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Figure 1: Visualization of two validation images from Cityscapes with the segmentation output and the predicted
quantized disparity at each iteration of the recurrent loop. We depict “ground-truth” continuous and quantized
disparity beside the input image. Our monocular disparity estimate makes predictions for reflective surfaces
where stereo fails and recurrent iteration further improves estimates, particularly for featureless areas such as the
pavement.

An intrinsic challenge of parsing rich scenes is understanding object layout relative to the camera.
Roughly speaking, the scales of the objects in the image frame are inversely proportional to the
distance to the camera. Humans easily recognize objects even when they range over many octaves of
spatial resolution, e.g., the cars near the camera in urban scene can appear a dozen times larger than
those at distance. The huge range and arbitrary scale at which objects appear poses difficulties for
machine image understanding. Although individual local features (e.g., in a deep neural network) can
exhibit some degree of scale-invariance, it is not obvious they handle the range scale variation that
exists in images.

In this paper, we investigate how cues to perspective geometry conveyed by image content, estimated
from stereo disparity, or measured directly via specialized sensors, might be exploited to improve
recognition and scene understanding. We propose a depth gating module that adaptively selects
pooling field sizes over higher-level feature activation layers in a convolutional neural network
(CNN), as shown in Fig.[2] Adaptive pooling works with a more abstract notion of scale than standard
multiscale image pyramids that operate on input pixels. This mechanism allows spatially varying
processing over the visual field which can capture context for semantic segmentation that is not too
large or small, but “just right”, maintaining details for objects at distance while simultaneously using
much larger receptive fields for objects closer near the camera. The gating architecture is trained with
a loss that encourages selection of target pooling scales derived from “ground-truth” stereo disparity
but at test time makes accurate inferences about scene depth using only monocular cues.

Furthermore, inspired by studies of human visual processing (e.g., [2])) that suggest dynamic allocation
of computation depending on the task and image content (background clutter, occlusion, object scale),
we propose embedding gated pooling inside a recurrent refinement module that takes initial estimates
of high-level scene semantics as a top-down signal to reprocess feed-forward representations and
refine the final scene segmentation, as shown in Fig.[3] This provides a simple implementation of
“Biased Competition Theory” which allows top-down feedback to suppress irrelevant stimuli
or incorrect interpretations, an effect we observe qualitatively in our recurrent model near object
boundaries and in cluttered regions with many small objects.

We train this recurrent adaptive pooling CNN architecture end-to-end and show that it matches
state-of-the-art segmentation performance on three large-scale datasets, as shown in Table[I} using
a model which, thanks to recurrent computation, is substantially more compact than many existing
approaches, as shown in Table[T} Moreover, the monocular depth estimates produced by our gating
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Figure 2: Left: depth-aware gating module using the predicted depth map. Right: an example image with
ground-truth, segmentation result with and without the depth gating module. Rectangles overlayed on the image
indicate pooling field sizes which are adapted based on the local depth estimate. We quantize the depth map into
five discrete scales in our experiments. Using depth-gated pooling yields more accurate segment label predictions
by avoiding pooling across small multiple distant objects while simultaneously allowing using sufficiently large
pooling fields for nearby objects.

input image

Figure 3: The input to our recurrent module is the concatena-
tion (denoted by @) of the feature map from an intermediate
layer of the feed-forward pathway with the prior recurrent
prediction. Our recurrent module utilizes depth-aware gating
which carries out both depth regression and quantized predic-
tion. Updated depth predictions at each iteration gate pooling
fields used for semantic segmentation. This recurrent update
fecuten medue of depth estimation increases the flexibility and representation
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§ S [ power of our system yielding improved segmentation. We
illustrate the prediction prior to, and after two recurrent itera-
tions for a particular image. We also visualize the difference

in predictions between consecutive iterations and note the
gains in accuracy at each iteration as measured by average
intersection-over-union (IoU) benchmark performance.
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channel yield state-of-the-art performance on the NYU-depth-v2 benchmark. Fig. [ shows some
results of segmentation and depth estimation.

Table 1: Performance of semantic segmentation on different datasets. Results marked by * are evaluated by the
dataset server on test set. Note that we train our models based on ResNet50 architecture on NYU-depth-v2 and
SUN-RGBD datasets, and ResNet101 on the Cityscapes dataset.

NYU-depth-v2 SUN-RGBD Cityscapes

TIoU pixel acc. IoU pixel acc. IoU

baseline 0.406 0.703 0.402 0.776 0.738

w/ gt-depth 0.413 0.708 0.422 0.787 0.753

w/ pred-depth 0.418 0.711 0.423 0.789 0.759

loop1 w/o depth 0.419 0.706 0.432 0.793 0.762

loop1 w/ gt-depth 0.425 0.711 0.439 0.798 0.769

loopl w/ pred-depth ~ 0.427 0.712 0.440 0.798 0.772

loop2 0.431 0.713 0.443 0.799 0.776
loop2 (test-aug) 0.445 0.721 0.451 0.803 0.791/0.782*
Context [3] 0.406 0.700 0.423 0.784 - /0.716"
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