions, the eval-
uation might also uncover false design
assumptions. Conducting WOz studies
at intermediate stages of system devel-
opment helps refine the user interaction
while informing the technology devel-
opment, especially if you collect user

interaction and wizard operator input
data during the moderated experience.

Although we’d like to claim that the
wizard’s role evolves naturally from con-
troller to moderator to supervisor with
a progressively diminishing cognitive
load, the design process isn’t this
straightforward. Nor do these descrip-
tions represent an exhaustive list of spe-
cific roles; rather, we intend them to
reveal the spectrum of possibilities for
WOz prototyping.

WOz support tools in DART

We built DART for prototyping a
wide range of applications in aug-
mented reality, mixed reality, and ubiq-
uitous computing. Our goal was to
make it easier for designers to integrate
live video, tracking technology, and
other sensor data within new media
applications. One key decision was to
integrate these emerging technologies
into an established and familiar com-

PERVASIVE computing

19

20

il Rlomox Y RING|

WOZ techniques have been used in various ways, depending on
the technologies available and the project’s specific goals.

Its most common role in human-computer interface develop-
ment places responsibility on the wizard to fully control a missing
piece of the technology infrastructure (from simulating the entire
system to simulating one sensor). Used early in design as a light-
weight prototyping method, the WOz method presents users with
rough sketches of interface ideas, even when it’s unclear what the
underlying technology should be. In their study, Scott Hudson
and his colleagues wanted to understand users’ willingness to be
interrupted in an office environment.! Their WOz study helped
them identify appropriate sensors for the space. Stephen Voida
and his colleagues used WOz to study basic interaction techniques
for a projector/camera-based augmented-reality environment.?
They wanted to understand user behavior and preferred modes of
interaction unconstrained by technology-imposed limitations,
such as special gloves or highly constrained movements to aid a
computer vision subsystem.

Further in the design process, after identifying appropriate tech-
nologies, you still might find them too difficult to implement,
especially for testing speculative user interface issues. In the tool
Topiary, the wizard plays the role of a location sensor (for example,
a GPS) during the design of location-based applications.? In Kent
Lyons’ evaluation of dual-purpose speech, the WOz method
enabled him to explore a larger portion of the design space by
analyzing unrestricted speech input for novices.* Quan Tran and
his colleagues used a wizard to simulate vision technology during
the development of the Cook’s Collage, a memory aid for elders in
a kitchen environment.> Using WOz, prototypes such as this can
mature into sophisticated applications that help researchers test

interaction theories without spending time over-engineering a
complex underlying system that might not be needed in the final
product.

Even in finished applications where the system does most of the
work, a wizard can play a variety of roles. In Alice’s Adventures in
New Media, a wizard operator simulates a gesture recognizer as
input to a sophisticated, agent-based narrative engine as part of
an augmented-reality experience.®

All these examples position the wizard as a controller, whether
it's early or late in the design process. In the mixed-reality perfor-
mance Desert Rain, the wizard plays the supervisor role, helping
participants through the experience on a case-by-case basis.” Wiz-
ards can also play a dedicated role, add intelligence beyond the
current possibilities of computing, or simply monitor an
experience to help when problems arise, much like an amusement
park ride operator.

Other authors have pointed out general considerations for WOz
studies. An early article by Nils Dahlback and his colleagues re-
vealed a need for careful design of WOz simulations in natural-lan-
guage dialogue systems (although their observations are generally
applicable); researchers must pay attention to nonsimulated parts
of the system, the constraints of the user task, and guidelines for
the wizard.® As Lennart Molin indicates, user awareness of correct
and incorrect wizard behavior can taint an evaluation and compro-
mise the results.” Reflecting on their use of the WOz method, David
Maulsby and his colleagues state that a designer benefits greatly by
becoming the wizard operator and that formal models for the sys-
tem’s behavior are necessary for keeping the simulation honest.'®

In the Suede system for prototyping and evaluating speech user
interfaces, Scott Klemmer and his colleagues reveal the need for

mercial media design environment,
Macromedia Director.
DART comprises

e a Director extension called the DART
Xtra, written in C++, to handle low-
level interaction with sensors, track-
ers, and cameras; and

¢ behaviors, written in Director’s cus-
tom scripting language Lingo, for
manipulating common high-level
design features.

DART behaviors are abstractions of sys-
tem entities that can be configured using
simple parameter windows or cus-
tomized by modifying the Lingo code

PERVASIVE computing

directly. We seek to support learnability
through these accessible high-level
behaviors that help familiarize designers
with the environment and its constraints,
and we hope to sustain learning by let-
ting designers peel away layers of
abstraction and work directly with code
and raw data. At its core, DART imbues
the philosophy of rapid prototyping and
design iteration by enabling designers to
flexibly coevolve application logic and
media content.

Event architecture and networking

DART uses a simple event broad-
cast/subscription model (we use the
abstractions of cues and actions) to com-

municate between behaviors. A cue fires
when changes happen in the system: a
high-level user interaction (for example,
a position cue—*“user near site A”) or a
change in internal state (for example, a
time cue—“2 minutes elapsed”). DART
executes an action in response to a par-
ticular cue being fired, typically changing
media content or the application state.
The system labels cues and actions using
unique event names such as myEvent1;
the designer can set up cues to respond
to sensor values (for example, when the
GPS device returns a value within some
range) and link them to output actions
(for example, playing sound file A). An
action must subscribe to a cue, using the

www.computer.org/pervasive

simulating system error to realistically evaluate user performance
during WOz studies.!’ The work on Suede supports our argument
that WOz studies should simulate the envisioned interaction, even
when generating the envisioned system requires modification to
the wizard input. These considerations all point to the need for
careful and appropriate experimental design in WOz simulations.
We should plan WOz user studies to answer existing design ques-
tions, and the wizard's role in the experimental design should be
well defined and consistent.

Several research projects emphasize WOz simulation in develop-
ment environments, but generally limit the design space to one
interface domain (such as speech recognition in the Suede tool or
location simulation in Topiary>9). The Neimo project developed a
WOz testing environment for studying multimodal systems where
one or more wizard operators can supplement missing system func-
tions.'? Our work on DART focuses on the rapid prototyping of
more general applications in mixed-reality and ubiquitous comput-
ing."> While DART isn’t appropriate for all pervasive computing sys-
tems, it illustrates how a judicious choice of programming model
can enable WOz tools to be integrated into a general-purpose
design environment.

1. S. Hudson et al., “Predicting Human Interruptibility with Sensors: A Wiz-
ard of Oz Feasibility Study,” Proc. SiccHi Conf. Human Factors in Comput-
ing Systems (CHI 03), ACM Press, 2003, pp. 257-264.

2. S. Voida et al., “A Study on the Manipulation of 2D Objects in a Projec-
tor/Camera-Based Augmented Reality Environment,” Proc. SiccHi Cont.
Human Factors in Computing Systems (CHI 05), ACM Press, 2005, pp.
611-620.

. Y. Li, . Hong, and |. Landay, “Topiary: A Tool for Prototyping Location-
Enhanced Applications,” Proc. ACM Symp. User Interface Software and
Technology (UIST 04), ACM Press, 2004, pp. 217-226.

. K. Lyons, Improving Support of Conversations by Enhancing Mobile Com-
puter Input, doctoral dissertation, College of Computing, Georgia Inst.
of Technology, 2005.

. Q. Tran and E. Mynatt, What Was | Cooking? Towards Deja Vu Displays of
Everyday Memory, tech. report GIT-GVU-TR-03-33, Georgia Inst. Tech-
nology, 2003.

. B. MaclIntyre et al., “Augmented Reality as a New Media Experience,”
Proc. Int’l Symp. Augmented Reality (ISAR 01), IEEE CS Press, 2001, pp.
197-206.

. B. Koleva et al., “Orchestrating a Mixed Reality Performance,” Proc.
SiceHi Conf. Human Factors in Computing Systems (CHI 01), ACM Press,
2001, pp. 38-45.

. N. Dahlback, A. Jonsson, and A. Lars, “Wizard of Oz Studies: Why and
How,” Proc. Int’l Workshop Intelligent User Interfaces (IUl 93), ACM Press,
1993, pp. 193-200.

. L. Molin, “Wizard of Oz Prototyping for Cooperative Interaction Design
of Graphical User Interfaces,” Proc. Sicchi Nordic Conf. Human-Computer
Interaction (NordiCHI 04), ACM Press, 2004, pp. 425-428.

. D. Maulsby, S. Greenberg, and R. Mander, “Prototyping an Intelligent
Agent through Wizard of Oz,” Proc. ACM SiccHi Conf. Human Factors in
Computing Systems (CHI 93), ACM Press, 1993, pp. 277-284.

. S. Klemmer et al., “Suede: A Wizard of Oz Prototyping Tool for Speech
User Interfaces,” Proc. ACM Symp. User Interface Software and Technol-
ogy (UIST 00), ACM Press, 2000, pp. 1-10.

. S. Balbo,). Coutaz, and D. Salber, “Towards Automatic Evaluation of
Multimodal User Interfaces,” Proc. Int’l Workshop Intelligent User Inter-
faces (IUI 93), ACM Press, 1993, pp. 201-208.

. B. Maclntyre et al., “DART: A Toolkit for Rapid Design Exploration of
Augmented Reality Experiences,” Proc. ACM Symp. User Interface Soft-
ware and Technology (UIST 04), ACM Press, 2004, pp. 197-206.

cue’s event name to complete the broad-
cast/subscription connection. Multiple
cues might trigger one action, or multi-
ple actions might subscribe to one cue
(see figure 2a). This loose coupling facil-
itates rapid prototyping; for example,
you can replace an action that’s initially
triggered using a keyboard cue with an
external device button cue or a more
sophisticated cue. Our earlier work
details DART’s networking and distrib-
uted shared memory system.!

WOz prototyping tools

The WOz tools in DART leverage the
event broadcast/subscription architec-
ture. To enable WOz communication,

OCTOBER-DECEMBER 2005

the designer adds the “Puppet of Oz”
behavior to the DART application on
the machine that is delivering the user
experience and adds the “Wizard of Oz”
behavior with the puppet machine’s IP
address to the DART application on a
remote wizard machine. The two high-
level behaviors establish the networking
connection and enable the wizard
machine to trigger any actions currently
available in the user application by sim-
ply firing actions locally using the same
cue names. The WOz tools employ two
forms of communication: cue broadcast
(from wizard to puppet) and action list
notification (from puppet to wizard) (see
figure 2b). By using common naming

conventions, the designer can trigger
cues locally or through a remote wizard.

Leveraging the continuous notification
of available actions on the puppet, DART
can automatically generate a WOz inter-
face consisting of GUI buttons that cor-
respond to the list of possible actions on
the puppet. DART maintains an action
subscription list on the puppet during run-
time, forwarding subscription list changes
to the wizard (events can be added and
removed at runtime). The wizard gener-
ates a generic button interface (using a
simple layout algorithm) and labels each
button with the unique event name. As
the puppet application runs, the wizard
automatically refreshes the correspond-

PERVASIVE computing

21

—

S

= g
” 4

22

Cues Actions

tecture

myEvent1 myEventi

myEvent2
myEvent2 Cs

myEvent2
myEvent3 S/\’r&_o
myEvent3 myEvent3

T Event archi

(@)

Cues Actions
myEvent] O————— 0

xadN,|
myEventi

myEvent2
myEvent2
myEvent2

myEvent3 ;/.EO .
Event3
myEvent3 my vi'.‘.i s

(b)

Automatic wizard
generation

Cues Actions
myEvent! O—————0 myEvent1

myEvent2
myEvent2 OC(OD

myEvent2
myEvent3 >——o
myEvent3 myEvent3

-

Figure 2. (a) A standard event-based architecture in DART. (b) Integration of WOz tools into the event-based model. Cues fired on

the wizard machine are broadcast locally and to the puppet. The puppet machine notifies the wizard about available actions at

runtime to automatically generate a basic button Ul on the wizard interface.

ing set of buttons. By supporting auto-
matic wizard generation in a high-level
behavior (WizardButtonAuto), we aim
to lower the barrier for using WOz pro-
totyping as an evaluation strategy.

You can also customize the wizard
interface to control the puppet using
built-in Director widgets and DART
behaviors. For example, you can create
a custom button in Director and then
place a WizardButton behavior on top
of the graphical element (one parame-
ter of the behavior is a specific action
name to launch on the puppet). Or, you
can place an overhead map image in the
application and attach a MapTracking
behavior that generates synthetic GPS
reports, which appear to the puppet
application to be real GPS reports. You
can program your own behaviors in
Lingo, taking advantage of the net-
working infrastructure and DART
architecture to tailor the wizard inter-
face. The wizard can send cues locally
to subscribers or broadcast them only
to the puppet.

One strategy we’ve used is to integrate
part of the puppet user interface into the
wizard interface so that the wizard oper-
ator will experience the same application

PERVASIVE computing

state as the user. In The Voices of Oak-
land project, described later, we use this
strategy to let the wizard listen to the
same audio segments as the user, fol-
lowing along with the user and deciding
what content to display. Because you
develop both interfaces in DART, and
because DART uses a model of inde-
pendent actors communicating via
events, you can easily port any code
developed on either the wizard or the
puppet interface to the other.

Visualization tools

DART supports the ability to capture
data from video cameras, trackers,
analogs, buttons, as well as wizard input
for later analysis and playback. DART
stores the time-synchronized data in
Director casts (collections of Lingo
scripts, text files, and other media in
Director), which can be imported later
into any DART application. Using inte-
grated playback facilities in DART, you
can replay the sensor data as it happened
during the experiment. The application
logic responds to replayed data just as it
would to live data, so in playback mode,
you’ll perceive exactly what the user per-
ceived during the experience.

Replaying an experience is one visual-
ization strategy; DART also includes tools
for visualizing data textually and graph-
ically. Observers simply show a text print-
out of the data based on current time.
DataGraphs behaviors format the replay
data into a graphical image. These high-
level behaviors require you to specify cer-
tain parameters, such as the specific replay
data set and the graph boundaries (such
as axis assignment, maximum values, and
size of data points). You can attach mul-
tiple DataGraphs behaviors to the same
image so that you can visualize multiple
data streams on one graph. DART’s visu-
alization tools can show both static,
cumulative data as well as dynamic data
values at any particular time on the
abstract clock. The abstract clock can be
controlled independently from Director’s
clock by DART’s TimeSlider behavior or
using custom widgets. For the Voices of
Oakland experience, we visualized each
participant’s GPS data on the same image
to get an overview of user movement
(described in more detail later).

Although you can move the numbers
collected from WOz experiments to
Matlab, Excel, or another common
graphing tool, integrating these facilities

www.computer.org/pervasive

Figure 3. A participant experiencing the
Voices of Oakland system in Atlanta’s
Oakland Cemetery.

in the DART environment has certain
benefits. One advantage is the ability to
visualize live data in parallel with previ-
ously collected data, enabling real-time
analysis of user performance. Embedded
visualization takes advantage of DART’s
abstract clock controls. DART replays
data on an abstract clock that you can
pause, unpause, set to a particular time,
rewind, fast-forward, and so on. By sup-
porting lightweight visualization tools
within the design environment, you can
perform new sorts of analysis while
maintaining consistency with the rest of
the design environment.

Case study: A mixed-reality
experience in the Oakland
Cemetery

A case study of the Voices of Oakland
project, an audio location-based experi-
ence in Atlanta’s historic Oakland Ceme-
tery, illustrates the value of flexible wiz-
ard prototyping and analysis tools.
Visitors wander through the space and
hear an unfolding drama about Atlanta’s
history through its inhabitants’ voices
(see figure 3). We describe our design
considerations, including issues of story
style (dramatic vs. commentary), story
arc (linear vs. nonlinear), agency (user
vs. system control), medium (visual vs.
nonvisual media), and technology (for
instance, location tracking) elsewhere.’

As we described earlier, a wizard can
have three roles or levels of responsibil-
ity during a design process. In our first
iteration of the Voices of Oakland expe-
rience, the wizard fully controlled the
audio segments the participant heard. In
the second iteration, we included but-
tons for the participant to select content.
We routed button presses to a graphical
display in the wizard interface, but the
moderator wizard still had to choose the
appropriate audio segments on the basis
of this feedback. In the third iteration,
we handed over full responsibility to the

OCTOBER-DECEMBER 2005

In our first iteration of the Voices of Oakland

experience, the wizard fully controlled the audio

segments the participant heard.

system for presenting audio based on
location and user button interaction,
with the wizard supervising the experi-
ence. The DART WOz tools facilitated
easy transition between each change in
the wizard interface.

First design iteration: Wizard as
controller

In the first generation of the Voices of
Oakland project, the wizard operator
was integral for simulating several par-
ticipants’” experience. We started with
rough audio content and a vague idea of
where and when we wanted those sto-
ries to be presented as the user moved
through the space. To facilitate the con-
troller wizard role, we developed two
modes of interaction:

® a map-based interface, where the wiz-
ard tracks the user’s position and trig-
gers content when the user moves near
a red content zone (see figure 4a, left);
and

¢ a button-based interface, where each
button triggers a specific audio seg-
ment to play (figure 4a, right).

The map-based interface took several
days to create because we had to con-
figure the map image to correspond with
the correct GPS coordinates and link the
audio content to particular locations in
the cemetery. We generated the button-
based interface quickly using DART’s
WizardButtonAuto behavior.

In our pilot study, we evaluated the
wizard interface as well as the participant
experience. Our evaluation involved two
wizards (script writers) and two users.
Aside from demonstrating how the wiz-
ard interface worked, we gave the wiz-
ard operators no specific instructions on
how to create the visitor’s experience;
they could simulate the GPS tracking or
directly trigger the media content by
pushing buttons. During the study, we
found that the wizard operators preferred
the buttons rather than the map, osten-

PERVASIVE computing

23

24

!

Gom pton

Niksen Crumley

Nissen Crumley

(b)

sibly because it put them closer to the
content and enabled them to create a
more compelling visitor experience.
(However, because the location-based
implementation was fairly crude at this
point, this observation should be taken
with a grain of salt.) The tour participants
provided feedback about the type of con-
tent and length of audio segments, and
we incorporated many ideas into the next
iteration.

Second design iteration: Wizard as

moderator
After the initial pilot testing, we made

PERVASIVE computing

Stages

(__Introduction At Crumley

At Compton

To Jackson

To Missen

At Missen To Garrett

()
[J
[At Jackson]
()
()

=
SN

To Crumley At Garrett

| Stories To Jackson

[Leawing the Nissen Crumley circle

African American burial in cemetery

4 O |

(
[Georgia Harris
(

Turning

Guide

African American burial in cemetery

—

Garrett "

several changes to the experience and the
wizard’s role. We divided the script into
short audio dialogues and organized them
into categories—life stories, history, and
architecture. To simulate user control, we
gave the user a handheld controller with
buttons corresponding to the content cat-
egories. The visitor could listen to short
audio stories within a category and then
dig deeper, or choose a different category
while at any particular grave site.

The new wizard interface (figure 4b)
incorporated Director’s built-in GUI wid-
gets and a set of buttons (near the bot-
tom of 4b) for guiding the visitor if the

Figure 4. (a) Wizard interface used for
the first design iteration. The controller
wizard could simulate user position on a
map (left) or trigger audio content
directly using buttons (right). (b) Wizard
interface used in iterations 2 and 3. The
wizard observes the user’s button
interaction in the six circles in the upper
left and activates audio content using
buttons (story segments on the right,
navigational segments at the bottom).

primary instructions were inadequate.
We chose to route the user’s button inter-
action through the wizard interface and
situate the wizard as a moderator. We
had questions about the users’ expecta-
tions about the interaction, and we
wanted to control for interface issues
such as multiple button pressing while
providing an engaging experience. The
moderator could see the button interac-
tion in the wizard interface (and the
user’s position in the physical space) and
determine the appropriate content.
Although it took longer to create this cus-
tom wizard interface, the DART WOz
tools enabled us to easily coevolve the
wizard application to match the new user
interaction and to support the moderator
wizard role.

During an outdoor Fall festival in the
cemetery, we informally tested the expe-
rience with about 15 members of the pub-
lic. For the most part, our four different
wizard operators simply relayed user but-
ton presses, indicating that buttons were
sufficient for controlling the audio con-
tent at each grave. We didn’t record raw
GPS data or try to visualize the results, in
part because we weren’t doing a formal
evaluation—although we realized later
that it would have been useful.

Third design iteration: Wizard as
supervisor

For the third version of the Voices of
Oakland, we allowed participant inter-
action with the button device to directly
affect content changes. The wizard inter-
face remained the same (figure 4b), but
the wizard’s role shifted to supervisor.

www.computer.org/pervasive

Figure 5. Visualizing the Voices of
Oakland experience with a few DART
behaviors (DataGraphs, Observers,
TimeSlider) inside Director: (a) GPS data
for five participants, with dynamic circles
showing the users’ position at a particular
time; (b) textual representations of GPS
location and head rotation data; (c)
graph of button interaction over time;
(d) TimeSlider for controlling DART’s
abstract time.

The wizard could observe the user’s but-
ton presses and override the user’s con-
tent choices, if necessary. The wizard still
communicated with the system when a
participant was in range of a particular
grave and controlled the ancillary navi-
gational content as needed.

We used DART’s capture facilities to
record all the sensor data (GPS, head
rotation, and button presses) and wiz-
ard actions during a formal user evalu-
ation. Even though we weren’t using the
GPS and head rotation data in the appli-
cation, we collected the data to help us
close the gap between the wizard-simu-
lated experience and a working applica-
tion. Using DART’s replay and visual-
ization tools, we created interactive
graphs to help analyze the WOz study
(see figure 5).

The DART visualization tools are an
initial attempt at supporting WOz study
analysis. Figure 5 shows multiple par-
ticipants’ GPS data above a satellite
image of the cemetery. For each partici-
pant, we could print the head rotation
values and graph the button interaction
over time. We included the TimeSlider
in our visualization so that we could
scrub the time values and see dynamic
updates in the graphs. Our visualization
helped us understand how GPS and head
rotation data might be useful in our sys-
tem design. (While a graphical view of
the rotation values might have been use-
ful, we opted for a simpler textual rep-
resentation until we clearly needed the
graphical view.) More details about the
study results are available elsewhere.?
During future WOz evaluations, we also

OCTOBER-DECEMBER 2005

743,200 Longitude(UTM) 743,250
.
3,737,308 3

User 1
[— o = W W 1

o Life @ History & Architecture

osition:[3737252.160000,743217.840000,323, 700000]
Crientation:[-147.220566, -61. 412586, 118,923607]

osition:[2727272,£40000,
rientation:[#5. 856041, -62.009716é, -102.802655]

3,737,298 —

User 3

'l 1
v 3 - 7.840000,322.700000]
vientstion:[-147.220566, -61.412586, 118,923607]

L
L

. 1o

Latitude(U m

plan to explore visualizing prior partic-
ipant data during the study of live par-
ticipants for real-time predictive feed-
back on user behavior.

xplicit support for the WOz

simulation method is certainly

important in pervasive comput-

ing prototyping environments.
By providing easy-to-use high-level tools
for wizard interface creation and data
visualization, we hope to lower the bar-
rier for designers and researchers to
explore a variety of potential uses of
WOz simulation throughout the design
cycle. We also hope this leads to a more
comprehensive framework of possible
wizard roles.

We learned many lessons during our
experimentation with WOz simulation
in the Oakland project. Clearly, the
nature of the application will dictate
what facilities are needed. The ability to
easily try different WOz approaches was
useful, given the design space we were
exploring. If we were doing visual aug-
mented reality or spatialized audio
where accurate location was integral, the
map-based wizard interface might have
been more useful, but we might not have
had as many other useful options for
wizard controls.

Automatic wizard interface generation
appears to be most useful for early

11:11:174 (minisecims)

design exploration. We used the auto-
matically generated interface during our
early informal studies but not during
our formal WOz studies, because cus-
tomized WOz features were more use-
ful. The embedded visualization tools
are well suited for intermediate stages
of design and novel wizard roles, where
we can learn a lot about users’ preferred
interactions and the technology’s limi-
tations. The rapid-prototyping philoso-
phy of DART and our WOz tools
encourages designers to explore various
roles with different degrees of responsi-
bility throughout a design process.

Over the past decade, researchers
have raised many significant considera-
tions that designers must be conscious
of when designing WOz experiments.
In particular, they should design the wiz-
ard interface with the wizard operators’
perceptual, cognitive, and motor skills
in mind, just as with any user interface.
When there’s less demand on the wiz-
ard, the wizard can pay more attention
to the user and the environment, per-
form necessary activities more easily,
and contribute observations to the eval-
uation of the experience. For the WOz
method to be effective, designers must
be able to bridge the gap between the
wizard’s role and actual system imple-
mentation. We believe that integrating
WOz prototyping tools into the pro-
gramming environment is vital to sup-
porting this transition. I

PERVASIVE computing

25

A PRIVACY

Ensure that your networks
operate safely and provide
aitical services even in the
face of attacks. Develop lasting
security solutions, with this

peer-reviewed publication.

Top security professionals in
the field share information you
can rely on:

e Wireless Security

® Securing the Enterprise

* Designing for Security
Infrastructure Security

® Privacy Issues

e Legal Issues

® Cybercrime

* Digital Rights Management

o Intellectual Property
Protection and Piracy

the AUTHORS

Steven Dow is a PhD student in human-centered computing in the College of Com-
puting at the Georgia Institute of Technology. His research interests include design
tools, human-computer interaction, ubiquitous computing, mixed reality, and expe-
rience design. He received his MS in human-computer interaction from the Georgia
Institute of Technology. Contact him at the College of Computing, GVU Center,
Georgia Inst. of Technology, Atlanta, GA 30332-0280; steven@cc.gatech.edu.

Blair Maclntyre is an assistant professor in the Georgia Institute of Technology’s Col-
lege of Computing and the Graphics, Visualization, and Usability Center. His research
interests include understanding how to create highly interactive augmented-reality
environments, especially those that use personal displays to augment a user’s percep-
tion of his or her environment. He received his PhD in computer science from Colum-
bia University. Contact him at the College of Computing, GVU Center, Georgia Inst.
Technology, Atlanta, GA 30332-0280; blair@cc.gatech.edu.

Jaemin Lee is a freelance usability specialist. Her research interests include HCI,
ubiquitous computing, and context-aware computing. She received her MS in
human-computer interaction from the Georgia Institute of Technology. Contact her
at 1550 Iron Point Rd., Apt. 221, Folsom, CA 95630; jaemin.lee@gmail.com.

Christopher Oezbek is a PhD student in software engineering at the Free University

Berlin. His research interests include documentation processes, APl usability and dis-
covery, and the open source development process. He received his MS in comput-
ing from the Georgia Institute of Technology. Contact him at the Working Group
Software Eng., Free Univ. Berlin, Takustr. 9, D-14195 Berlin, Germany; oezbek@inf.
fu-berlin.de.

Jay David Bolter is the Wesley Chair of New Media at the Georgia Institute of Tech-
nology. Along with the Augmented Environments Lab at Georgia Tech, he is helping
to build augmented-reality systems to stage dramatic experiences for entertainment
and education. He also wrote several books on hypertext, media theory, and digital
design. He received his PhD in classics from the University of Toronto. Contact him
at the School of Literature, Communication, and Culture, Georgia Inst. Technology,
Atlanta, GA 30332-0165; jay.bolter@Icc.gatech.edu.

Maribeth Gandy is a research scientist with the Interactive Media Technology Cen-
ter at the Georgia Institute of Technology and a doctoral student there with a focus
on augmented reality and HCI. Her other research interests include mobile,
wearable, and ubiquitous computing; universal design; and computer audio. She
received her MS in computer science from the Georgia Institute of Technology. Con-
tact her at the Interactive Media Technology Center, Georgia Inst. of Technology,
Atlanta, GA 30332-0280; maribeth@imtc.gatech.edu.

REFERENCES

* Education 1. B. Maclntyre et al., “DART: A Toolkit for 3. S. Dow et al., “Exploring Spatial Narratives

® The Security Profession

26

Order your subscription today.
Www.computer.org/security/
¢ IEEE Tox

SOCIETY

www.computer.org

PERVASIVE computing

Rapid Design Exploration of Augmented
Reality Experiences,” Proc. ACM Symp.
User Interface Software and Technology
(UIST 04), ACM Press, 2004, pp. 197-206.

. S. Dow et al., “Wizard of Oz Interfaces for

Mixed Reality Applications,” Extended
Abstracts Sigenr Conf. Human Factors in
Computing Systems (CHI 05), ACM Press,
20085, pp. 1339-1343.

and Mixed Reality Experiences in Oakland
Cemetery,” Proc. ACM SiccHr Conf.
Advances in Computer Entertainment
(ACE 05), ACM Press, 2005, pp. 51-60.

For more information on this or any other comput-
ing topic, please visit our Digital Library at www.
computer.org/publications/dlib.

www.computer.org/pervasive

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 1.8)
 /CalRGBProfile (Apple RGB)
 /CalCMYKProfile (U.S. Sheetfed Uncoated v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName <FEFF0068007400740070003a002f002f007700770077002e0063006f006c006f0072002e006f00720067ffff>
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF0049004500450045002000580070006c006f0072006500200073007000650063007300200066006f0072002000440069007300740069006c006c0065007200200036002e0020004d0056>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

