
MLbase: A Distributed Machine Learning Wrapper

Ameet Talwalkara, † Tim Kraskaa, † Rean Griffithb John Duchia Joseph Gonzaleza

Denny Britza Xinghao Pana Virginia Smitha Evan Sparksa Andre Wibisonoa

Michael J. Franklina Michael I. Jordana

a AMPLab, UC Berkeley b VMware
† These authors contributed equally

Abstract

Machine learning (ML) and statistical techniques are key to transforming big data
into actionable knowledge. In spite of the modern primacy of data, the complexity
of existing ML algorithms is often overwhelming—many users do not understand
the trade-offs and challenges of parameterizing and choosing between different
learning techniques. Furthermore, existing scalable systems that support machine
learning are typically not accessible to ML researchers without a strong back-
ground in distributed systems and low-level primitives. In this work, we present
our vision for MLbase, a novel system harnessing the power of machine learning
for both end-users and ML researchers. MLbase provides (1) a simple declarative
way to specify ML tasks, (2) a novel optimizer to select and dynamically adapt
the choice of learning algorithm, (3) a set of high-level operators to enable ML
researchers to scalably implement a wide range of ML methods without deep sys-
tems knowledge, and (4) a new run-time optimized for the data-access patterns of
these high-level operators.

1 Introduction

Mobile sensors, social media services, genomic sequencing, and astronomy are among a multitude
of applications that have generated an explosion of abundant data. Data is no longer confined to just
a handful of academic researchers or large internet companies. Extracting value from such Big Data
is a growing concern, and machine learning techniques enable users to extract underlying structure
and make predictions from large datasets. In spite of this, even within statistical machine learning, an
understanding of computational techniques for algorithm selection and application is only beginning
to appear [6]. The complexity of existing algorithms is (understandably) overwhelming to layman
users, who may not understand the trade-offs, parameterization, and scaling necessary to get good
performance from a learning algorithm. Perhaps more importantly, existing systems provide little or
no help for applying machine learning on Big Data. Many systems, such as standard databases and
Hadoop, are not designed for the access patterns of machine learning, which makes them inaccessi-
ble to machine learning researchers without a strong background in distributed systems and forces
developers to build ad-hoc solutions to extract and analyze data with third party tools.

With MLbase,1 we aim to (1) make machine learning accessible to a broad audience of users and ap-
plicable to various data corpora, ranging from small to very large data sets, and (2) provide a platform
from machine learning researchers to develop scalable implementations of state-of-the-art methods
while abstracting away the low-level systems details. To achieve these two goals, we propose here
our vision for MLbase along the lines of a relational database system (RDBM), with four major
foci. First, MLbase encompasses a new Pig Latin-like [18] declarative language to specify machine
learning tasks. Second, MLbase uses a novel optimizer to select machine learning algorithms—
rather than relational operators as in a standard DBMS—where we leverage best practices in ML

1Parts of this submission overlap with work detailed in [14].

1

and build a sophisticated cost-based model. Although MLbase cannot optimally support every ma-
chine learning scenario, it provides reasonable performance for a broad range of use cases. This is
similar to traditional DBMSs: highly optimized C++ solutions are stronger, but the DBMS achieves
good performance with significantly lower development time and expert knowledge [22]. Third, we
aim to provide answers early and improve them in the background, continuously refining the model
and re-optimizing the plan. Fourth, we identify a set of high-level ML operators that will enable ML
researchers to scalably implement a wide-range of ML methods without deep systems knowledge
and we design a distributed run-time optimized for the data-access patterns of these high-level ML
operators.

2 Use Cases

MLbase will ultimately provide functionality to end users for a wide variety of common machine
learning tasks: classification, regression, collaborative filtering, and more general exploratory data
analysis techniques such as dimensionality reduction, feature selection, and data visualization.
Moreover, MLbase provides a natural platform for ML researchers to develop novel methods to
these tasks. We now illustrate a few of the many use cases that MLbase will provide and along the
way, we describe MLbase’s declarative language for tackling these problems.

2.1 ALS Prediction

Amyotrophic Lateral Sclerosis (ALS), commonly known as Lou Gehrig’s disease, is a progressive
fatal neurodegenerative illness. The ALS Prediction Prize [4] challenges participants to develop a
binary classifier to predict whether an ALS patient will display delayed disease progression. MLbase
on its own will not allow one to win the ALS prize, but it can help a user get a first impression of
standard classifiers performance. Consider the following example “query,” which trains a classifier
on the ALS dataset:

var X = load("als_clinical", 2 to 10)
var y = load("als_clinical", 1)
var (fn-model, summary) = doClassify(X, y)

The user defines two variables: X for the data (the independent features/variables stored in columns
2 to 10 in the dataset) and y for the labels (stored in the first column) to be predicted via X. The
MLbase doClassify() function declares that the user wants a classification model. The result
of the expression is a trained model, fn-model, as well as a model summary, describing key
characteristics of the model itself, such as its quality assessment and the model’s lineage (see Sec-
tion 3). The language hides two key issues from the user: (i) which algorithms and parameters the
system should use and (ii) how the system should test the model or distribute computation across
machines. Indeed, it is the responsibility of MLbase to find, train and test the model, returning a
trained classifier function as well as a summary about its performance to the user.

2.2 Music Recommendation

The Million Song Dataset Challenge [5] is to predict the listening behavior of a set of 110,000
music listeners based on partial listening histories. We can tackle this collaborative filtering task
with MLbase’s doCollabFilter expression as follows:

var X = load("user_song_pairs", 1 to 2)
var y = load("user_ratings", 1)
var (fn-model, summary) = doCollabFilter(X, y)

The semantics of doCollabFilter are identical to doClassify, with the obvious distinction
of returning a model fn-model to predict song ratings.

2.3 Twitter Analysis

Equipped with snapshots of the Twitter network and associated tweets [15, 20], one may wish to
perform a variety of unsupervised exploratory analyses to better understand the data. For instance,

2

advertisers may want to find features that best describe “hubs,” people with the most followers or
the most retweeted tweets. MLbase provides facilities for graph-structured data, and finding relevant
features can be expressed as follows:

var G = loadGraph("twitter_network")
var hubs-nodes = findTopKDegreeNodes(G, k = 1000)
var T = textFeaturize(load("twitter_tweet_data"))
var T-hub = join(hub-nodes, "u-id", T, "u-id")
findTopFeatures(T-hub)

In this example, the user first loads the twitter graph and applies the findTopKDegreeNodes()
function to determine the hubs. Afterwards, the tweets are loaded and featurized with
textFeaturize(). During this process, every word in a tweet, after stemming, becomes a
feature. The result of the featurization as well as the pre-determined hubs are joined together on the
user-id, u-id, and finally, findTopFeatures finds the distinguishing features of the hubs.

2.4 MLbase Extensibility

A key aspect of MLbase is its extensibility to novel ML algorithms. We envision ML experts adding
new ML techniques to the system, leveraging MLbase’s high-level primitives to aid development.
High-level primitives include efficient implementations of gradient and stochastic gradient descent,
mini-batch extensions of map-reduce that naturally support divide-and-conquer approaches such as
[17], and graph-parallel primitives as in GraphLab [16]. We have already mapped several algorithms,
including k-means clustering, LogitBoost [12], various matrix factorization tasks (as described in
[17]), and support vector machines (SVM) [10] to these primitives.

Moreover, MLbase requires that developers describe the properties of their new algorithms using
a special contract (as shown in the left part of Figure 1 in the Appendix). The contract specifies
the type of algorithm (e.g., binary classification), the algorithm’s parameters, run-time complexity
(e.g., O(n)) and possible run-time optimizations (e.g., synchronous vs. asynchronous learning; see
Section 3.3). The easy extensibility of MLbase simultaneously makes MLbase an attractive platform
for ML experts and allow users to benefit from recent developments in statistical machine learning.

3 Architecture

A user issues requests using the MLbase declarative task language to the MLbase master. Similar
to RDBMs, the system parses the request into a logical learning plan (LLP), which describes the
most general workflow to perform the ML task. The search space for the LLP consists of the com-
binations of ML algorithms, featurization techniques, algorithm parameters, and data sub-sampling
strategies (among others), and is too huge to be explored entirely. Therefore, an optimizer tries
to prune the search-space of the LLP to find a strategy that is testable in a reasonable time-frame.
Although the optimization process is significantly harder than in relational database systems, we
can leverage many existing techniques. For example, the optimizer can consider the current data
layout, materialized intermediate results (pre-processed data) as well as general statistics about the
data to estimate the model learning time. However, in contrast to DBMSs, the optimizer needs also
to estimate the expected quality for each of the model configurations to focus on the most promising
candidates.

After constructing the optimized logical plan, MLbase transforms it into a physical learning plan
(PLP). A PLP consists of a set of executable ML operations, such as filtering and scaling feature
values, as well as synchronous and asynchronous MapReduce-like operations. In contrast to an
LLP, a PLP specifies exactly the parameters to be tested as well as the data (sub)sets to be used. The
MLbase master distributes these operations onto the worker nodes, which execute them through the
MLbase runtime. The result of the execution is typically a learned model (fn-model) or some
other representation (e.g., relevant features) that the user may use to make predictions or summarize
data. MLbase also returns a summary of the quality assessment of the model and the learning process
(the model’s lineage) to allow the user to make more informed decisions. Moreover, in contrast to
traditional database systems, the task here is not necessarily complete upon return of the first result.

3

Instead, we envision that MLbase will further improve the model in the background via additional
exploration. Figure 1 of the Appendix shows the general architecture of MLbase.

3.1 Logical Learning Plan

The first step of optimizing the declarative ML task into our machine-executable language is the
translation into a logical learning plan. During this translation many operations are mapped 1-to-
1 to LLP operators (e.g., data loading), whereas ML functions are expanded to their best-practice
workflows. For instance, in the case of binary SVM classification [10], the parameters MLbase
selects may include the size n of the training dataset, the type of kernel to use, kernel parameters
(the scale parameter in the case of RBF kernel), regularization values, and whether to process the
data vectors x so that their entries lie in particular ranges or are binned into similar groups. The LLP,
as visualized in Figure 2 in the Appendix, specifies the combinations of parameters, algorithms, and
data subsampling the system must evaluate and cross-validate to test quality. After exploration, the
best model is selected, potentially trained using a larger dataset, and sanity-checked using common
baseline (for classification, this may be predicting the most common class label).

3.2 Optimization

The optimizer actually transforms the LLP into an optimized plan—with concrete parameters and
data subsampling strategies—that can be executed on our run-time. To meet time constraints, the
optimizer estimates execution time and algorithm performance (i.e., quality) based on statistical
models, also taking advantage of pruning heuristics and newly developed online model selection
tools [6]. As a simple example, normalizing features to lie in [−1, 1] often yields performance
improvements for SVM classifiers, so applying such normalization before attempting more com-
plicated techniques may be useful for meeting time constraints. As another example, standard
AdaBoost algorithms, while excellent for choosing features, may be non-robust to data outliers;
a dataset known to contain outliers may render training a classifier using AdaBoost moot. The gen-
eral accuracy of algorithms is just one of the aspects an optimizer may take into account. Statistics
about the dataset itself, different data layouts, algorithm speed and parallel execution strategies (as
described in the next section) are just a few additional dimensions the optimizer may exploit to
improve the learning process. Figure 2 shows an example optimized plan in step (3).

3.3 Runtime

MLbase’s run-time supports a simple set of data-centric primitives for machine learning tasks. The
physical learning plan (PLP) composes these primitives together to build potentially complex work-
flows. The master’s responsibility is to distribute these primitives to the workers for their execution,
to monitor progress, and take appropriate actions in the case of a node failure. At its core, the run-
time primitives can be split into two categories: classical relational operators and special higher-level
primitives for machine learning. Whereas the first type make it easy to embed machine-learning al-
gorithm in complex data workflows, the latter allows experts to easily develop distributed versions
of algorithms and includes graph-based operators as well as a novel mini-batch map reduce primi-
tive. Each implemented algorithm also has a contract with the runtime environment, which specifies
computational guarantees and whether (and which) consistency properties the runtime may relax.

For instance, in the context of gradient descent, we note that the optimizer may take advantage of
properties of statistical learning algorithms. Gradient-descent algorithms are robust: they can tol-
erate noise in gradient estimates, node failures, and even receiving stale (computed out of order)
gradient information while providing statistical guarantees [7]. Thus, the runtime contract for a gra-
dient descent update function may specify that asynchrony and (heavy) subsampling are acceptable.
This statistical freedom and robustness allows reduced consistency, so the system can forego expen-
sive failure recovery techniques and—in cases such as these—avoid using techniques to deal with
straggler nodes.

MLbase’s runtime makes it possible to explore these advanced characteristics of ML algorithms in
a systematic fashion; moreover, it gives layman users the tools to do so. Of course, not every algo-
rithm can take full advantage of these optimizations, e.g., some algorithms are inherently sequential
and require greater consistency while others may not fit the supported MLbase high-level primitives.

4

Nonetheless, in these cases the ML developer has the freedom to use common MapReduce opera-
tions and restrict the applicable optimizations in the ML contract. This yields an extensible system
that is easily updated with new machine learning techniques while remaining quite usable.

4 Related Work

MLbase is not the first system trying to make machine learning more accessible, but it is novel in that
it frees users from algorithm choices, automatically optimizes for distributed execution and provides
a platform for ML researchers to implement scalable algorithms without deep systems knowledge.
The closest related systems include Weka [3], MADLib [13], Mahout [2] and ScalOps [8]. Weka
is a single node system, while MADLib, Mahout and ScalOps are all lower-level systems requiring
strong systems knowledge to use and thus do not serve as an accessible platform for most ML
researchers. None of these systems addresses the (difficult but necessary) challenge of selecting and
configuring learning algorithms.

Other related systems also exist. Google Predict [1] is Google’s proprietary web-service for pre-
diction problems, but restricts the maximum training data-size to 250MB. There have been other
efforts to build distributed run-times for more advanced analytical tasks. Hyracks [9] and Spark [21]
both have special iterative in-memory operations to better support ML algorithms. In contrast to
MLbase, however, they do not have learning-specific optimizers, nor do they take full advantage of
the characteristics of ML algorithms (e.g., specification of contracts allowing relaxed consistency).
Finally, in [11] the authors show how many ML algorithms can be expressed as a relational-friendly
convex-optimization problem, whereas the authors of [19] present techniques to optimize inference
algorithms in a probabilistic DBMS. We leverage these techniques in our run-time, but our system
aims beyond a single machine and extends the presented optimization techniques.

5 Conclusion

We described MLbase, a system aiming to make ML more accessible to non-experts and to provide
an accessible platform for ML researches to scalably implement a wide range of learning methods
without a deep systems knowledge. We have presented our long-term vision for MLbase, and we
are currently in the process of building the entire system.

5

References

[1] Google Prediction API. https://developers.google.com/prediction/.
[2] Mahout. http://mahout.apache.org/.
[3] Weka. http://www.cs.waikato.ac.nz/ml/weka/.
[4] ALS Prediction Prize. http://www.prize4life.org/page/prizes/

predictionprize, 2012.
[5] Million Song Dataset Challenge. http://www.kaggle.com/c/msdchallenge, 2012.
[6] A. Agarwal, P. Bartlett, and J. Duchi. Oracle inequalities for computationally adaptive model

selection. In Conference on Learning Theory, 2011.
[7] A. Agarwal and J. Duchi. Distributed delayed stochastic optimization. In Advances in Neural

Information Processing Systems 25, 2011.
[8] V. Borkar et al. Declarative systems for large-scale machine learning. Bulletin of the Technical

Committee on Data Engineering, 35(2):24, June 2012.
[9] V. R. Borkar et al. Hyracks: A flexible and extensible foundation for data-intensive computing.

In ICDE, 2011.
[10] C. Cortes and V. N. Vapnik. Support-Vector Networks. Machine Learning, 20(3):273–297,

1995.
[11] X. Feng et al. Towards a unified architecture for in-RDBMS analytics. In SIGMOD, 2012.
[12] J. Friedman, T. Hastie, and R. Tibshirani. Additive logistic regression: a statistical view of

boosting. Annals of Statistics, 28:2000, 1998.
[13] J. M. Hellerstein et al. The madlib analytics library or mad skills, the sql. In PVLDB.
[14] T. Kraska et al. Mlbase: A distributed machine-learning system. In CIDR, 2013.
[15] H. Kwak et al. What is twitter, a social network or a news media? In WWW, 2010.
[16] Y. Low et al. Graphlab: A new framework for parallel machine learning. In UAI, 2010.
[17] L. Mackey, A. Talwalkar, and M. I. Jordan. Divide-and-conquer matrix factorization. In NIPS,

2011.
[18] C. Olston et al. Pig latin: a not-so-foreign language for data processing. In SIGMOD, 2008.
[19] D. Z. Wang et al. Hybrid in-database inference for declarative information extraction. In

SIGMOD, 2011.
[20] J. Yang and J. Leskovec. Temporal variation in online media. In WSDM, 2011.
[21] M. Zaharia et al. Resilient distributed datasets: A fault-tolerant abstraction for in-memory

cluster computing. In NSDI, 2012.
[22] M. Zukowski et al. Monetdb/x100 - a dbms in the cpu cache. IEEE Data Eng. Bull., 28(2),

2005.

6

A Supplemental Figures

ML Developer

Meta-Data

Statistics

User

Declarative
ML Task

ML Contract +
Code

Master Server

….

result
(e.g., fn-model & summary)

Optimizer

Parser

Executor/Monitoring

ML Library

DMX
Runtime

DMX
Runtime

DMX
Runtime

DMX
Runtime

LLP

PLP

M
aster

Slaves

Figure 1: MLbase Architecture

7

grid-search

configure model

var X = load("als_clinical",2 to 10)
var y = load("als_clinical", 1)
var (fn-model, summary) = doClassify(X, y)

standard feature
normalizer

create 10-folds

cross
validation

folds

(X'', y'')

SVM
kernel: RBF

λ=10⁶ σ = 1/d ⨉ 10⁶

(model-params,
cross-validation-summary)

top-1

train model

calculate
misclassification

rate

(fn-model, summary)

(X, y)

….

cross
validation

SVM
kernel: RBF

λ=10³ σ= 1/d ⨉ 10⁶

cross
validation

AdaBoost
rounds = 20

baseline-check:
nearest neighbor

baseline-check:
most common

label

(model-params,
cross-validation-summary)

fn-model

load (als_clinical)

down-sample 10%

train model

down-sample

(model-params,
cross-validation-summary)

model/data
interpretation

(X', y')

load (als_clinical)

SVM Adaboost

RBF linear stumps

regularization rounds

technique

kernel

params

...

...

...

(1) ML Query

(2) Generic Logical Plan

(3) Optimized Plan

(fn-model, summary)

down-sample

(X, y)

(X', y')

(X, y)

originalfeaturization ...normalizedbin

(X, y)
store

normalized folds

fn-model

top-1

cross-validate

fn-model

Figure 2: Optimization Process

8

