
Task-based Multi-agent Coordination for Information Gathering

Katia Sycara and Dajun Zeng
The Robotics Institute

School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213, U.S.A.

(412) 268-8825 (412) 268-8815
katia@cs.cmu.edu zeng+@cs.cmu.edu

Introduction

The ubiquity of network-based information resources
has given impetus for the development of intelligent
software agents that will be able to (1) gather task-
related information automatically or with little help
from human users from various on-line information re-
sources, (2) resolve potential con
icts among acquired
knowledge from di�erent information resources, and
(3) more importantly, collectively and e�ectively solve
tasks requested by human users.
We report on our work on developing distributed col-

lections of intelligent information agents that cooper-
ate asynchronously to perform goal-directed informa-
tion retrieval and information integration in support of
various tasks, such as �nding information about peo-
ple on the Internet, managing calendars and making
arrangements to host visitors in an academic environ-
ment. The task of hosting a visitor involves arranging
the visitor's schedule with faculty that match the in-
terests that the visitor has expressed in his/her visit
request. The visitor hosting task is one of the tasks
that are investigated in the context of the PLEIADES
project at Carnegie Mellon University. The broader
goal of PLEIADES is to characterize and develop dis-
tributed agent-based architectures that are composed
of negotiating and learning agents and apply them to
tackle information and activity management problems
for everyday use. Agents coordinate and negotiate
with each other to resolve disparities in the retrieved
information. In addition, they learn from their users,
the information sources, and each other.
In this paper, we will focus on the architecture of

our distributed system, and the interactions among its
agents for task-based accessing of heterogeneous, dis-
tributed information sources. We will use the visitor
hosting task as an example domain for illustration.

Architecture for Cooperative Intelligent
Information Retrieval

In the collection of agents we have developed, we dis-
tinguish two types of agents: task-speci�c software
agents help users perform tasks by communicating

with each other and/or querying and exchanging in-
formation with information-speci�c software agents,
which provide intelligent access to a heterogeneous col-
lection of information resources. For example, the
meeting scheduling module could be a task-speci�c
agent, which will manage and update a particular
user's appointment and meeting agenda. The general-
purposed finger service module, which can extract
useful information from the network finger utility
given user's login name and network address, can be
viewed as an information-speci�c software agent. Al-
though the boundary between these two types of soft-
ware agents is quite arbitrary and vague, we make
the distinction that typically task-speci�c agents ac-
cess other agents (either task-speci�c or information-
speci�c ones) and communicate directly with users,
whereas information agents (usually) access only infor-
mation sources, other information assistants and task-
speci�c agents. Task-speci�c agents have knowledge
of the task domain, information assistants relevant to
performing various parts of the task. In addition, task
assistants have strategies for resolving con
icts and
fusing information retrieved by information assistants.
Information assistants have models of the associated
information resources, and strategies for con
ict reso-
lution and information fusion.
This architecture is mainly motivated by the follow-

ing considerations:

� sharability: Many users can share information-
speci�c software agents or task-speci�c agents. Typ-
ically, user applications will access several agents
in parallel and one software agent can serve di�er-
ent application programs. The behavior of a soft-
ware agent, essentially, could be easily described in
a server-client model.

� Complexity hiding: Often information retrieval in
support of a task involves quite complex coordina-
tion of many di�erent agents. Having the user in-
teract only through a relevant task assistant hides
the underlying complexity and frees the user from
having to know of, access and interact with a
plethora of information seeking agents in support of
a task. For example, the hosting visitor task in-



volves four information agents and four task agents.
However, the user interacts directly only with the
Visitor Hoster agent, the main task assistant for
the visitor hosting task.

� modularity and reuseability: Although software
agents will be operating on behalf of their patrons|
human users, pieces of code can be copied from one
user to another without modi�cations or with lit-
tle adaptation to take into consideration particular
users' preferences or idiosyncrasies. One of the basic
ideas behind the distributed agent-based approach is
that software agents will be kept simple for ease of
maintenance, initialization and customization.

� 
exibility: software agents can interact in new con-
�gurations \on-demand", depending on the informa-
tion requirements of a particular decision making
task.

Scenario: Organize a Visit

We illustrate the system architecture and the interac-
tions of the information gathering agents in the visitor
hosting scenario. A di�erent variation of the hosting
visitor task has also been explored by Kautz and his
colleagues at Bell Labs (Kautz, Selman, & Coen 1994).
A visitor hosting agent should have the following

capabilities:

� It should automate information retrievals in terms
of �nding personnel information of potential meet-
ing attendees. It should be able to access various
on-line public databases and information resources
at the disposal of the visit organizer. The system
should also integrate the results obtained from var-
ious databases, clarify ambiguities (e.g., the syn-
onyms for certain entities) and resolve the con
icts
which might arise from inconsistency between in-
formation resources. Some possible information re-
sources that are common to a modern university are:
networking �nger, on-line library, on-line phone-
book, etc.

� It should create and manage schedule for visitors. It
is also preferable if the meeting location and equip-
ment can be managed in a coherent way.

� It should possess a graphical user interface which can
interact with the users. The GUI facilitates getting
input from the user, presenting acquired informa-
tion, asking for user con�rmation as well as advising
the user of the state of the system and its progress.

Our prototype system retrieves information from
various heterogeneous information resources at CMU

and also internet-based resources, such as remotely ac-
cessing plan �les at sites external to CMU to extract
information about people. The currently implemented
agents that are utilized in support of hosting visitors
are:

� Information-Speci�c Agents

1. Finger agent, which heuristically parses the re-
trieved information from remotely residing finger
data bases. The possible types of information that
can be acquired in this way include: work title, re-
search interests, work and home phone numbers,
vacation plan, etc.

2. Who's-Who agent, which accesses on-line CMU

who's who database through http-based queries.
The �elds in the database include: name, title,
a�liation, campus o�ce, campus phone number,
home address and E-mail address.

3. Faculty Interests agent, which can be used to
retrieve information about the faculty members
in the School of Computer Science at CMU with
respect to their research interests.

4. Computer-Science-Directory agent, which can
get the information about phone number, o�ce
number, home address, etc. for all the members
of the School of Computer Science at CMU , in-
cluding faculty members, sta�s and students.

� Task-Speci�c Agents

1. Visitor Hoster agent, which accepts input from
the user concerning the informationabout the visi-
tor and intended speci�cation of possible meeting
candidates, and initiates other related personnel
information agents and scheduling agents.

2. Scheduling agent, which takes the responsibility
of maintaining a visitor's meeting schedule, coor-
dinating among di�erent meeting requests mean-
while taking into consideration possible meeting
preferences of meeting attendees. For example,
user A might prefer to meet with the visitor in
the afternoon although meeting in the morning is
also admissible.

3. Personnel Finder agent, which coordinates
all personnel information agents through a
DataBase-Mapper, in which mapping functional-
ity from available knowledge to information as-
sistants containing desired information is pro-
vided. After answers from information agents get
collected, Personnel Finder will try to resolve
con
ict heuristically 1 and merge them together
to get a coherent picture about meeting candi-
dates. In addition, the Personnel Finder agent,
given a person's name and a�liated organization,
has heuristics for composing the person's e-mail
address and remotely accesses through internet
Finger information pertaining to the person.

4. Interface agent, which takes care of present-
ing acquired information from task or information
speci�c agents to human users. It also handles the

1One of the heuristic rules we are using is that if the
information returned by Finger is di�erent from what
Computer-Science-Directory found, we assume that the
information based on Finger is more relevant and up-to-
date.



input from users. Separating interface functional-
ities from agent functionality helps increase the
system modularity and makes it possible to en-
hance human-computer interface without a�ect-
ing other parts of the system.

We brie
y present a visitor hosting scenario to il-
lustrate the interactions of the various agents. Sup-
pose Gio Wiederhold wants to visit CMU CS depart-
ment. Gio has requested that he would prefer to meet
with CMU faculty interested in data bases. Relevant
information about Gio, such as �rst and last name,
a�liated organization, date and duration of his visit
and his preference as to the interests of faculty he
wants to meet with are input into the Visitor Hoster

agent. Then the Personnel Finder agent gets in-
voked and �rst accesses the Faculty Interests infor-
mation speci�c agent to get a list of potential meeting
candidates whose research interests match Gio's pref-
erence. Based on the list of names returned in answer
to this information gathering query, the Personnel

Finder tries to collect more information for these po-
tential meeting candidates so that they can be con-
tacted and asked about whether they would be inter-
ested in meeting with Gio. For each potential meet-
ing attendee, the Personal Finder agent spawns mul-
tiple queries to various information speci�c agents,
i.e., the Finger agent, the Who's-Who agent and the
Computer-Science-Directory agent simultaneously.
These agents in turn format the queries in accor-
dance with the format of the corresponding informa-
tion resource. In particular, information is gathered
about the faculty rank, o�ce location, telephone and
e-mail address of each of the potential meeting at-
tendees. The Personnel Finder agent receives the
replies for each potential attendee, merges the in-
formation and resolves any con
icts. It then sends
the information to the Visitor Hoster agent. The
Visitor Hoster agent selects the e-mail addresses of
the most senior faculty 2 and automatically sends them
e-mail asking if they would like to meet with Gio on
the date of his visit. If faculty members have per-
sonalized calendar management assistants (e.g., Tom
Mitchell's Calendar Apprentice CAP (Dent et al. 1992;
Mitchell et al. 1994)), the Visitor Hoster agent com-
municates with those assistants. For those faculty
members who do not have a software calendar man-
ager, the e-mail is in human readable form. Upon re-
ceipt of answers as to which faculty is interested in
meeting with the visitor, Visitor Hoster starts its
scheduling agent and works out a feasible schedule with
the help from involved meeting candidates' software
agents, e.g., through exchanging appointment agenda
and personal calendar information.
There are some interesting features in our approach

2Currently, the default duration of a meeting is one
hour, so for a full day's visit, 8 faculty members are ini-
tially selected.

that deserve being mentioned here: (1) Information
speci�c agents have a term-translation capabilities that
processes the retrieved data to disambiguate the infor-
mation as well as standardize and transform the keys
to facilitate information comparison and integration
from di�erent sources. For example, the phone num-
ber pre�x for CMU 412-268 is automatically added
to CMU telephone extensions. Another example is
that the �eld name campus used by library Who's-Who
database is transformed to o�ce | the term used in
other databases. (2) In our implementation of informa-
tion speci�c agents every separate process is handled
with a timeout cap, which guarantees that a hung-up
database will not hang-up the whole system. A default
action gets called if the timeout is exceeded. Exception
handling mechanisms could implement actions such as
retry access or give up and report failure.

Research Issues and Future Work
Some of the issues that we plan to focus on in the future
include (1) representing and associating with the infor-
mation sources meta-information, such as size, average
time it takes to answer a query and monetary cost of
query processing, (2) caching answers to queries that
are frequently asked and determining how to manage
the cached information, (3) inductively learning data
base regularities and use the learned regularities during
agent interactions, (4) learning information retrieval
and negotiation strategies, and (5) learning informa-
tion about the capabilities and reliability of di�erent
agents.

Acknowledgments
This research has been sponsored in part by ARPA
Grant F33615-93-1-1330. We want to thank Tom
Mitchell, Rich Caruana, Dana Freitag, Matthew Glick-
man, Ken Lang, Sean Slittery, David Zabowski and
other members of the PLEIADES project for interest-
ing discussions. We also want to thank Gilad Amiri
for doing much of the implementation.

References
Dent, L.; Boticario, J.; McDermott, J.; Mitchell, T.;
and Zabowski, D. 1992. A personal learning appren-
tice. In Proceedings of the Tenth National Conference
on Arti�cial Intelligence. AAAI.

Kautz, H. A.; Selman, B.; and Coen, M. 1994.
Bottom-up design of software agents. Communica-
tions of the ACM 37(7).

Mitchell, T.; Caruana, R.; Freitag, D.; McDermott,
J.; and Zabowski, D. 1994. Experience with a learn-
ing personal assistant. Communications of the ACM
37(7).


