Correlation Clustering *

Nikhil Bansal (ni khil @s. cru. edu), Avrim Blum (avri m@s. cmu. edu)

and Shuchi Chawla (shuchi @s. cmu. edu)
Computer Science Department, Carnegie Mellon University, Pittsburgh, PA 15213, USA.

2003/10/27

Abstract. We consider the following clustering problem: we have a complete graph on n
vertices (items), where each edge (u, V) is labeled either + or — depending on whether u and v
have been deemed to be similar or different. The goal is to produce a partition of the vertices (a
clustering) that agrees as much as possible with the edge labels. That is, we want a clustering
that maximizes the number of + edges within clusters, plus the number of — edges between
clusters (equivalently, minimizes the number of disagreements: the number of — edges inside
clusters plus the number of + edges between clusters). This formulation is motivated from a
document clustering problem in which one has a pairwise similarity function f learned from
past data, and the goal is to partition the current set of documents in a way that correlates with
f as much as possible; it can also be viewed as a kind of “agnostic learning” problem.

An interesting feature of this clustering formulation is that one does not need to specify
the number of clusters k as a separate parameter, as in measures such as k-median or min-sum
or min-max clustering. Instead, in our formulation, the optimal number of clusters could be
any value between 1 and n, depending on the edge labels. We look at approximation algo-
rithms for both minimizing disagreements and for maximizing agreements. For minimizing
disagreements, we give a constant factor approximation. For maximizing agreements we give
a PTAS, building on ideas of Goldreich, Goldwasser and Ron (1998) and de la Vega (1996).
We also show how to extend some of these results to graphs with edge labels in [—1,+1], and
give some results for the case of random noise.

Keywords: clustering, approximation algorithm, document classification

1. Introduction

Suppose that you are given a set of n documents to cluster into topics. Unfor-
tunately, you have no idea what a “topic” is. However, you have at your dis-
posal a classifier f(A,B) that given two documents A and B, outputs whether
or not it believes A and B are similar to each other. For example, perhaps f
was learned from some past training data. In this case, a natural approach to
clustering is to apply f to every pair of documents in your set, and then to
find the clustering that agrees as much as possible with the results.
Specifically, we consider the following problem. Given a fully-connected
graph G with edges labeled “+” (similar) or “—” (different), find a partition
of the vertices into clusters that agrees as much as possible with the edge
labels. In particular, we can look at this in terms of maximizing agreements

* This research was supported in part by NSF grants CCR-0085982, CCR-0122581, CCR-
0105488, and an IBM Graduate Fellowship.

';:‘ © 2003 Kluwer Academic Publishers. Printed in the Netherlands.

journal -new. tex; 31/10/2003; 1:25; p.1

2 Nikhil Bansal, Avrim Blum and Shuchi Chawla

(the number of + edges inside clusters plus the number of — edges between
clusters) or in terms of minimizing disagreements (the number of — edges
inside clusters plus the number of + edges between clusters). These two are
equivalent at optimality but, as usual, differ from the point of view of approx-
imation. In this paper we give a constant factor approximation to the problem
of minimizing disagreements, and a PTAS?! for maximizing agreements. We
also extend some of our results to the case of real-valued edge weights.

This problem formulation is motivated in part by a set of clustering prob-
lems at Whizbang Labs in which learning algorithms were trained to help
with various clustering tasks (Cohen and McCallum, 2001, Cohen and Richman, 2001,
Cohen and Richman, 2002). An example of one such problem, studied by
Cohen and Richman (2001, 2002) is clustering entity names. In this problem,
items are entries taken from multiple databases (e.g., think of names/affiliations
of researchers), and the goal is to do a “robust uniq” — collecting together
the entries that correspond to the same entity (person). E.g., in the case of
researchers, the same person might appear multiple times with different affil-
iations, or might appear once with a middle name and once without, etc. In
practice, the classifier f typically would output a probability, in which case
the natural edge label is log(Pr(same)/Pr(different)). This is O if the classifier
is unsure, positive if the classifier believes the items are more likely in the
same cluster, and negative if the classifier believes they are more likely in
different clusters. The case of {4, —} labels corresponds to the setting in
which the classifier has equal confidence about each of its decisions.

What is interesting about the clustering problem defined here is that unlike
most clustering formulations, we do not need to specify the number of clus-
ters k as a separate parameter. For example, in k-median (Charikar and Guha, 1999,
Jain and Vazirani, 1999) or min-sum clustering (Schulman, 2000) or min-max
clustering (Hochbaum and Shmoys, 1986), one can always get a perfect score
by putting each node into its own cluster — the question is how well one can
do with only k clusters. In our clustering formulation, there is just a single
objective, and the optimal clustering might have few or many clusters: it all
depends on the edge labels.

To get a feel for this problem, notice that if there exists a perfect clustering,
i.e., one that gets all the edges correct, then the optimal clustering is easy to
find: just delete all “—" edges and output the connected components of the
graph remaining. (This is called the “naive algorithm” in (Cohen and Richman, 2002).)
Thus, the interesting case is when no clustering is perfect. Also, notice that
for any graph G, it is trivial to produce a clustering that agrees with at least
half of the edge labels: if there are more + edges than — edges, then simply
put all vertices into one big cluster; otherwise, put each vertex into its own

1 A PTAS (polynomial-time approximation scheme) is an algorithm that for any given fixed

€ > 0 runs in polynomial time and returns an approximation within a (1 + €) factor. Running
time may depend exponentially (or worse) on 1/¢, however.

journal -new. tex; 31/10/2003; 1:25; p.2

Correlation Clustering 3

cluster. This observation means that for maximizing agreements, getting a 2-
approximation is easy (note: we will show a PTAS). In general, finding the
optimal clustering is NP-hard (shown in Section 3).

Another simple fact to notice is that if the graph contains a triangle in
which two edges are labeled + and one is labeled —, then no clustering can
be perfect. More generally, the number of edge-disjoint triangles of this form
gives a lower bound on the number of disagreements of the optimal clustering.
This fact is used in our constant-factor approximation algorithm.

For maximizing agreements, our PTAS is quite similar to the PTAS de-
veloped by de la Vega (1996) for MAXCUT on dense graphs, and related
to PTASs of Arora et al. (1995, 1996). Notice that since there must exist a
clustering with at least n(n — 1) /4 agreements, this means it suffices to ap-
proximate agreements to within an additive factor of en2. This problem is also
closely related to work on testing graph properties of (Goldreich et al., 1998,
Parnas and Ron, 1999, Alon et al., 1999). In fact, we show how we can use
the General Partition Property Tester of Goldreich, Goldwasser, and Ron
(1998) as a subroutine to get a PTAS with running time O(neo((%)%)). Un-
fortunately, this is doubly exponential in % so we also present an alternative
direct algorithm (based more closely on the approach of (de la Vega, 1996))

that takes only O(n2e°(2)) time.

Relation to agnostic learning: One way to view this clustering problem is
that edges are “examples” (labeled as positive or negative) and we are trying
to represent the target function f using a hypothesis class of vertex clusters.
This hypothesis class has limited representational power: if we want to say
(u,v) and (v,w) are positive in this language, then we have to say (u,w) is
positive too. So, we might not be able to represent f perfectly. This sort of
problem — trying to find the (nearly) best representation of some arbitrary
target f in a given limited hypothesis language — is sometimes called ag-
nostic learning (Kearns et al., 1994, Ben-David et al., 2001). The observation
that one can trivially agree with at least half the edge labels is equivalent to
the standard machine learning fact that one can always achieve error at most
1/2 using either the all positive or all negative hypothesis.

Our PTAS for approximating the number of agreements means that if
the optimal clustering has error rate v, then we can find one of error rate
at most v + €. Our running time is exponential in 1/¢, but this means that
we can achieve any constant error gap in polynomial time. What makes this
interesting from the point of view of agnostic learning is that there are very
few problems where agnostic learning can be done in polynomial time.? Even

2 Not counting trivial cases, like finding the best linear separator in a 2-dimensional space,
that have only polynomially-many hypotheses to choose from. In these cases, agnostic learning
is easy since one can just enumerate them all and choose the best.

journal -new. tex; 31/10/2003; 1:25; p.3

4 Nikhil Bansal, Avrim Blum and Shuchi Chawla

for simple classes such as conjunctions and disjunctions, no polynomial-time
algorithms are known that give even an error gap of 1/2 —¢.

Organization of this paper: We begin by describing notation in Section 2. In
Section 3 we prove that the clustering problem defined here is NP complete.
Then we describe a constant factor approximation algorithm for minimizing
disagreements in Section 4. In Section 5, we describe a PTAS for maximizing
agreements. In Section 6, we present simple algorithms and motivation for the
random noise model. Section 7 extends some of our results to the case of real-
valued edge labels. Finally, subsequent work by others is briefly described in
Section 8.

2. Notation and Definitions

Let G = (V,E) be a complete graph on n vertices, and let e(u,v) denote the
label (+ or —) of the edge (u,v). Let N*(u) = {u} U{v:e(u,v) =+} and
N~(u) = {v : e(u,v) = —} denote the positive and negative neighbors of u
respectively.

We let OPT denote an optimal clustering on this graph. In general, for a
clustering C, let C(v) be the set of vertices in the same cluster as v. We will
use A to denote the clustering produced by our algorithms.

In a clustering C, we call an edge (u,v) a mistake if either e(u,v) = +
and yet u ¢ C(v), or e(u,v) = — and u € C(v). When e(u,v) = +, we call
the mistake a positive mistake, otherwise it is called a negative mistake. We
denote the total number of mistakes made by a clustering C by m., and use
Mopt to denote the number of mistakes made by OPT.

For positive real numbers x, y and z, we use x € y+z to denote x € [y —
z,y+1]. Finally, let X for X CV denote the complement (V \ X).

3. NP-completeness

In this section, we will prove that the problem of minimizing disagreements,
or equivalently, maximizing agreements, is NP-complete. It is easy to see
that the decision version of this problem (viz. Is there a clustering with at
most z disagreements?) is in NP since we can easily check the number of
disagreements given a clustering. Also, if we allow arbitrary weights on edges
with the goal of minimizing weighted disagreements, then a simple reduction
from the Multiway Cut problem proves NP-hardness — simply put a —oo-
weight edge between every pair of terminals, then the value of the multiway
cut is equal to the value of weighted disagreements. We use this reduction to
give a hardness of approximation result for the weighted case in Section 7.

journal -new. tex; 31/10/2003; 1:25; p.4

Correlation Clustering 5

We give a proof of NP hardness for the unweighted case by reducing the
problem of Partition into Triangles (GT11 in (Garey and Johnson, 2000)) to
the problem of minimizing disagreements. The reader who is not especially
interested in NP-completeness proofs should feel free to skip this section.

The Partition into Triangles problem is described as follows: Given a
graph G with n = 3k vertices, does there exist a partition of the vertices into k
sets V1, ..., Vi, such that for all i, |V;| = 3 and the vertices in V; form a triangle.

Given a graph G = (V,E), we first transform it into a complete graph G’
on the same vertex set V. An edge in G’ is weighted +1 if it is an edge in G
and —1 otherwise.

Let A be an algorithm that given a graph outputs a clustering that mini-
mizes the number of mistakes. First notice that if we impose the additional
constraint that all clusters produced by A should be of size at most 3, then
given the graph G’, the algorithm will produce a partition into triangles if the
graph admits one. This is because if the graph admits a partition into trian-
gles, then the clustering corresponding to this triangulation has no negative
mistakes, and any other clustering with clusters of size at most 3 has more
positive mistakes than this clustering. Thus we could use such an algorithm
to solve the Partition into Triangles problem.

We will now design a gadget that forces the optimal clustering to contain
at most 3 vertices in each cluster. In particular, we will augment the graph G’
to a larger complete graph H, such that in the optimal clustering on H, each
cluster contains at most 3 vertices from G'.

The construction of H is as follows: In addition to the vertices and edges
of G/, for every 3-tuple {u,v,w} C G’, H contains a clique C,yw containing
n® vertices. All edges inside these cliques have weight +1. Edges between
vertices belonging to two different cliques have weight —1. Furthermore, for
all u,v,w € G’ each vertex in C,yw has a positive edge to u, vaand w, and a
negative edge to all other vertices in G'.

Now assume that G admits a triangulation and let us examine the behavior
of algorithm A on graph H. Let N = n®(3).

LEMMA 1. Given H as input, in any clustering that A outputs, every cluster
contains at most three vertices of G'.

Proof: First consider a clustering C of the following form:
1. There are (3) clusters.
2. Each cluster contains exactly one clique C,,w and some vertices of G'.
3. Every vertex u € G’ is in the same cluster as Cyy, for some v and w.

In any such clustering, there are no mistakes among edges between cliques.
The only mistakes are between vertices of G’ and the cliques, and those

journal -new. tex; 31/10/2003; 1:25; p.5

6 Nikhil Bansal, Avrim Blum and Shuchi Chawla

between the vertices of G’. The number of mistakes of this clustering is at
most n’((3) — 1) + (5) because each vertex in G’ has n® positive edges to (3)
cliques and is clustered with only one of them.

Now consider a clustering in which some cluster has four vertices in G/,
say, u,V,w and y. We show that this clustering has at leastn’((}) —1) + ”—26 mis-
takes. Call this clustering X. Firstly, without loss of generality we can assume
that each cluster in X has size at most n® + n?, otherwise there are at least
Q(n'°) negative mistakes within a cluster. This implies that each vertex in G’
makes at least (3)n®— (n®+ n*) positive mistakes. Hence the total number of
positive mistakes is at least n”((5) — 1) —n®. Let Xy be the cluster containing
vertex u,v,w,y € G'. Since X, has at most n® 4+ n* vertices, at least one of
u, v, w,y will have at most n# positive edges inside X, and hence will contribute
at least an additional n® —n* negative mistakes to the clustering. Thus the total
number of mistakes is at least ((5) —1)n” —n®+nf—n*>n’((3) —1) +n®/2.
Thus the result follows. O

The above lemma shows that the clustering produced by A will have at
most 3 vertices of G in each cluster. Thus we can use the algorithm A to solve
the Partition into Triangles problem and the reduction is complete.

4. A Constant Factor Approximation for Minimizing Disagreements

As a warm-up to the general case, we begin by giving a very simple 3-
approximation to the best clustering containing two clusters. That is, if the
best two-cluster partition of the graph has x mistakes, then the following
algorithm will produce one with at most 3x mistakes.

Let OPT(2) be the best clustering containing two clusters, and let the
corresponding clusters be ¢; and (. Our algorithm simply considers all
clusters of the form {N*(v),N—(v)} for v € V. Of these, it outputs the one
that minimizes the number of mistakes.

THEOREM 2. The number of mistakes of the clustering output by the algo-
rithm stated above is at most ma < 3Mopr(2).

Proof: Let’s say an edge is “bad” if OPT(2) disagrees with it, and define
the “bad degree” of a vertex to be the number of bad edges incident to it.
Clearly, if there is a vertex that has no bad edges incident to it, the clustering
produced by that vertex would be the same as {1, (2}, and we are done with
as many mistakes as Mopr(2).-

Otherwise, let v be a vertex with minimum bad degree d, and without loss
of generality, let v € ;. Consider the partition {N*(v),N~(v)}. Let X be
the set of bad neighbors of v — the d vertices that are in the wrong set of
the partition with respect to { C1, C2}. The total number of extra mistakes due

journal -new. tex; 31/10/2003; 1:25; p.6

Correlation Clustering 7

to this set X (other than the mistakes already made by OPT) is at most dn.
However, since all vertices have bad degree at least d, mopr(2) > nd/2. So,
the number of extra mistakes made by taking the partition {N*(v),N=(v)} is
at most 2mopr(2). This proves the theorem. O

We now describe our main algorithm: a constant-factor approximation for
minimizing the number of disagreements.

The high-level idea of the algorithm is as follows. First, we show (Lemma
3 and 4) that if we can cluster a portion of the graph using clusters that each
look sufficiently “clean” (Definition 1), then we can charge off the mistakes
made within that portion to “erroneous triangles”: triangles with two + edges
and one — edge. Furthermore, we can do this in such a way that the trian-
gles we charge are nearly edge-disjoint, allowing us to bound the number of
these mistakes by a constant factor of OPT. Second, we show (Lemma 6) that
there must exist a nearly optimal clustering OPT’ in which all non-singleton
clusters are “clean”. Finally, we show (Theorem 7 and Lemma 11) that we
can algorithmically produce a clustering of the entire graph containing only
clean clusters and singleton clusters, such that mistakes that have an endpoint
in singleton clusters are bounded by OPT’, and mistakes with both endpoints
in clean clusters are bounded using Lemma 4.

We begin by showing a lower bound for OPT. We call a triangle “erro-
neous” if it contains two positive edges and one negative edge. A fractional
packing of erroneous triangles is a set of erroneous triangles {Ty,---,Tm} and
positive real numbers r; associated with each triangle T;, such that for any
edgee €E, et 1 < 1.

LEMMA 3. Given any fractional packing of erroneous triangles {r1,---,rm},
we have 3;r; < OPT.

Proof: Let M be the set of mistakes made by OPT. Then, Mopr = Seem 1 >

YeeM Y ecT T, DY the definition of a fractional packing. So we have mopr >

Yi|IM N Tijri. Now, for each T;, we must have M N T;| > 1, because OPT

must make at least one mistake on each erroneous triangle. This gives us

the result. O
Next we give a definition of a “clean” cluster and a “good” vertex.

DEFINITION 1. Avertex v is called 6-good with respect to C, where C CV,
if it satisfies the following:

— INF(v)nC[= (1-9)[C|
— INF(V)n(V\C)| < 3[C|

If a vertex v is not &-good with respect to (w.r.t.) C, then it is called 6-bad
w.r.t. C. Finally, a set C is d-clean if all v € C are d-good w.r.t. C.

journal -new. tex; 31/10/2003; 1:25; p.7

8 Nikhil Bansal, Avrim Blum and Shuchi Chawla

<3(g

(a) Erroneous triangles for negative mistakes (b) Erroneous triangles for positive mistakes

Figure 1. Construction of a triangle packing for Lemma 4

We now present two key lemmas.

LEMMA 4. Given a clustering of V in which all clusters are d-clean for
some & < 1/4, then there exists a fractional packing {r;, T;}{"; such that the
number of mistakes made by this clustering is at most 4 3; ;.

Proof: Let the clustering onV be (Cu,- -+, k). First consider the case where
the number of negative mistakes (m) is at least half the total number of
mistakes m-. We will construct a fractional packing of erroneous triangles
with 31 > 2mz > Zmc.

Pick a negative edge (u,v) € G x G that has not been considered so far.
We will pick a vertex w € G such that both (u,w) and (v, w) are positive, and
associate (u,v) with the erroneous triangle (u,v,w) (see Figure 1). We now
show that for all (u,v), such a w can always be picked such that no other
negative edges (u’,v) or (u,V') (i.e. the ones sharing u or v) also pick w.

Since G is o-clean, neither u nor v has more than 8| | negative neighbors
inside G. Thus (u,v) has at least (1 —28)|G| vertices w such that both (u,w)
and (v,w) are positive. Moreover, at most 29| G| — 2 of these could have al-
ready been chosen by other negative edges (u,v’) or (u’,v). Thus (u,v) has at
least (1 —40)| G|+ 2 choices of w that satisfy the required condition. Since
0 < 1/4, (u,v) will always be able to pick such a w. Let T, denote the
erroneous triangle u, v, w.

Note that any positive edge (v,w) can be chosen at most 2 times by the
above scheme, once for negative mistakes on v and possibly again for negative
mistakes on w. Thus we can give a value of ryw = 1/2 to each erroneous
triangle picked, ensuring that 1 contains (uy) i < 1. Now, since we pick a

triangle for each negative mistake, we get that y . rj = %zTi 1> %mg.

Next, consider the case when at least half the mistakes are positive mis-
takes. Just as above, we will associate mistakes with erroneous triangles. We
will start afresh, without taking into account the labelings from the previous
part.

journal -new. tex; 31/10/2003; 1:25; p.8

Correlation Clustering 9

Consider a positive edge between u € G and v € Cj. Let |G| > |Cj|. Pick
a w € G such that (u,w) is positive and (v,w) is negative (see Figure 1).
There will be at least |G| — &(|G| + |Cj|) such vertices as before and at most
O(|G|+Cj|) of them will be already taken. Thus, there are at least |G| —
25(|G|+|Gj|) > |G|(1—4d) > 0 choices for w. Moreover only the positive
edge (u,w) can be chosen twice (once as (u,w) and once as (w,u)). Thus, as
before, to obtain a packing, we can give a fractional value of ry.w = % to the
triangle Tuw. We get that S ri = 3511 > Imf.

Now depending on whether there are more negative mistakes or more pos-
itive mistakes, we can choose the triangles appropriately, and hence account
for at least a quarter of the total mistakes in the clustering. O

Lemma 4 along with Lemma 3 gives us the following corollary.

COROLLARY 5. Any clustering in which all clusters are d-clean for some
8 < has at most 4mgpr mistakes.

LEMMA 6. There exists a clustering OPT’ in which each non-singleton
cluster is &-clean, and mgpp < (% + 1)mopr.

Proof: Consider the following procedure applied to the clustering of OPT and
call the resulting clustering OPT’.

Procedure 3-Clean-Up: Let CPPT, C9FT, ..., GOFT be the clusters in OPT.
1. LetS=0.
2. Fori=1,---,kdo:

a) If the number of 3-bad vertices in GO is more than §|COPT|, then,
S=Su COPT ¢ = 0. We call this “dissolving” the cluster.

b) Else, let B; denote the 3-bad vertices in GOFT. Then S = SUB; and
Cil — CiOPT \ Bi-
3. Output the clustering OPT': ¢}, Gy, ---; Gos {X} xes.
We will prove that mppr and mgpyr are closely related.
We first show that each (' is 6 clean. Clearly, this holds if ¢/ = 0. Now

if ¢ is non-empty, we know that |GOFT| > || > |cOPT|(1 — &/3). For each
pointv € ¢, we have:

N*WNE] > (1L eI ()16
0
- (129
> (1-9))

journal -new. tex; 31/10/2003; 1:25; p.9

10 Nikhil Bansal, Avrim Blum and Shuchi Chawla

Similarly, counting positive neighbors of v in ¢°FT N ¢ and outside GOFT,
we get,

— 0 o
N* WG] < 16|+ 516

2 |4|
3 (1-5/3)
< 3G (asd<1)

IN

Thus each ¢ is d-clean.

We now account for the number of mistakes. If we dissolve some COFT,
then clearly the number of mistakes associated with vertices in the orig-
inal cluster GOFT is at least (8/3)2|GPFT|2/2. The mistakes added due to
dissolving clusters is at most | GOFT|2/2.

If COPT was not dissolved, then, the original mistakes in COFT were at least
8/3|COFT||Bi| /2. The mistakes added by the procedure is at most |B;||GOFT|.
Noting that 6/8 < 9/8%, the lemma follows. O

For the clustering OPT' given by the above lemma, we use ¢ to denote the
non-singleton clusters and S to denote the set of singleton clusters. We will
now describe Algorithm Cautious that tries to find clusters similar to OPT'.
Throughout the rest of this section, we assume that & = ﬁ
Algorithm Cautious:

1. Pick an arbitrary vertex v and do the following:

a) Let A(v) =NT(v).

b) (Vertex Removal Step): While 3x € A(v) such that x is 36-bad w.r.t.
A(V), A(v) = A(v) \ {x}.

c) (Vertex Addition Step): LetY = {y|ly € V,y is 7d-good w.r.t. A(v)}.
Let A(v) = A(v)UY.2

2. Delete A(v) from the set of vertices and repeat until no vertices are left
or until all the produced sets A(v) are empty. In the latter case, output the
remaining vertices as singleton nodes.

Call the clusters output by algorithm Cautious A1,Ao,---. Let Z be the set
of singleton vertices created in the final step. Our main goal will be to show
that the clusters output by our algorithm satisfy the property stated below.

THEOREM 7. Vj, Ji such that CJ-’ C Aj. Moreover, each A; is 11d-clean.

3 Observe that in the vertex addition step, all vertices are added in one step as opposed to
in the vertex removal step

journal -new. tex; 31/10/2003; 1:25; p.10

Correlation Clustering 11

In order to prove this theorem, we need the following two lemmas.

LEMMA 8. Ifve ¢, where G is a d-clean cluster in OPT’, then, any vertex
w e (G is 36-good w.r.t. NT(v).

Proof: Asv e G, INt(v)N | > (1-98)|C| and INT (V)N | < 8|C|. So,
(1-9)|G| < INT(v)| < (1+40)|C/|. The same holds for w. Thus, we get the
following two conditions.

INTW)NNT (V)| > (1-28)[G| > (1-38) [N (V)]

IN* (W) ANFW)] < INF(w) INFV) N G+ INFW) NNF(v) N G|
< 28|C/| < Z5IN* (V)| < BZNF(v)|

Thus, w is 3d-good w.r.t. Nt (v). O

LEMMA 9. Given an arbitrary set X, if vy € ¢ and vz €], i # J, then vy
and v, cannot both be 3d-good w.r.t. X.

Proof:

Suppose that v; and v, are both 3d-good with respect to X. Then, [N+ (v1)N
X] > (1—-3d)|X] and [N*(v2) NX]| > (1—33)|X|, hence [IN*(vi) NNT(v2) N
X| > (1—69)|X|, which implies that

INT(ve) NNT(v2)] > (1-63)[X] 1)

Also, since vy and v, lie in &-clean clusters ¢ and (| in OPT' respectively,
IN*(vi)\ G <98[c|, INT(v2) \ Cj| < 8|C]| and G/ N €] = 0. It follows that

INT(ve) TNT(v2)| < (|G 1+ 1Cj) &)

Now notice that || < |[NT(va) NG|+ 3]G | < INT(vi)NXN G|+ |NT(va)N
XN G| +9C] < IN*(vi) XN |+ 33IX[+ || < (1+38)[X| + 3| (.
So, |G| < 11%35|X|. The same holds for Cj. Using Equation 2, [N (vq) N
NF(vp)| < 2552|X|.

However, since & < 1/9, we have 25(1+3d) < (1—60)(1—). Thus the

above equation along with Equation 1 gives a contradiction and the result
follows. O
This gives us the following important corollary.

COROLLARY 10. After every application of the removal step 1b of the
algorithm, no two vertices from distinct ¢ and Cj can be present in A(v).

Now we go on to prove Theorem 7.

journal -new. tex; 31/10/2003; 1:25; p.11

12 Nikhil Bansal, Avrim Blum and Shuchi Chawla

Proof of Theorem 7: We will first show that each A; is either a subset of S
or contains exactly one of the clusters CJ! . The first part of the theorem will
follow.

We proceed by induction on i. Consider the inductive step. For a cluster A;,
let A be the set produced after the vertex removal phase such the cluster A; is
obtained by applying the vertex addition phase to A{. We have two cases. First,
we consider the case when A} C S. Now during the vertex addition step, no
vertex u € Cj can enter A for any j. This follows because, since (| is &-clean
and disjoint from Ay, for u to enter we need that 8| Cj| > (1 —79)|Aj| and (1 —
9)|Cj| < 78|Ai], and these two conditions cannot be satisfied simultaneously.
Thus A; C S.

In the second case, some u € CJ! is present in A{. However, in this case
observe that from Corollary 10, no vertices from ¢, can be present in A{ for
any k # J. Also, by the same reasoning as for the case A/ C S, no vertex from
G will enter Al in the vertex addition phase. Now it only remains to show that
CJ(C A;. Note that all vertices of CJ! are still present in the remaining graph
G\ (Us<iAr)-

Since u was not removed from A{ it follows that many vertices from Cf are
present in Al. In particular, [N+ (u) NA!| > (1—38)|A! and |[N*(u) N Al <
38|A/|. Now (1—3)|C]| < [N*(u)| implies that |]| < LER|A1| < 2]A!|. Also,
IAIN G| > [AINNT(u)] = INT(u) ﬂ?“ > |AINNT(u)| - 8|Cj|. So we have
|ATN Cjl = (1—59)|A]].

We now show that all remaining vertices from CJ-’ will enter A; during the
vertex addition phase. For w € Cj such that w ¢ Aj, [Aj ﬂf“ < 59|A{| and
INF(w) N Cl| < 3|C]| together imply that [A/ N NF(w)| < 58|A!| + 3|Cl| <
78|A!|. The same holds for |[A/NN*(w)|. So w is 78-good w.r.t. Al and will be
added in the Vertex Addition step. Thus we have shown that A(v) can contain
CJ! for at most one j and in fact will contain this set entirely.

Next, we will show that for every j, Jis.t. CJ-’ C A;. Let v chosen in Step 1
of the algorithm be such that v € CJ-’ . We show that during the vertex removal
step, no vertex from N*(v) N Cj’ is removed. The proof follows by an easy
induction on the number of vertices removed so far (r) in the vertex removal
step. The base case (r = 0) follows from Lemma 8 since every vertex in Cj
is 30-good with respect to N*(v). For the induction step observe that since
no vertex from N*(v) N ¢} is removed thus far, every vertex in Cj is still 33-
good w.r.t. to the intermediate A(v) (by mimicking the proof of Lemma 8 with
N*(v) replaced by A(v)). Thus A{ contains at least (1 — 8)|(j| vertices of Cj
at the end of the vertex removal phase, and hence by the second case above,
CJ! C A after the vertex addition phase.

Finally we show that every non-singleton cluster A; is 116-clean. We know
that at the end of the vertex removal phase, Vx € A{, x is 36-good w.r.t. Al

journal -new. tex; 31/10/2003; 1:25; p.12

Correlation Clustering 13

Thus, [N*(x) N Al| < 38|A!|. So the total number of positive edges leaving A/
is at most 36\A{|2. Since, in the vertex addition step, we add vertices that are
78-good w.r.t. A!, the number of these vertices can be at most 38|A!|2/(1 —
70)|Al| < 43|Al|. Thus |Ai| < (1+40)|A]|.

Since all vertices v in A; are at least 75-good w.r.t. Al, Nt(v)NA; > (1—
70)|Al| > ﬁ—zg|Ai| > (1—118)|A;|. Similarly, N*(v) NA; < 78|Al| < 113|Aj].
This gives us the result. O
Now we are ready to bound the mistakes of A in terms of OPT and OPT'.
Call mistakes that have both end points in some clusters A;j and A; as internal
mistakes and those that have an end point in Z as external mistakes. Similarly
in OPT’, we call mistakes among the sets C as internal mistakes and mis-
takes having one end point in S as external mistakes. We bound mistakes of
Cautious in two steps: the following lemma bounds external mistakes.

LEMMA 11. The total number of external mistakes made by Cautious are
less than the external mistakes made by OPT'.

Proof: From Theorem 7, it follows that Z cannot contain any vertex v in some
C. Thus, Z C S. Now, any external mistakes made by Cautious are positive
edges adjacent to vertices in Z. These edges are also mistakes in OPT' since
they are incident on singleton vertices in S. Hence the lemma follows. O

Now consider the internal mistakes of A. Notice that these could be many
more than the internal mistakes of OPT’. However, we can at this point apply
Lemma 5 on the graph induced by V' = |J; Ai. In particular, the bound on
internal mistakes follows easily by observing that 116 < 1/4, and that the
mistakes of the optimal clustering on the graph induced by V' is no more than
Mopt. Thus,

LEMMA 12. The total number of internal mistakes of Cautious is < 4mopr.

Summing up results from the Lemmas 11 and 12, and using Lemma 6, we get
the following theorem:;

THEOREM 13. Mcaytious < (2 +5)Mopr, With 3= 2.

5. A PTAS for maximizing agreements

In this section, we give a PTAS for maximizing agreements: the total number
of positive edges inside clusters and negative edges between clusters.

As before, let OPT denote an optimal clustering and A denote our clus-
tering. We will abuse notation and also use OPT to denote the number of
agreements in the optimal solution. As noticed in the introduction, OPT >

journal -new. tex; 31/10/2003; 1:25; p.13

14 Nikhil Bansal, Avrim Blum and Shuchi Chawla

n(n—1)/4. So it suffices to produce a clustering that has at least OPT — en?
agreements, which will be the goal of our algorithm. Let d*(Vy1,V2) denote
the number of positive edges between sets V1,V, C V. Similarly, let 6~ (Vy, V)
denote the number of negative edges between the two. Let OPT(€) denote the
optimal clustering that has all non-singleton clusters of size greater than en.

LEMMA 14. OPT(g) > OPT —en2/2.

Proof: Consider the clusters of OPT of size less than or equal to en and break
them apart into clusters of size 1. Breaking up a cluster of size s reduces our
objective function by at most (;) which can be viewed as s/2 per node in the
cluster. Since there are at most n nodes in these clusters, and these clusters
have size at most &n, the total loss is at most :»:”—22. O
The above lemma means that it suffices to produce a good approximation
to OPT(g). Note that the number of non-singleton clusters in OPT(g) is less
than L. Let CPPT,..., GOPT denote the non-singleton clusters of OPT(g) and

let Clgf’lT denote the set of points which correspond to singleton clusters.

5.1. A PTAS DOUBLY-EXPONENTIAL IN 1/€

If we are willing to have a run time that is doubly-exponential in 1/, we
can do this by reducing our problem to the General Partitioning problem of
(Goldreich et al., 1998). The idea is as follows.

Let GT denote the graph of only the + edges in G. Then, notice that we
can express the quality of OPT(g) in terms of just the sizes of the clusters,
and the number of edges in G* between and inside each of CloPT, ey Cl?ff.
In particular, if s; = |GOF"| and e j = &7 (GPFT, CPFT), then the number of
agreements in OPT(g) is:

> (sis; —ei,j)] :

K
S
[Ziei,i + K k;) —ek+1,k+1:| +
= iZ]

The General Partitioning property tester of (Goldreich et al., 1998) allows
us to specify values for the s; and e;j, and if a partition of G exists satisfying
these constraints, will produce a partition that satisfies these constraints ap-
proximately. We obtain a partition that has at least OPT(g) — en? agreements.
The property tester runs in time exponential in (%)k+1 and polynomial in n.

Thus if we can guess the values of these sizes and number of edges accu-
rately, we would be done. It suffices, in fact, to only guess the values up to an
additive ¢2n for the s;, and up to an additive +£3n? for the g; j, because this

introduces an additional error of at most O(g). So, at most O((1/€3)Y/¢*) calls
to the property tester need to be made. Our algorithm proceeds by finding a
partition for each possible value of s; and e; j and returns the partition with
the maximum number of agreements. We get the following result:

journal -new tex; 31/10/2003; 1:25; p.14

Correlation Clustering 15

THEOREM 15. The General Partitioning algorithm returns a clustering of
graph G which has more than OPT — en? agreements with probability at least
1—&. It runs in time e2(&)"*) x poly(n, 3).

5.2. A SINGLY-EXPONENTIAL PTAS

We will now describe an algorithm that is based on the same basic idea of
random sampling used by the General Partitioning algorithm. The idea behind
our algorithm is as follows: Notice that if we knew the density of positive
edges between a vertex and all the clusters, we could put v in the cluster that
has the most positive edges to it. However, trying all possible values of the
densities requires too much time. Instead we adopt the following approach:
Let {O;} be the clusters in OPT. We select a small random subset W of ver-
tices and cluster them correctly into {W; } with W; C O; Vi, by enumerating all
possible clusterings of W . Since this subset is picked randomly, with a high
probability, for all vertices v, the density of positive edges between v and Wi
will be approximately equal to the density of positive edges between v and
Oi. So we can decide which cluster to put v into, based on this information.
However this is not sufficient to account for edges between two vertices vq
and v», both of which do not belong to W. So, we consider a partition of the
rest of the graph into subsets U; of size m and try out all possible clusterings
{Uij} of each subset, picking the one that maximizes agreements with respect
to {W;}. This gives us the PTAS.

Firstly note that if |C|SFP1T| < €n, then if we only consider the agreements
in the graph G\ Ci?flT, it affects the solution by at most en?. For now, we will
assume that |CE+P1T| < en and will present the algorithm and analysis based on
this assumption. Later we will discuss the changes required to deal with the
other case.

In the following algorithm € is a performance parameter to be specified
later. Letm = 8825040009 1+2),k==1tande = g—g. Let p; denote the density
of positive edges inside the cluster CiOPT and njj the density of negative edges
between clusters GOFT and ¢PFT. That is, pi = &* (G2, QOPT)/(MZPT') and
nij =3 (G2, CPPT)/(IGOFT|| CPPT). LetW CV be arandom subset of size
m.

We begin by defining a measure of goodness of a clustering {U;; } of some
set U; with respect to a fixed partition {W; }, that will enable us to pick the right
clustering of the set U;. Let {5 and rij; be estimates of p; and n;j respectively,
based on {W; }, to be defined later in the algorithm.

DEFINITION 2. Uiy, ..., Ui s €'-good w.r.t. Wy, ..., W1 if it satisfies
the following forall 1 < j,£ <k

journal -new. tex; 31/10/2003; 1:25; p.15

16 Nikhil Bansal, Avrim Blum and Shuchi Chawla
(1) 8" (Uij, W) > pj () — 18e'm?
(2) & (Uij,Wp) > nj|W;| W, | — 6¢'m?

and, for at least (1 — €')n of the vertices xand V j,
(3) 8" (Uij,x) € 8 (Wj,x) £+ 2¢'m.

Our algorithm is as follows:

Algorithm Divide&Choose:
1. Pick a random subset W C V of size m.

2. For all partitions Wy, ..., Wky1 of W do

a) Let p =& (Wi, Wi)/("3)), and rfj = & (Wi, Wj) /| Wi [w].

b) Letq= { —1. Consider a random partition of V \W into Ug,....,Uq,
such that Vi, |Uj| = m.

¢) Forall i do:
Consider all (k+ 1)-partitions of U; and let Uiy, ..., U1y be a par-
tition that is €'-good w.r.t. Wy,..., W1 (by Definition 2 above). If
there is no such partition, choose Ui, ..., Uj1) arbitrarily.

d) LetA; =J;Ujj forall i. Let a({W;}) be the number of agreements of
this clustering.

3. Let {W;} be the partition of W that maximizes a({W;}). Return the clus-
ters {Ai}, {X}xea.., corresponding to this partition of W.

We will concentrate on the "right" partition of W given by W; =W N G°FT,
Vi. We will show that the number of agreements of the clustering A, ..., Ak+1
corresponding to this partition {W;} is at least OPT(g) — 2en? with a high
probability. Since we pick the best clustering, this gives us a PTAS.

We will begin by showing that with a high probability, for most values
of i, the partition of U;s corresponding to the optimal partition is good with
respect to {W; }. Thus the algorithm will find at least one such partition. Next
we will show that if the algorithm finds good partitions for most Uj, then it
achieves at least OPT — O(g)n? agreements.

We will need the following results from probability theory. Please refer to
(Alon and Spencer, 1992) for a proof.

FACT 1. LetH(n,m,l) be the hypergeometric distribution with parameters
n,m and | (choosing | samples from n points without replacement with the

journal -new. tex; 31/10/2003; 1:25; p.16

Correlation Clustering 17

random variable taking a value of 1 on exactly m out of the n points). Let
0<e<1 Then

glm e
r{|H(n,m,)——|>T <2 &

FACT 2. Let X1,Xo,...,X, be mutually independent random variables such
that |X; — E[Xi]| < m forall i. Let S= ¥, X;, then

a2
Pr[|S—E[S]| > a] < 2e” 2m?
We will also need the following lemma:

LEMMA 16. LetY and S be arbitrary disjoint sets and Z be a set picked
from S at random. Then we have the following:

Pr |15t (Y,2) — ‘|S||6+(Y S)| > €|Y||Z]| <

Proof: 87 (Y,Z) isasum of |Z| random variables Ot (Y,v) (v € Z), each bounded

above by |Y| and having expected value g S

Thus applying Fact 2, we get
Pr{|5*(Y,2) — |Z|5*(Y,S)/IS|| > €|Z||Y |] < 2e~¢“ V22V < pe—e7i2/2

O

Now notice that since we picked W uniformly at random from V, with a

high probability the sizes of Wjs are in proportion to |COPT|. The following
lemma formalizes this.

LEMMA 17. With probability at least 1 — 2ke~€*€M/2 gver the choice of W,
Vi, Wi| € (1£€)T|GOPT).

Proof: For a given i, using Fact 1 and since |COFT| > en,
Pr [HWJ - —‘COPTH >¢€ — |COPT|] < 2e—€?mGT|/2n < g —€%em/2

Taking a union bound over the k values of i we get the result. O
Using Lemma 17, we show that the computed values of p; and nj; are close
to the true values p; and n;j respectively. This gives us the following two
lemmas.

LEMMA 18. If Wi C G°FT and W; € 77T, i # |, then with probability at
least 1 — 4e "™/ over the choice of W, &* (Wi, W) € &+ (O™, cOFT) +
3e'm?.

journal -new. tex; 31/10/2003; 1:25; p.17

18 Nikhil Bansal, Avrim Blum and Shuchi Chawla

Proof: We will apply Lemma 16 in two steps. First we will bound & (W;,W;)
in terms of &+ (Wi, CJ-OPT) by fixing W; and considering the process of picking
w; from CPFT.

Using W; for Y, W; for Z and CJ-OPT for S in Lemma 16, we get the follow-
ing®.

Pr (15" (W, W) — 25 (Wi, C77T)]| > e/m?] < 26 #%em/4
We used the fact that m > |W;| > em/2 with high probability. Finally, we
again apply Lemma 16 to bound &" (Wi, C°FT) in terms of &t (G°FT, COFT).
Taking Y to be COFT, Z to be W; and S to be GOFT, we get
Pr (I3 W, €P7) =18 (G, €77 > 26/ TG P < 2em el
Again we used the fact that [W;| < 22|GOPT| with high probability. So, with
probability at least 1 — 4e~%*™4, we have, | 75" (Wi, CO°T) — T 5+ (COPT, COPT))|
< 28’%|QOPT||CJ-OPT| <2¢'m?and |57 (Wi, Wj) — P& (Wi, CPPT)| < £'m?2. This
gives us

2
Pr [W (Wi, W) — %Eﬁ(qo”,)| > Ss’mz] < 4o EPEm/4

O

LEMMA 19. With probability at least 1 — 5e~"5™4 over the choice of W,
pi > pi — 9¢'

Proof: Note that we cannot use an argument similar to the previous lemma
directly here since we are dealing with edges inside the same set. Instead we
use the following trick.

Consider an arbitrary partition of CiOPT into 8—1, sets of size €'n’ each where
n' = |GO7T]. Let this partition be G-+, GJ/L and let Wi j =W N G
Let m’ = |W;|. Now consider 6% (Wi j,,Wi j,). Using an argument similar to the
previous lemma, we get that with probability at least 1 — 4e—¢7¢m/4,
|W|711||W|,12| 6+(COF’T COPT) + ZSI\Wi,j1\|Wi,j2|

IGRGET e

8T (Wi jy, Wi j,) €
Noting that % < (1+3¢) %22 with probability at least 1 — 4e €74
we get, e

2
M (COPT, COPT)| < 88/ M | W || > 1 ge—"eme

Pr ‘6+(Wi,jl’wi,jz)_ n NERRA NP

4 \We are assuming that W is a set of size m chosen randomly from n with replacement,
since m is a constant, we will have no ties with probability 1 —O(n~1).

journal -new. tex; 31/10/2003; 1:25; p.18

Correlation Clustering 19

This holds for every value of j; and j» with probability at least 1 — 8%e—s'ssm/4
2
Now, 6+(Wi’Wi) 2 Y i<z 6+(Wi71'1’Wi7J'2) 2 ﬁ% 2 ii<] 6+(CiO'PT CiO'PT) >

J2 Ju 7 h)2 /=
2 2 1212 W 2
T L (ns — 35) > (pi —9¢') ML m
Now let Uj; =UinN CjOPT. The following lemma shows that for all i, with a
high probability all U;;s are €-good w.r.t. {W;}. So we will be able to find

€'-good partitions for most U;s.

LEMMA 20. Foragiveni, letUj; =UiN CJ-OPT, then with probability at least
132k Le¢°5m/4 over the choice of Uj, Vj < k, {U;;} are &'-good w.r.t. {W;}.

Proof: Consider the partition {U;j} of U;.
Using an argument similar to Lemma 18, we get |8+ (U;j, W) — %BJF(CJ-OPT, GO <
3e'm? with probability at least 1 — 4e—E%EM/4 Also, again from Lemma 18,
|5+ (W), W) — .8+ (COPT, GOPT)| < 3e/m?. So, |5+ (U;j,Wh) — 5" (W}, Wi)| <
6€'m? with probability at least 1 — 8e—€*eM/4 This gives us the second condi-
tion of Definition 2.
Similarly, using Lemma 19, we obtain the first condition. The failure prob-
ability in this step is at most 16 e ~=sm/4,
Now, consider & (x,U;;). This is a sum of m {0,1} random variables (cor-

responding to picking U; from V), each of which is 1 iff the picked vertex lies
in CjOPT and is adjacent to x. Applying Chernoff bound, we get,

Pr [|6+(X,Uij) — 05 (x, CPFT)| > s’m] < 2e€7M/2
Similarly we have, Pr [|5+(X,Wj) — 25 (x, COFT)| > ¢'m| < 0p—€2m/2.

So we get, Pr[|8"(x,U;j) — 8" (x,W;)| > 2¢'m] < 4e~€“M/2,

Note that, here we are assuming that W and U; are picked independently
from V. However, picking U; from V \ W is similar to picking it from V since
the collision probability is extremely small.

Now, the expected number of points that do not satisfy condition 3 for
some Ujj is 4ne~t*M2 The probability that more than €’'n of the points fail
to satisfy condition 3 for one of the Ujjs in U; is at most k%4ne—5'2m/2 <
4e=¢"m/2 This gives us the third condition.

The total probability that some U; does not satisfy the above conditions is
at most

Se—s’zsm/4+ 168—:,[26_8138"1/44— i_lfe—s’zm/Z
< 328712878'38'71/4

O
Now we can bound the total number of agreements of Ag, ..., Ak, {X}xeae, I
terms of OPT:

journal -new. tex; 31/10/2003; 1:25; p.19

20 Nikhil Bansal, Avrim Blum and Shuchi Chawla

THEOREM 21. If |G| < en, then A > OPT — 3en? with probability at
least 1 —¢.

Proof: From Lemma 20, the probability that we were not able to find a €'-
good partition of U; w.r.t. Wy, -- -, W is at most 32 ,ze—s'ssm/“. By our choice
of m, this is at most 52/4. So, with probability at Ieast 1—¢/2, at most €/2 of
the U;s do not have an €’-good partition.

In the following calculation of the number of agreements, we assume that
we are able to find good partitions of all U;s. We will only need to subtract at
most sn2/2 from this value to obtain the actual number of agreements, since
each U; can affect the number of agreements by at most mn.

We start by calculating the number of positive edges inside a cluster A;.
These are given by 553 ea, &1 (Uaj,). Using the fact that U,; is good w.r.t.
{W;} (condition (3)),

2 XEA| 6+(Uajax)
> 3 xen; (8 (Wj,x) —2€'m) —'n|Uq) |
— zb5+(wj2,ub,-) —2¢'m|Aj| —€'n|U4;|
> Sp{Bj % — 18e'm?} — 2e/'m|Aj| — €'n|Ug]

The last inequality follows from the fact that Up,; is good w.r.t. {W; } (condition
(1)). From Lemma 17,

cP
Sren 8 (UsX) = 3o 0i(L—£)2 T, —18em?} —2¢m|aj| Uy
> Mg (1—)2|C il — 18¢/'mn — 2e'm|A;| — €'n|Uqj|
o - & ! Z‘C'OPT‘Z 1n2
Thus we bound 5 ,8%(Aj,Uaj) as 328" (Aj,Uqj) > Pj(1—¢€')*—5——18¢e'n“—
3e'n|Aj|.
Now using Lemma 19, the total number of agreements is at least
ey N2l 1n2 1n2
yi|Pj(1—-¢€)~5—| —18¢n°k —3¢'n
/ /2‘CjopT|2 12 In2
>3 |(pj—9¢)(1—¢)"—5—| —18e'nk —3e/n
Hence, At > OPTT — 11€'kn? — 21€'n%k > OPT+ — 32¢/n%k.

Similarly, consider the negative edges in A. Using Lemma 18 to estimate
& (Uai,Upj), we get,

;&(ua;,ubj) > 8 (GO, CPPT) — 9¢/n? — 2¢/n|Aj| — €/n| A |

Summing over all i < j, we get the total number of negative agreements is at
least OPT~ — 12¢'k?n?

journal -new. tex; 31/10/2003; 1:25; p.20

Correlation Clustering 21

So we have, A > OPT — 44¢'k?n? = OPT — en?/2. However, since we lose
en?/2 for not finding €'-good partitions of every U; (as argued before), en?
due to Cg’f, and en?/2 for using k = 1 we obtain A > OPT —3en?.

The algorithm can fail in four situations:

1. More than €/2 U;s do not have an €'-good partition. However, this hap-
pens with probability at most €/2.

2. Lemma 17 does not hold for some W;. This happens with probability at
most 2ke €°€M/2,

3. Lemma 19 does not hold for some i. This happens with probability at
_ I3
most e~ em/4

4. Lemma 18 does not hold for some pair i, j. This happens with probability
at most 4k2e—€em/4,

Observing that the latter three probabilities sum up to at most €/2 by our
choice of m. So, the algorithm succeeds with probability greater than 1 —€. O

Now we need to argue for the case when |Ci?+P1T| > en. Notice that in this
case, using an argument similar to Lemma 17, we can show that Wy.1| > £
with a very high probability. This is good because, now with a high proba-
bility, Ujk1) will also be g’-good w.r.t. Wy,1 for most values of i. We can
now count the number of negative edges from these vertices and incorporate
them in the proof of Theorem 21 just as we did for the other k clusters. So in
this case, we can modify algorithm Divide&Choose to consider €’-goodness
of the (k4 1)th partitions as well. This gives us the same guarantee as in
Theorem 21. Thus our strategy will be to run Algorithm Divide&Choose once
assuming that |C|SFP1T| > en and then again assuming that |C|2LP1T\ < é&n, and
picking the better of the two outputs. One of the two cases will correspond to
reality and will give us the desired approximation to OPT.

Now each U; has O(k™) different partitions. Each iteration takes O(nm)
time. There are n/m U;s, so for each partition of W, the algorithm takes time
O(n%k™). Since there are k™ different partitions of W, the total running time
of the algorithm is O(n%k®™) = O(nzeo(s% Iog(%))). This gives us the following
theorem:

THEOREM 22. For any & € [0,1], using € = g, Algorithm Divide&Choose

1 1
runs in time O(nzeo(@ Io‘9’(3))) and with probability at least 1 — g produces a
clustering with number of agreements at least OPT — dn2.

journal -new. tex; 31/10/2003; 1:25; p.21

22 Nikhil Bansal, Avrim Blum and Shuchi Chawla

6. Random noise

Going back to our original motivation, if we imagine there is some true cor-
rect clustering OPT of our n items, and that the only reason this clustering
does not appear perfect is that our function f(A,B) used to label the edges
has some error, then it is natural to consider the case that the errors are
random. That is, there is some constant noise rate v < 1/2 and each edge,
independently, is mislabeled with respect to OPT with probability v. In the
machine learning context, this is called the problem of learning with random
noise. As can be expected, this is much easier to handle than the worst-case
problem. In fact, with very simple algorithms one can (w.h.p.) produce a
clustering that is quite close to OPT, much closer than the number of dis-
agreements between OPT and f. The analysis is fairly standard (much like
the generic transformation of Kearns (1993) in the machine learning context,
and even closer to the analysis of Condon and Karp for graph partitioning
(Condon and Karp, 1999)). In fact, this problem nearly matches a special case
of the planted-partition problem of McSherry (2001). We present our analysis
anyway since the algorithms are so simple.

One-sided noise: As an easier special case, let us consider only one-sided
noise in which each true “+” edge is flipped to “—" with probability v. In that
case, if u and v are in different clusters of OPT, then [N (u)NNT(v)| =0
for certain. But, if u and v are in the same cluster, then every other node
in the cluster independently has probability (1 —v)? of being a neighbor to
both. So, if the cluster is large, then N*(u) and N*(v) will have a non-empty
intersection with high probability. So, consider clustering greedily: pick an
arbitrary node v, produce a cluster C, = {u: [N*(u) "N*(v)| > 0}, and then
repeat on V —C,. With high probability we will correctly cluster all nodes
whose clusters in OPT are of size w(logn). The remaining nodes might be
placed in clusters that are too small, but overall the number of edge-mistakes
is only O(n).

Two-sided noise: For the two-sided case, it is technically easier to con-
sider the symmetric difference of N*(u) and N*(v). If u and v are in the
same cluster of OPT, then every node w ¢ {u,v} has probability exactly
2v(1 —v) of belonging to this symmetric difference. But, if u and v are in
different clusters, then all nodes w in OPT(u) U OPT(v) have probability
(1—v)2+v?=1-2v(1—v) of belonging to the symmetric difference. (For
w & OPT(u) UOPT(v), the probability remains 2v(1 —v).) Since 2v(1—v)
is a constant less than 1/2, this means we can confidently detect that u and
v belong to different clusters so long as |OPT(u) UOPT(v)| = w(+/nlogn).
Furthermore, using just [N*(v)|, we can approximately sort the vertices by
cluster sizes. Combining these two facts, we can w.h.p. correctly cluster all

journal -new. tex; 31/10/2003; 1:25; p.22

Correlation Clustering 23

vertices in large clusters, and then just place each of the others into a cluster
by itself, making a total of O(n%/?) edge mistakes.

7. Extensions

So far in the paper, we have only considered the case of edge weights in
{+,—}. Now we consider real valued edge weights. To address this setting,
we need to define a cost model — the penalty for placing an edge inside or
between clusters.

One natural model is a linear cost function. Specifically, let us assume that
all edge weights lie in [—1,+1]. Then, given a clustering, we assign a cost of
1% if an edge of weight x is within a cluster and a cost of 15X if it is placed
between two clusters. For example, an edge weighing 0.5 incurs a cost of
0.25 if it lies inside a cluster and 0.75 otherwise. A O—weight edge, on the
other hand, incurs a cost of 1/2 no matter what.

Another natural model is to consider weighted disagreements. That is, a
positive edge incurs a penalty equal to its weight if it lies between clusters,
and zero penalty otherwise, and vice versa for negative edges. The objective
in this case is to minimize the sum of weights of positive edges between
clusters and negative edges inside clusters. A special case of this problem
is edge weights lying in {—1,0,+1}. Zero-weight edges incur no penalty,
irrespective of the clustering, and thus can be thought of as missing edges.

In this section we show that our earlier results generalize to the case of
linear cost functions for the problem of minimizing disagreements. However,
we do not have similar results for the case of weighted disagreements or
agreements. We give evidence that this latter case is hard to approximate.

LINEAR COST FUNCTIONS

First we consider the linear cost function on [—1,+1] edges. It turns out,
as we show in the following theorem, that any algorithm that finds a good
clustering in a graph with +1 or —1 edges also works well in this case.

THEOREM 23. Let A be an algorithm that produces a clustering on a graph
with +1 and —1 edges with approximation ratio p. Then, we can construct an
algorithm A’ that achieves an approximation ratio of (2p+1) on a[—1,1]—graph,
under a linear cost function.

Proof: Let G be a [—1,1]—graph, and let G’ be the graph with +1 and —1
edges obtained when we assign a weight of 1 to all positive edges in G and
—1 to all the negative edges (0 cost edges are weighted arbitrarily). Let OPT
be the optimal clustering on G and OPT’ the optimal clustering on G'. Also,

journal -new. tex; 31/10/2003; 1:25; p.23

24 Nikhil Bansal, Avrim Blum and Shuchi Chawla

let m" be the measure of cost (on G’) in the {+,—} penalty model and m in
the new [—1,1] penalty model.

Then, My < Mopr < 2Mopr. The first inequality follows by design. The
latter inequality holds because the edges on which OPT occurs a greater
penalty in m’ than in m are either the positive edges between clusters or
negative edges inside a cluster. In both these situations, OPT incurs a cost
of at least 1/2 in m and at most 1 in m’.

Our algorithm A’ simply runs A on the graph G’ and outputs the resulting
clustering A. So, we have, mj < pm < 2pMopr.

Now we need to bound ma in terms of m/y. Notice that, if a positive edge
lies between two clusters in A, or a negative edge lies inside a cluster, then the
cost incurred by A for these edges in m’ is 1 while it is at most 1 in m. So, the
total cost due to such mistakes is at most m),. On the other hand, if we con-
sider cost due to positive edges inside clusters, and negative edges between
clusters, then OPT also incurs at least this cost on those edges (because cost
due to these edges can only increase if they are clustered differently). So cost
due to these mistakes is at most mopr.

So we have,

ma < mf/_\-l-mopT < 2pMopT + Mopt
= (2p+1)mopr

O

Interestingly, the above theorem holds generally for a class of cost func-
tions that we call unbiased. An unbiased cost function assigns a cost of at
least % to positive edges lying between clusters and negative edges inside

clusters, and a cost of at most % otherwise. A 0—weight edge always incurs

a cost of % as before. For example, one such function is % if an edge of

weight x lies between clusters and % otherwise.

WEIGHTED AGREEMENTS/DISAGREEMENTS

Next we consider minimizing weighted disagreements or maximizing weighted
agreements. Consider first, the special case of edge weights lying in {—1,0,+1}.
Notice that, as before, if a perfect clustering exists, then it is easy to find it, by
simply removing all the — edges and producing each connected component
of the resulting graph as a cluster. The random case is also easy if defined
appropriately. However, our approximation techniques do not appear to go
through. We do not know how to achieve a constant-factor, or even logarith-
mic factor, approximation for minimizing disagreements. Note that we can
still use our Divide & Choose algorithm to achieve an additive approximation
of en? for agreements. However, this does not imply a PTAS in this variant,
because OPT might be o(n?).

journal -new tex; 31/10/2003; 1:25; p.24

Correlation Clustering 25

Now, suppose we allow arbitrary real-valued edge weights, lying in [—co, 4-co].
For example, the edge weights might correspond to the log odds of two
documents belonging to the same cluster. It is easy to see that the problem
of minimizing disagreements for this variant is APX-hard, by reducing the
problem of minimum multiway cut to it. Specifically, let G be a weighted
graph with special nodes vy, ---,vk. The problem of minimum multiway cut
is that of finding the smallest cut that separates these special nodes. This
problem is known to be APX-hard (Garey and Johnson, 2000). We convert
this problem into a disagreement minimization problem as follows: among
each pair of special nodes v; and vj, we put an edge of weight —co. Then,
notice that any clustering algorithm will definitely put each of vq,---, vy into
separate clusters. The number (or total weight) of disagreements is equal to
the value of the cut separating the special nodes. Thus, any algorithm that
achieves an approximation ratio of p for minimizing disagreements, would
achieve an approximation ratio of p for minimum multiway cut problem. We
get the following:

THEOREM 24. The problem of minimizing disagreements on weighted graphs
with unbounded weights is APX-hard.

Note that the above result is pretty weak. It does not preclude the possi-
bility of achieving a constant approximation, similar to the one for {+,—}-
weighted graphs. However we have reason to believe that unlike before, we
cannot obtain a PTAS for maximizing agreements in this case. We show
that a PTAS for maximizing agreements gives a polynomial time procedure
for O(n®) coloring a 3 — colorable graph. While it is unknown whether this
problem is NP-Hard, the problem is well-studied and the best known result
is due to Blum and Karger (1997), who give a polynomial time algorithm to
O(n%14) color a 3-colorable graph.

THEOREM 25. Given a PTAS for the problem of maximizing agreements,
we can use the algorithm to obtain an algorithm for O(n¢) coloring a 3 —
colorable graph, for any € > 0.

Proof: Let G = (V,E) be a 3 colorable graph, and let m= |[E| and n = |V|.
Let K be an n vertex complete graph obtained from G as follows: an edge e
of K has weight —1 if e is an edge in G, and has a positive weight of dm/ (2)
otherwise. Here & is a parameter to be specified later.

If we choose each color class as a cluster, it is easy to see that the result-
ing clustering agrees on the m negative weight edges and on at least 3(”43)
positive weight edges. Thus the total weight of agreements in the optimal
clustering is at least m(1+ &/3). Let us invoke the PTAS for maximizing
agreements with € = 8/30, then we obtain a clustering which has cost of
agreements at least m(1+/3)/(1+4&/30) > m(1+9/5).

journal -new. tex; 31/10/2003; 1:25; p.25

26 Nikhil Bansal, Avrim Blum and Shuchi Chawla

We now claim that the size of largest cluster is at least n/5. Suppose not.

Then the weight of positive agreements can be at most - o . 5. /%) which is
() 2
2

about dm/5. Since the total weight of negative edges is m, the total weight of
agreements for the clustering cannot be more than m(1+ 6/5), violating the
guarantee given by the PTAS. Hence, there exists a cluster of size at least n/5
in this clustering. Call this cluster C.

Now observe that since the PTAS returns a clustering with at least (1 +
0/5)m agreements, and the total weight of all positive edges is at most dm,
the total weight of negative agreements is at least (1 — 4—55)m. This implies that

C contains at most %m negative weight edges. Thus the density of negative
weight edges in C is at most 2 /("/%) ~ 203 - % That is, the cluster C has

2
an edge density of at most about 200 times that of G and size at least n/5.
We can now apply this procedure recursively to C (since C is also 3-
1

colorable). After 2log,n such recursive steps, where b = 55, we obtain a

set of density at most 1/n? times that of C (and hence independent). Call this
independent set |. Note that the size of | is at least n/(52'°%"). Choosing &

such that b = 5%/¢ it is easy to verify that | has size at least n1%.

Now we can remove | from G and iterate on G —1 (since G — 1 is also
3-colorable). It is easy to see that this procedure gives an O(n®) coloring of
G. O

8. Conclusions

In this paper, we have presented a constant-factor approximation for minimiz-
ing disagreements, and a PTAS for maximizing agreements, for the problem
of clustering vertices in a fully-connected graph G with {+,—} edge labels.
In Section 7 we extended some of our results to the case of real-valued la-
bels, under a linear cost metric. As mentioned before, an interesting open
question is to construct good approximations for minimizing agreements and
maximizing agreements for the case of edge weights lying in {—1,0,+1}, or
to prove hardness of approximation for this case. Another interesting ques-
tion is to determine whether the lower bound given by erroneous triangles is
tight to within a small constant factor °. Such a fact might lead to a better
approximation for minimizing disagreements.

5 Interestingly, we were unable to come up with an example for which this factor is larger
than 2. The latter is achieved in a star-like topology where all edges incident to a “root” vertex
are positive and all other edges are negative.

journal -new. tex; 31/10/2003; 1:25; p.26

Correlation Clustering 27
8.1. SUBSEQUENT WORK

Following the initial publication of this work, several better approximations
and lower bounds have been developed for minimizing disagreements and
maximizing agreements for general weighted graphs. Immorlica et. al. (2003)
and Emanuel et. al. (2003) independently developed log-factor approxima-
tions for the problem of minimizing disagreements. The latter show that this
problem is equivalent to the minimum multiway cut problem. The approxi-
mation for minimizing disagreements in the unweighted case was improved
to a factor of 4 by Charikar, Guruswami and Wirth (2003). They also give
a 0.7664-approximation for maximizing agreements in a general weighted
graph, which was recently improved to 0.7666 by Swamy (2004). Charikar
et. al. also improve our hardness of approximation result for minimizing dis-
agreements to 29/28, and give a hardness of approximation of 115/116 for
maximizing agreements.

Acknowledgements

We are grateful to William Cohen and Andrew McCallum for introducing us
to the problem and for several useful discussions.

References

Alon, N., E. Fischer, M. Krivelevich, and M. Szegedy: 1999, ‘Efficient testing of large graphs’.
In: Proceedings of the 40th Annual Symposium on Foundations of Computer Science. pp.
645—655.

Alon, N. and J. H. Spencer: 1992, The Probabilistic Method. John Wiley and Sons.

Arora, S., A. Frieze, and H. Kaplan: 1996, ‘A New Rounding Procedure for the Assignment
Problem with Applications to Dense Graph Arrangements’. In: Proceedings of the 37th
Annual Symposium on Foundations of Computer Science. pp. 21-30.

Arora, S., D. Karger, and M. Karpinski: 1995, ‘Polynomial time approximation schemes
for dense instances of NP-Hard problems’. In: Proceedings of the 27nd Annual ACM
Symposium on Theory of Computing.

Ben-David, S., P. M. Long, and Y. Mansour: 2001, ‘Agnostic boosting’. In: Proceedings of
the 2001 Conference on Computational Learning Theory. pp. 507-516.

Blum, A. and D. Karger: 1997, ‘An O(n%14)-Coloring Algorithm for 3-Colorable Graphs’.
IPL: Information Processing Letters 61.

Charikar, M. and S. Guha: 1999, ‘Improved combinatorial algorithms for the facility location
and k-median problems’. In: Proceedings of the 40th Annual Symposium on Foundations
of Computer Science.

Charikar, M., V. Guruswami, and A. Wirth: 2003, ‘Clustering with Qualitative Information’.
In: Proceedings of the 44th Annual Symposium on Foundations of Computer Science. pp.
524-533.

Cohen, W. and A. McCallum: 2001, ‘Personal communication’.

journal -new. tex; 31/10/2003; 1:25; p.27

28 Nikhil Bansal, Avrim Blum and Shuchi Chawla

Cohen, W. and J. Richman: 2001, ‘Learning to match and cluster entity names’. In: ACM
SIGIR’01 workshop on Mathematical/Formal Methods in IR.

Cohen, W. and J. Richman: 2002, ‘Learning to match and cluster large high-dimensional
data sets for data integration’. In: Eighth ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining (KDD).

Condon, A. and R. Karp: 1999, ‘Algorithms for graph partitioning on the planted partition
model’. Random Structures and Algorithms 18(2), 116—140.

de la Vega, F.: 1996, ‘MAX-CUT has a Randomized Approximation Scheme in Dense
Graphs’. Random Structures and Algorithms 8(3), 187—198.

Demaine, E. and N. Immorlica: 2003, ‘Correlation Clustering with Partial Information’. In:
Proceedings of APPROX.

Emanuel, D. and A. Fiat: 2003, ‘Correlation Clustering—Minimizing Disagreements on
Arbitrary Weighted Graphs’. In: Proceedings of ESA.

Garey, M. and D. Johnson: 2000, Computers and Intractability: A Guide to the Theory of
NP-Completeness. W. H. Freeman and Company.

Goldreich, O., S. Goldwasser, and D. Ron: 1998, ‘Property testing and its connection to
learning and approximation’. JACM 45(4), 653—750.

Hochbaum, D. and D. Shmoys: 1986, ‘A unified approach to approximation algorithms for
bottleneck problems’. JACM 33, 533-550.

Jain, K. and V. Vazirani: 1999, ‘Primal-dual approximation algorithms for metric facility
location and k-median problem’. In: Proceedings of the 40th Annual Symposium on
Foundations of Computer Science.

Kearns, M.: 1993, ‘Efficient Noise-Tolerant Learning from Statistical Queries’. In: Proceed-
ings of the 25th Annual ACM Symposium on Theory of Computing. pp. 392—401.

Kearns, M. J., R. E. Schapire, and L. M. Sellie: 1994, “Toward efficient agnostic learning’.
Machine Learning 17(2/3), 115-142.

McSherry, F.: 2001, ‘Spectral Partitioning of Random Graphs’. In: Proceedings of the 42th
Annual Symposium on Foundations of Computer Science. pp. 529-537.

Parnas, M. and D. Ron: 1999, ‘Testing the diameter of graphs’. In: Proceedings of RANDOM.
pp. 85-96.

Schulman, L.: 2000, ‘Clustering for edge-cost minimization’. In: Proceedings of the 32nd
Annual ACM Symposium on Theory of Computing. pp. 547-555.

Swamy, C.: 2004, ‘Correlation Clustering: Maximizing Agreements via Semidefinite Pro-
gramming’. In: Proceedings of the Symposium on Discrete Algorithms.

journal -new. tex; 31/10/2003; 1:25; p.28

