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Abstract. Reinforcement learning is increasingly often used as a learn-
ing technique to implement control tasks in autonomous systems. To
meet stringent safety requirements, formal methods for learning-enabled
systems, such as closed-loop neural network verification, shielding, falsi-
fication, and online reachability analysis, analyze learned controllers for
safety violations. Besides filtering unsafe actions during training, these
approaches view verification and training largely as separate tasks. We
propose an approach based on logically constrained reinforcement learn-
ing to couple formal methods and reinforcement learning more tightly
by generating safety-oriented aspects of reward functions from verified
hybrid systems models. We demonstrate the approach on a standard
reinforcement learning environment for longitudinal vehicle control.
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1 Introduction

Complex (autonomous) systems increasingly often employ learning techniques to
implement control tasks, which poses serious safety challenges. Formal methods
for learning-enabled systems—such as closed-loop neural network verification
(e.g., Verisig [16, 15], NNV [27]), falsification [6], shielding [1, 17], Neural Simplex
[24], input-output behavior explanations [3], and online reachability analysis
and hybrid systems monitoring [21, 9, 10]—address these challenges by analyzing
trained controllers for safety violations and explanations of their behavior, or
by filtering the actions proposed by controllers with formally verified artifacts.
Besides filtering unsafe actions during training, the training setup itself typically
is not supported with formal methods. A particularly attractive approach for
training controllers is reinforcement learning, for its seemingly straightforward
way of specifying desired behavior with a reward function. Designing reward
functions, however, is challenging, not least because they need to balance safety-
oriented requirements with goal-oriented ones.

⋆ This work was funded by the Federal Railroad Administration Office of Research,
Development and Technology under contract number 693JJ620C000025.
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In this paper, we base on ideas from logically constrained reinforcement learn-
ing [11, 13, 12] to develop a formal approach to generating the safety-oriented
aspects of reward functions from verified predictive hybrid systems models. The
main intuition behind our approach is that hybrid systems models describe safety
envelopes that can be turned into formally verified runtime monitors [22]. These
runtime monitors not only distinguish safe from unsafe behavior, but with an
appropriate quantitative interpretation can be used to measure the robustness
of actions with respect to such safety envelopes. The challenge in deriving a
useful (for reinforcement learning) robustness measure from a formal model is
that relative importance of safety aspects is not immediately obvious from the
formal model alone, and that differences in units makes comparison of the mag-
nitude of robustness values across different aspects of the formal model difficult.
For example, an autonomous vehicle model may encode brake force limits and
speed limits: as the vehicle approaches a speed limit, it is acceptable to experi-
ence decreased robustness in brake limit in order to not violate the posted speed
limit. Another challenge is that measure-zero safety aspects can hide progress or
regression in other requirements.

We address these challenges by adapting robustness measures from metric-
temporal logic [7] and signal-temporal logic [5], and by developing signal rescal-
ing [28] operators to adjust the relative importance of competing safety aspects.

The benefits of this approach are that the safety specification is rigorously
checked for correctness and the resulting reward function inherits the predictive
nature of the hybrid systems model and its safety guarantees. The contributions
of this paper are threefold: based on [22, 7] we develop a quantitative interpre-
tation of hybrid systems models with an account for measure-zero requirements;
we develop signal rescaling [28] operators to specify relative importance of (com-
peting) safety aspects in the formal model; and we evaluate our approach on a
standard reinforcement learning environment for longitudinal vehicle control [4].

2 Background

In this section, we summarize background theory and introduce notation.

2.1 Differential Dynamic Logic

Differential dynamic logic dL [25] is a formal language for hybrid systems written
as hybrid programs. The syntax of hybrid programs (HP) is described by the
following grammar where α, β are hybrid programs, x is a variable and e, f(x) are
arithmetic expressions (terms) in +,−, ·, / over the reals, Q is a logical formula:

α, β ::= x := e | x := ∗ | ?Q | {x′ = f(x) & Q} | α ∪ β | α;β | α∗

Assignment x := e assigns the value of term e to x (e.g., compute accelera-
tion to meet speed limit after T time a := (v − vdes)/T ), and nondeterministic
assignment x := ∗ assigns any real value to x. Tests ?Q abort execution and
discard the run if Q is not true, possibly backtracking to other nondeterministic
alternatives. A typical modeling pattern combines nondeterministic assignments
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with tests to restrict the chosen values to some set (e.g., choose control within
brake and acceleration limits: a := ∗; ? − B ≤ a ≤ A). Differential equations
{x′ = f(x) & Q} are followed along a solution of x′ = f(x) for any duration as
long as the evolution domain constraint Q is true at every moment along the so-
lution (e.g., speed changes according to acceleration/deceleration, but does not
revert when hitting brakes {v′ = a & v ≥ 0}). Nondeterministic choice α ∪ β
runs either α or β (e.g., either accelerate or brake), sequential composition α;β
first runs α and then β on the resulting states of α (e.g., first control, then mo-
tion), and nondeterministic repetition α∗ runs α any natural number of times
(e.g., repeated control and environment loop).

The formulas of dL describe properties of hybrid programs and are described
by the following grammar where P,Q are formulas, f, g are terms, ∼∈ {<,≤,=
, ̸=,≥, >}, x is a variable and α is a hybrid program:

P,Q ::= f ∼ g | ¬P | P∧Q | P∨Q | P → Q | P ↔ Q | ∀xP | ∃xP | [α]P | ⟨α⟩P

The operators of first-order real arithmetic are as usual with quantifiers ranging
over the reals. For any hybrid program α and dL formula P , the formula [α]P
is true in a state iff P is true after all runs of α. Its dual, ⟨α⟩P is true in a state
iff P is true after at least one run of α.

The semantics of dL is a Kripke semantics in which the states of the Kripke
model are the states of the hybrid system. A state is a map ω : V → R, assigning
a real value ω(x) to each variable x ∈ V in the set of variables V. We write
JQK to denote the set of states in which formula Q is true, ω ∈ JQK if formula
Q is true at state ω, ωJeK to denote the real value of term e in state ω, and
ωe
x to denote the state ν that agrees with ω except that ν(x) = ωJeK. We write

FV(P ) for the set of free variables in formula P , and BV(α) to denote the bound
variables of program α, see [25]. The semantics of hybrid programs is expressed
as a transition relation JαK [25]. The differential equations and nondeterministic
alternatives in hybrid programs make them an expressive specification language,
but require computationally expensive methods similar to online reachability
analysis for execution, which is detrimental to their use in reward functions in
reinforcement learning. Next, we review ModelPlex [22] as a method to shift
much of this computational complexity offline.

2.2 ModelPlex

ModelPlex [22] combines a universal offline safety proof [α]P with an existential
reachability check whether two concrete states ω, ν are connected by the program
α, i.e., whether (ω, ν) ∈ JαK. The safety proof witnesses that all states reachable
by model α satisfy P , while passing the reachability check witnesses that the
two concrete states ω, ν are connected by the program α, and so state ν inherits
the safety proof, i.e., ν ∈ JP K. The reachability check is equivalently phrased
in dL as a monitor specification ⟨α⟩

∧
x∈BV(α)(x = x+) [22]. The dL monitor

specification allows ModelPlex, in contrast to online reachability analysis, to
shift computation offline by using theorem proving to translate a hybrid systems
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model into a propositional ModelPlex formula over arithmetic expressions. Note
that the reachability check is inherently a property of the runtime execution
and, therefore, the dL monitor specification and the resulting ModelPlex formula
are never valid (they introduce fresh variables x+, which means the existential
reachability proof will not succeed offline for all states). Instead, the proof can
be finished at runtime for two concrete states (a state ω providing values for x
and a state ν providing values for x+) by plugging in concrete measurements for
all variables of the ModelPlex formula.

The setM of ModelPlex formulas ϕ : S×S → B is generated by the following
grammar (∼∈ {≤, <,=, ̸=, >,≥} and θ, η form the arithmetic expressions of the
set T of ModelPlex terms in +,−, ·, / over the reals, i.e., θ : S × S → R):

ϕ, ψ ::= θ ∼ η | ¬ϕ | ϕ ∧ ψ | ϕ ∨ ψ

When a ModelPlex formula ϕ ∈ M is satisfied over states ω, ν, we write (ω, ν) |=
ϕ as shorthand for ω

ν(x)
x+ ∈ JϕK, or in other words, ϕ(ω, ν) is true.

ModelPlex formulas are quantifier- and program-free, and are therefore easy
(and computationally inexpensive) to evaluate from concrete measurements at
runtime, which makes them attractive for use in reinforcement learning.

The predictive nature of ModelPlex monitors also makes them useful for
safeguarding learned controllers during training and during operation [9, 10], in
a shielding-like approach [20] based on hybrid systems models. In this paper, we
take a complementary approach to shielding by interpreting ModelPlex monitors
quantitatively in rewards.

2.3 Reinforcement Learning and Reward Shaping

Reinforcement learning involves training an agent to reach a goal by allowing
the agent to explore an environment while trying to maximize its reward. The
agent attempts different actions from the set of actions A. For every action the
agent makes, the environment takes a transition from state s ∈ S to a new state
s′ ∈ S. A reward function then signals to the agent how useful the outcome of
action a is: a negative reward signals that taking action a to reach state s′ is
discouraged, while positive reward encourages action a. Put differently, nega-
tive rewards encourage leaving “bad” states, while positive rewards encourage
dwelling in “good” states. In Section 4, we develop a principled approach to gen-
erate safety-oriented aspects of the reward function from hybrid systems models.

Often, the agent has to learn multiple (competing) aspects of control (e.g.,
reaching a destination fast while respecting posted speed limits and conserving
energy). This process of augmenting the reward function with multiple aspects
is referred to as reward shaping. The motivation behind reward shaping is to
provide additional reward for accomplishing subtasks that could lead towards
the goal in the hopes to improve convergence and efficiency of training.

3 Related Work
Shielding (e.g., [1, 17], see [19] for a survey) prevents reinforcement learning
agents during training and operation from taking actions that violate the spec-
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ification. Specifications of shields are typically in linear temporal logic (LTL)
and focus on discrete environments. Some approaches based on dL [9] target
continuous environments, even from visual inputs [14]. Note that shields during
training can be detrimental to safety in operation [20] if not specifically trained
to return to safe states [9]. Neural Simplex [24] performs shielding with the ad-
ditional feature of transferring control back to the learned controller when safe.
In order to give feedback about compliance with shields to the learning agent
during training and as a way of measuring robustness during operation, we fol-
low logically constrained reinforcement learning (see e.g. [11, 13, 12]), but instead
of LTL we use differential dynamic logic combined with signal rescaling [24] to
shape safety-oriented rewards.

Previous works [18, 2] involving logic-based rewards include using environment-
based temporal logic formulas as additional award augmented through potential-
based reward shaping. Results have shown faster convergence and optimal policy
performance; however, these have been only tested for average-reward learning
algorithms rather than discounted-reward [18]. Additionally, reward functions
can be augmented with specifications in signal temporal logic for desired agent
behavior [2].

4 Rewards from Hybrid Systems Models

We take a complementary approach to shielding by interpreting hybrid systems
models quantitatively through their relational abstraction as ModelPlex moni-
tors. To this end, we define a hybrid systems normal form that is designed to
align states of the hybrid systems model with states in the training process.

Definition 1 (Time-triggered normal form). A hybrid systems model α in
time-triggered normal form is of the shape (u := ctrl(x); t := 0; {x′ = f(x, u), t′ =
1 & t ≤ T})∗, where u := ctrl(x) is a discrete hybrid systems model not men-
tioning differential equations.

A hybrid program in time-triggered normal form models repeated interaction
between a discrete controller u := ctrl(x) that acts with a latency of at most
time T and a continuous model t := 0; {x′ = f(x, u), t′ = 1 & t ≤ T} that
responds to the control choice u. Note that the discrete controller u := ctrl(x)
typically focuses on safety-relevant features (such as collision avoidance) while
abstracting from goal-oriented features (such as desired cruise speed). The goal
of this section is to develop a principled approach to reward shaping to translate
the safety-relevant insights of formal verification to reinforcement learning. Fig. 1
illustrates how the states of a formal model correspond to states in reinforcement
learning (note that unlike in usual RL notation, where states are responses of
the environment and actions are drawn from a separate set, the states of the
formal model include the values of actions).

Let s0 ∈ S be the state before executing u := ctrl(x), s1 ∈ S be the state after
executing u := ctrl(x) (and before executing t := 0; {x′ = f(x, u), t′ = 1 & t ≤
T}), and s2 ∈ S be the state after executing t := 0; {x′ = f(x, u), t′ = 1 & t ≤ T}
(which becomes s0 in the next loop iteration). These states relate to the training
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(
u := ctrl(x)

Agent

; t := 0; {x′ = f(x, u), t′ = 1 & t ≤ T}
Environment )∗

s0 s1 s2
RS(s0, s1)

R(s0, u, s2)

Fig. 1: Overview of aligning states in the formal model and the training process.
The reward R(s0, u, s2) is given for the transition (s0, u, s2), whereas the states
of a formal model include the values of actions, so taking action u traverses to
intermediate state s1 from which the environment responds by producing state
s2. Therefore, we can give separate reward RS(s0, s1) from the predictive formal
model for choosing action u in state s0.

process in reinforcement learning as illustrated in Fig. 1: s0 corresponds to the
state before the agent picks an action, s1 is the state after the agent chose
an action u ∈ A (but before it is actuated in the environment), and s2 is the
result state of executing the action in the environment. In typical reinforcement
learning setups, the reward associated with the transition (s0, u, s2) is computed
by a reward function R : S × A × S → R. We provide separate reward RS :
S × S → R directly for choosing action u in state s0 from the predictive formal
hybrid systems model, which requires a quantitative interpretation of ModelPlex
formulas, as discussed next.

4.1 Quantitative Interpretation of ModelPlex Formulas

We adapt MTL/STL robustness measures [7, 8, 5] to define a quantitative in-
terpretation of ModelPlex formulas, which describes how robustly satisfied a
monitor is over two states.

Definition 2 (Quantitative ModelPlex). The function Q : M → T inter-
prets a ModelPlex formula ϕ ∈ M quantitatively as an arithmetic expression
θ ∈ T in +,−, ·, / over the reals (θ : S × S → R):

Q(θ ≥ 0)(s0, s1) ▷ θ(s0, s1)

Q(θ > 0)(s0, s1) ▷ θ(s0, s1)

Q(θ = 0)(s0, s1) ▷Q(θ ≥ 0 ∧ −θ ≥ 0)(s0, s1)

Q(θ ̸= 0)(s0, s1) ▷Q(θ > 0 ∨ −θ > 0)(s0, s1)

Q(ϕ ∧ ψ)(s0, s1) ▷


Q(ψ)(s0, s1) if ϕ ≡ θ=0 and (s0, s1) |= θ=0

−|θ(s0, s1)| if ϕ ≡ θ=0 and (s0, s1) ̸|= θ=0

(Q(ϕ) ⊓Q(ψ))(s0, s1) otherwise

Q(ϕ ∨ ψ)(s0, s1) ▷ (Q(ϕ) ⊔Q(ψ))(s0, s1)

Q(¬ϕ)(s0, s1) ▷−Q(ψ)(s0, s1)
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where ⊔ is max, ⊓ is min, the atomic propositions in ϕ are normalized to θ =
0, θ ̸= 0, θ ≥ 0, θ > 0, and conjunctions are reordered to list all θ = 0 before
inequalities.

Note that equalities θ = 0 result in measure-zero robustness when they are
satisfied: in a sense, their robustness is only meaningful when violated, since there
is only a single way to satisfy θ = 0. In conjunctions of the shape θ = 0 ∧ ϕ,
the chosen robustness definition avoids unnecessary measure-zero robustness by
evaluating to Q(ϕ) when θ = 0 is satisfied. In contrast, the naive phrasing
Q(θ = 0 ∧ ϕ) ▷ min(Q(θ ≥ 0),Q(−θ ≥ 0),Q(ϕ)) would evaluate to 0 when
θ = 0 is satisfied and thus hide changes in robustness in ϕ, which can be valu-
able reward signals to the agent. Quantitative ModelPlex maintains safety by
overapproximating the original monitor verdict, see Lemma1.

Lemma 1 (Mixed Quantitative ModelPlex Overapproximates Verdict).
The quantitative interpretation maintains the monitor verdict, i.e., the follow-
ing formulas are valid: Q(ϕ) > 0 → ϕ and Q(ϕ) < 0 → ¬ϕ for all ModelPlex
formulas ϕ ∈ M.

Proof. By structural induction on ModelPlex formula and term operators.

Mixed inequalities in Lemma1 require for the quantitative interpretation
to be conservative in the sense of causing false alarms on weak inequalities (a
robustness measure of 0 is inconclusive). When comparisons are restricted to only
weak inequalities or only strict inequalities, we maintain equivalence between the
quantitative and the Boolean interpretation of ModelPlex, see Corollary 1.

Corollary 1 (Weak/Strict Quantitative ModelPlex Maintains Verdict).
When comparisons are restricted to weak/strict inequalities, the quantitative in-
terpretation maintains the monitor verdict, i.e., the following formula is valid
for weak inequalities Q(ϕ) ≥ 0 ↔ ϕ (for strict inequalities Q(ϕ) > 0 ↔ ϕ)
for all ModelPlex formulas ϕ ∈ M restricted to weak inequalities ≥,= in atomic
propositions (strict inequalities >, ̸=, respectively) and Boolean connectives ∧,∨.

Proof. By structural induction on ModelPlex formula and term operators.

With a quantitative interpretation of how robustly the choices of a reinforce-
ment learning agent satisfy the formal model, we next discuss several ways of
combining the safety reward with other goal-oriented reward elements.

4.2 Logical Constraint Reward

In order to include feedback about the constraints of a formal model into the
reward function, the agent receives goal-oriented reward when operating safely
according to the model (safety monitor is satisfied), but receives the goal-oriented
reward adjusted with a penalty from the monitor when operating unsafely.
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Definition 3 (Logical Constraint Reward). Let P ∈ M be a ModelPlex
formula for ⟨u := ctrl(x)⟩

∧
x∈BV(u:=ctrl(x))(x = x+), let RG be a goal-oriented

reward function, and RS = Q(P ) be the safety reward function from the quan-
titative interpretation of P . Let s0, s1, s2 be the states before the agent chooses
an action, after it chooses an action, and after the action is executed in the
environment, respectively. The logical constraint reward is defined as:

R(s0, s1, s2) =

{
RG(s0, s2) if (s0, s1) |= P

RG(s0, s2) +RS(s0, s1) otherwise

Def. 3 discourages the agent to violate the assumptions of the formal model,
while ignoring the safety reward when satisfied. The intuition behind this is
that positive reward from the formal model is largest when robustly inside
the boundary of the formal model’s safety envelope, which may encourage the
agent to make overly cautious (robust) action choices instead of making progress.
Whether Def. 3 prioritizes goal-oriented reward or safety-oriented reward is en-
tirely determined by the relative magnitude of RG(s0, s2) vs. RS(s0, s1). This
can sometimes be undesirable since it does not necessarily encourage the agent
to avoid safety violations. In order to emphasize safety and prioritize some as-
pects of the formal model over other aspects (e.g., satisfying a speed limit vs.
satisfying deceleration assumptions) we introduce reward scaling to change the
magnitude of rewards while preserving the safety verdict.

4.3 Reward Scaling

The logical constraint reward of Section 4.2 does not prioritize goal- vs. safety-
oriented reward. Moreover, ModelPlex monitors do not distinguish between
quantities of different units and sort in the formal model (e.g., a monitor conflates
acceleration verdict, speed verdict, and position verdict into a single robustness
measure). When used in a reward function, however, we may want to prioritize
some safety aspects. For example, “violating” the brake assumptions of the for-
mal model by having better brakes is acceptable and should not be penalized as
hard as violating a speed limit. Here, we develop signal rescaling functions [28]
to emphasize the verdict of the entire monitor or certain aspects of it.

Definition 4 (Scaling Function). A scaling function C : R → R scales the
result of a logical constraint reward function RS such that the sign of its verdict
remains unchanged, i.e., C(0) = 0 and ∀r ̸=0. C(r) · r > 0.

Note that in the examples below we use C(θ) as a notation to indicate that
the scaling function applies to a specific term θ.

Example 1 (Strong penalty). In order to emphasize that violating the formal
model is highly undesirable, the following scaling function penalizes monitor
violations while maintaining rewards for safety, see Fig. 2a:

C(RS(s0, s1)) =

{
RS(s0, s1) if RS(s0, s1) > 0

RS(s0, s1)
3 otherwise
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Fig. 2: Reward scaling function illustrations

Example 2 (Boundary preference). In order to encourage behavior that follows
close to a safety boundary (i.e. drive close to but not past a speed limit), the
following scaling function gives more reward when the state’s boundary distance
is very small while giving less reward otherwise, see Fig. 2b:

C(RS(s0, s1)) =

{
1

RS(s0,s1)
if RS(s0, s1) > 0

RS(s0, s1) otherwise

Example 3 (Distance preference). In order to encourage behavior that follows
a certain distance from a safety boundary (i.e. drive 10 km/h below but not
past a speed limit), the following scaling function gives more reward when the
state’s boundary distance is close to the desired distance while giving less reward
otherwise, see Fig. 2c:

C(RS(s0, s1)) =

{
e(−(RS(s0,s1)−1.5)2) if RS(s0, s1) > 0

RS(s0, s1) otherwise

Uniform scaling maintains the sign of the monitor verdict, but emphasizes
its importance relative to the goal-oriented components of a reward function.
If the goal-oriented reward is designed to encourage reaching a goal fast (i.e.,
RG(s0, s2) ≤ 0 for all states s0, s2 ∈ S), the logical constraint reward should be
restricted to safety violations and offset to “exceed” the goal-oriented reward:
min(RS(s0, s1), 0)−|δ|, where δ is the minimum attainable goal-oriented reward.

The states s checked with a monitor RS are composed of different aspects of
the environment and agent behavior that can be scaled component-wise within
RS so certain aspects are given more weight in the monitor verdict.

If desired, reward scaling can decrease the importance of safety through de-
creasing the penalty for unsafe behavior, implying that violating safety for brief
moments in time is allowed. This behavior has shown up briefly in our experi-
ments when penalization for violating safety constraints was too low.
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Definition 5 (Component-wise Scaling). Scaling C↓V
: T →T applies scal-

ing function C to components in variables V of a safety-reward function RS:

C↓V
(RS) =


min(f, g) ▷min(C↓V

(f), C↓V
(g))

max(f, g) ▷max(C↓V
(f), C↓V

(g))

f ▷ C(f) if FV(f) ⊆ V

f ▷ f otherwise

Component-wise scaling maintains the sign of safety-reward function RS:

∀s0, s1 ∈ S
(

RS(s0, s1) = 0 ∧ C↓V
(RS)(s0, s1) = 0

∨ RS(s0, s1) ̸= 0 ∧ C↓V
(RS)(s0, s1) ·RS(s0, s1) > 0

)
.

Example 4 (Emphasizing speed). In order to emphasize that violating a speed
limit is unsafe, while being close to it is desirable, we scale the difference between
current speed v and speed limit vdes as follows.

C1(vdes − v) =


(vdes − v) if vdes − v > 0

(vdes − v)1/3 if 0 ≥ vdes − v > −1

(vdes − v)3 otherwise

C2(v − vdes) =


(v − vdes) if v − vdes > 0

(v − vdes)
3 if 0 ≥ v − vdes > −1

(v − vdes)
1/3 otherwise

We apply the scaling to reward components in {v, vdes}: C1(v − vdes)↓{v,vdes}

and C2(vdes − v)↓{v,vdes}
. The above functions scale two different speed verdicts,

v − vdes and vdes − v, which in a formal model and thus a monitor may arise
for different control choices (e.g., requiring to slow down when current velocity,
v, exceeds the speed limit, vdes vs. allowing to speed up when v < vdes). When
vdes − v ≤ 0, safety is violated and therefore C1 scales the negative verdict more
aggressively by applying an exponential function. When v − vdes ≤ 0, safety is
satisfied, but going much slower than vdes is undesirable; therefore, C2 scales the
negative verdict using a fractional exponential function, see Fig. 3.

4.4 Potential-based Logical Constraint Reward

Reward shaping may cause unexpected behavior from the trained agent, as the
reward directly influences what actions the agent takes and may cause the agent
to learn a suboptimal policy [23]. To prevent unforeseen and unwanted behav-
ior, potential-based reward shaping [23] provides additional reward to the agent
while guaranteeing the agent will learn the optimal policy of the original reward
function. The additional reward is specified using the transition from the current
to the future state, and this transition is formalized as the difference in “poten-
tial” of the two states. Let Φ(s) characterize certain features of a state s ∈ S
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Fig. 3: Component-wise scaling to emphasize speed rewards

(e.g., safety). Potential-based reward is thenRP(s, a, s
′) = γΦ(s′)−Φ(s), where s

is the current state, a is the action taken to reach a future state s′, and γ is some
discount factor, which gets added to the original reward:R(s, a, s′)+RP(s, a, s

′).
The main intuition [23] why the policy is still optimal under this modified reward
function is that the potential function itself does not prefer one policy over the
other. Therefore, the original optimal policy is still preferred when the potential
difference is added to the original reward function.

Example 5 (Potential-based Logical Constraint Reward). The original reward
function R(s, a, s′) is augmented with additional reward that is calculated using
the predictive formal model. We align the loop iterations of the model in time-
triggered normal form with the learning states s and s′ of the reward function:
let s0, s1, s2=s be the states from the formal model leading up to learning state
s, and let s′0=s2=s, s

′
1, s

′
2=s

′ be the states of the formal model corresponding
to the transition (s, a, s′). Since monitors are evaluated over two model states,
the safety potential associated with learning state s is a function of the previous
action Φ(s) = RS(s0, s1), whereas the safety potential associated with learning
state s′ is according to the safety of the current action Φ(s′) = RS(s

′
0, s

′
1). Then,

the additional reward is RP(s, a, s
′) = γΦ(s′) − Φ(s) with γ = 1, and the final

reward function is: R’(s, a, s′) = R(s, a, s′) +RP(s, a, s
′).

5 Evaluation

Formal model. In our evaluation, we adapt an existing formal model of a train
protection system [26] and apply it to a standard reinforcement learning envi-
ronment for longitudinal vehicle control [4]. The goal of the agent in longitudi-
nal vehicle control is to drive forward as fast as possible while respecting posted
speed limits. The speed limit control model (Model 1) comes with 3 components:
a speed controller spd in lines 1–2 chooses acceleration to a desired cruising speed
vdes, the automatic train protection atp in line 3 may override the choice of spd
if the remaining distance to the speed limit d is unsafe, and the motion model
drive in lines 4–5 describes how the vehicle position p and speed v change in
response to the agent’s acceleration choice.
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Model 1 Speed limit control, adapted from [26, Fig. 5]

spd

∣∣∣∣∣ 1
(

(?v ≤ vdes; a := ∗; ?−B ≤ a ≤ A)

2 ∪ (?v ≥ vdes; a := ∗; ?−B ≤ a ≤ 0)
)
;

atp
∣∣ 3 if

(
e− p ≤ v2 − d2

2B
+

(
A

B
+ 1

)(
A

2
ε2 + vε

))
then a := −B fi

drive

∣∣∣∣∣ 4 t := 0;

5 {p′ = v, v′ = a, t′ = 1 & v ≥ 0 ∧ t ≤ ε}

From Model 1, we use [22] to obtain a ModelPlex formula, whose main com-
ponents reflect the model structure:

slc ≡ 0 ≤ v ≤ vdes ∧ −B ≤ a+ ≤ A ∧ e− p > S

∨ 0 ≤ vdes ≤ v ∧ −B ≤ a+ ≤ 0 ∧ e− p > S

∨ 0 ≤ v ∧ a+ = −B ∧ e− p ≤ S

where S ≡ v2 − d2

2B
+

(
A

B
+ 1

)(
A

2
ε2 + vε

) (1)

Environment. LongiControl [4] provides a longitudinal vehicle control environ-

ment with state space [x(t), v(t), a(t), aprev(t), vlim(t), v⃗lim,fut(t), d⃗lim,fut(t)] of ve-
hicle position x(t), speed v(t), acceleration a(t), previous acceleration aprev(t),
current speed limit vlim(t), upcoming two speed limits v⃗lim,fut(t), and distances

to the upcoming two speed limits d⃗lim,fut(t). The action space is continuous accel-
eration in the interval [−3, 3]m/s2, and the sampling time is 0.1 s. The environ-
ment has posted speed limits of 50 km/h at [0, 250)m, 80 km/h at [250, 500)m,
40 km/h at [500, 750)m, and 50 km/h after 750m.

We map the environment to the ModelPlex formula (1) as follows: x(t) 7→
p, v(t) 7→ v, a(t) 7→ a+, vlim(t) 7→ vdes, 3 7→ A, 3 7→ B, 0.1 7→ ε with two separate
configurations in order to demonstrate how the formal model can influence the
behavior of the trained reinforcement learning agent:

Configuration 1 encourages behavior similar to Model 1, satisfying a speed
limit before the speed limit begins: v⃗lim,fut(t)1 7→ d, x(t) + d⃗lim,fut(t)1 7→ e,
i.e., the first elements of the speed limit and speed limit position vectors are
handed to the monitor

Configuration 2 to illustrate the effectiveness of the monitor in influencing
learned behavior, this configuration encourages “unusual” behavior opposing
rforward (2) by favoring meeting the posted speed limit by the end (rather

than the beginning) of the speed limit: vlim(t) 7→ d, x(t) + d⃗lim,fut(t)1 7→ e

Reward function. For evaluation, we use the reward function from [4, p. 1034] as a
baseline, with weighted penalties for slow driving (rforward), energy consumption
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(renergy), jerk (rjerk), and speeding (rsafe):

−ξforwardrforward − ξenergyrenergy − ξjerkrjerk︸ ︷︷ ︸
RG

− ξsafersafe︸ ︷︷ ︸
RS

(2)

We obtain a safety robustness measure Q(slc) from formula (1), and then replace
the speeding penalty with the (scaled) safety reward function as follows:

Logical constraint reward (LCR) with RS = min(0,Q(slc)(s0, s1)) − 1 to
ignore the safety robustness measure when satisfied and offset safety viola-
tions to exceed the largest magnitude of the RG components in (2).

Logical constraint reward scaling (LCRS) applies the component-wise scal-
ing of Example 4 to the safety robustness measure Q(slc).

Potential-based reward shaping (PBRS) applies the potential-based reward
shaping of Example 5 to the safety robustness measure Q(slc).

We used reward function LCR with Configuration1 and reward functions
LCR,LCRS,PBRS with Configuration 2.

Model training. Using these different reward functions, we train several agents
with the Soft Actor-Critic (SAC) method 1 and the hyperparameters of Longi-
Control [4, Table 4] with a learning rate of 1e-5. We trained the baseline agent
with a learning rate of 1e-4.

Evaluation metrics. We evaluate the training process in terms of number of
epochs until convergence, and the safety of the resulting agents in terms of the
number and magnitude of speed limit violations. We also quantify how successful
the agents are in reaching the goal, which is to drive as fast and as close to the
speed limit as possible, by measuring the accumulated reward per (2) and the
difference between agent speed v and the posted speed limits vdes during an
evaluation period. Note that training and evaluation episodes do not terminate
early under unsafe behavior of the agent but instead invoke a negative reward
as a penalty. Below are the results of our experiments.

Results. Fig. 4 displays the average accumulated reward across several evalua-
tion periods at every tenth epoch during training. Note, that during training we
use different reward functions, which means their magnitude is not directly com-
parable. For the baseline reward function, we see that the reward converges to
around −200 at 3000 epochs. The logical constraint reward using Configuration
1 converges to −300 at 1250 epochs. The following experiments using Configu-
ration 2 converge to −325 at 1750 epochs for the logical constraint reward, −310
at 3000 epochs for logical constraint reward scaling, and −300 at 2250 epochs
for potential-based reward shaping (faster or at the same rate as the baseline
model). This helps with efficiency regarding how many epochs are required to
finish training a reinforcement learning agent.

1 GitHub of environment: https://github.com/dynamik1703/gym_longicontrol
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Fig. 5a plots the accumulated reward according to the baseline reward func-
tion (2), so can be compared relative to each other. The baseline agent has the
highest accumulated reward, indicating that it operates more aggressively (less
robustly) than other agents. The robustness nature of the other agents can also
be seen in Fig. 5b, which plots the vdes−v to compare how well the agents achieve
the goal of driving close to the speed limit.

When evaluating the agents for Configuration 1, we compare LCR(1), logical
constraint reward, model against the baseline agent as their desired behavior is
to drive as close to the speed limit as possible while satisfying the speed limit.
After modifying the safety-oriented reward with the safety robustness measure
from ModelPlex Q(slc), the resulting LCR(1) experiments resulted in agents
that successfully satisfied the safety requirement by driving below the speed
limit, while there were also some agents that violated safety when the upcoming
speed limit was less than the current speed limit; using reward scaling to penalize
unsafe behavior more can address this issue. The safe logical constraint reward
agents had more robust behavior regarding maintaining safety as they left a
larger gap to the desired speed limit as seen in Fig. 5b.

For the agents using Configuration 2, we also see that they are generally more
robust compared to the baseline agent by the increased distance to desired speed
in Fig. 5b. Note that for Configuration 2, the purpose was to demonstrate how
the formal model can influence the behavior of the learned agent, which is most
prominent when emphasizing speed with LCRS(2), logical constraint reward
scaling: the agent’s behavior shows a preference for reaching the 80 km/h speed
limit at the end of the speed limit at 500m in Fig. 5b. This behavior extends into
violating the monitor when passing into the subsequent 40 km/h speed limit.

The other Configuration 2 models, LCR(2) and PBRS(2) did not violate
safety defined by the monitor.

In summary, the experiments suggest that training from modified reward
functions LCR(1) converges faster, and LCR(2),PBRS(2) generally satisfies
safety. In addition, modifying aspects that correspond to the formal model can
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Fig. 4: Accumulated reward across evaluations during training; smoothed with
exponential moving average
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Fig. 5: Averaged reward and performance across five evaluation runs at end of
training

effectively change the agent’s behavior LCRS(2), which can help with designing
the reward function for different goals of reinforcement learning problems.

6 Conclusion

We explored using predictive hybrid models with formalized safety specifications
as an alternative to manually defining safety-oriented aspects of reward functions
in reinforcement learning. 2 Based on logically constrained reinforcement learn-
ing, the agents we trained were implemented using dL-formalized safety rewards.
The logical constraints of the safety-oriented reward are combined with the goal-
oriented reward of the agent through reward scaling and potential-based reward
shaping. We found that partly auto-generated reward functions produce agents
that generally maintain the level of safety of hand-tuned reward functions and
that reward scaling can be used to emphasize certain aspects of the generated
reward functions. There were still agents that violated safety, specifically within
logical constraint reward functions, and including dL-based shielding [9] can ad-
dress these safety concerns. In addition, we observed faster convergence during
training when using augmented reward functions, specifically for the logically
constrained reward and the potential-based reward functions.

Future work includes generating goal-oriented rewards from liveness proofs,
and extending the formal modeling language to specify scaling functions directly
in the formal model, e.g., as design annotations. We also plan to use the predic-
tive nature of the formal model for additional forms of reward shaping, e.g., to
interpret the continuous dynamics of the formal model as a reward predictor for
some reward aspects that are sustained over an extended time period, because
they cannot be influenced instantaneously but only through affecting motion.

2 GitHub for experiment code: https://github.com/marianqian/gym_longicontrol_formal_methods
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5. Donzé, A., Ferrère, T., Maler, O.: Efficient robust monitoring for STL. In:
Computer Aided Verification - 25th International Conference, CAV 2013,
Saint Petersburg, Russia, July 13-19, 2013. Proceedings. pp. 264–279 (2013).
https://doi.org/10.1007/978-3-642-39799-8 19
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