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Background:

Recent models often synthesize the entire image, even for a 
minor edit, wasting significant computation.

Idea — Spatially Sparse Inference (SSI):

Cache the features of previous edits. Then reuse them and only 
apply convolution to the newly edited regions.

Introduction Sparse Incremental Generative Engine (SIGE)
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Tiling-based Sparse Convolution
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• SBNet: Sparse Blocks Network for Fast Inference, Ren et al., CVPR 2018

Optimizations:

• Reuse the original statistics 

to replace normalization 
with scale+shift.


• Kernel fusion. (Refer to our 
paper for more details)

Tiling-based Sparse Convolution:

• Precompute the features of original image.

• Compute a difference mask between the original and edited image.

• Divide mask to small blocks and reduce it to active block indices.

• Gather the active blocks along batch dimension.


• Scatter the output blocks into the original activation .Fl(A
original
l )

Efficiency Results:

2.1% Edited Full: 1358GMACs 369ms Ours: 189GMACs (7.2×) 55ms(6.8×)

A fantasy landscape, trending on artstation

Quality Results on DDIM and GauGAN

Extension to Stable-Diffusion

Original 15.5% Edited DDIM: 249G MACs Ours: 78.9G (3.2×)

Original GauGAN: 281G MACs GAN Comp.: 31.2G (9.0×)

1.18% Edited Ours: 15.3G (18×) GAN Comp.+Ours: 5.59G (50×)
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