
A SPREADSHEET MODEL FOR
USING WEB SERVICES AND CREATING
DATA-DRIVEN APPLICATIONS
	
	
KERRY SHIH-PING CHANG
April	2016	 	
	
Human-Computer	Interaction	Institute	
School	of	Computer	Science	
Carnegie	Mellon	University	
Pittsburgh,	Pennsylvania	15213	
	
kerrychang@cs.cmu.edu	
http://kerrychang.net	
	
	
	
	
COMMITTEE
Brad	A.	Myers	(Chair),	Carnegie	Mellon	University	
Niki	Kittur,	Carnegie	Mellon	University	
John	Zimmerman,	Carnegie	Mellon	University	
Margaret	M.	Burnett,	Oregon	State	University	
	
	 	

KERRY CHANG	|	Dissertation	 2

ABSTRACT
Web	services	have	made	many	kinds	of	data	and	computational	services	available.	
However,	to	use	web	services	often	requires	significant	programming	efforts	and	
thus	limits	the	people	who	can	take	advantage	of	them	to	only	a	small	group	of	
skilled	programmers.	In	this	dissertation,	I	will	present	a	tool	called	Gneiss	that	
extends	the	spreadsheet	model	to	support	four	challenging	aspects	of	using	web	
services:	programming	two-way	data	communications	with	web	services,	creating	
interactive	GUI	applications	that	use	web	data	sources,	using	hierarchical	data,	and	
using	live	streaming	data.	Gneiss	contributes	innovations	in	spreadsheet	languages,	
spreadsheet	user	interfaces	and	interaction	techniques	to	allow	programming	tasks	
that	currently	require	writing	complex,	lengthy	code	to	instead	be	done	using	
familiar	spreadsheet	mechanisms.	Spreadsheets	are	arguably	the	most	successful	
and	popular	data	tools	among	people	of	all	programming	levels.	This	work	advances	
the	use	of	spreadsheets	to	new	domains	and	could	benefit	a	wide	range	of	users	
from	professional	programmers	to	end-user	programmers.			
	
	 	

KERRY CHANG	|	Dissertation	 3

CHAPTER 1 INTRODUCTION
We	live	in	a	world	of	digital	data	where	all	kinds	of	public	and	personal	data	are	
stored	in	cloud	databases	and	can	be	accessed	through	the	Internet.	While	some	
data	are	presented	in	the	form	of	web	pages,	many	data	sources	have	also	provided	
web	services	that	let	people	use	their	data	programmatically.	Web	services	offer	a	
more	efficient	and	reliable	way	to	collect	online	data	than	scraping	web	pages.	Some	
web	services	not	only	provide	data	but	also	computational	services	that	can	analyze	
user	data	using	powerful	cloud	computing	backend.	As	a	result,	web	services	have	
become	the	major	way	for	people	to	create	custom	applications	or	to	do	custom	data	
analyses	using	the	cloud	or	data	in	the	cloud.		
	

1.1 THE POPULARITY OF WEB DATA SERVICES, AND THE CHANLLENGES
Today,	a	person	can	find	almost	any	type	of	data	provided	by	at	least	one	web	
service.	For	example,	Google	provides	web	services	to	a	variety	of	data	including	
public	data	such	as	web	search	results,	videos,	places,	real-time	data	such	as	finance	
and	traffic	information,	and	even	personal	data	such	as	calendars;	Twitter	and	
Facebook	provide	web	services	to	social	network	data;	Zillow	provides	web	services	
to	real	estate	data;	Rotten	Tomatoes	and	Last.fm	provide	web	services	to	movie	and	
music	data;	ESPN	provides	web	services	to	sport	data;	and	Nike	Plus	provides	web	
services	to	personal	health	data	collected	by	wearable	devices.	Some	web	services	
provide	the	ability	to	transform	or	analyze	the	received	user	data.	For	example,	
GeoNames’	web	service	accepts	geo	coordinates	and	turns	them	into	country	codes	
and	postal	codes.	Amazon	provides	Machine	Learning	API	that	lets	users	run	
machine	learning	algorithms	on	their	data.	As	of	March	2016,	
ProgrammableWeb.com	lists	over	14,543	web	services	in	over	400	categories,	and	
over	6,250	custom	applications	that	use	those	web	services.	
	
The	amount	of	web	data	services	continuously	increases.	However,	currently	only	a	
small	group	of	people	can	freely	take	advantage	of	those	services	because	using	
them	often	requires	significant	programming	efforts.	A	person	needs	to	write	code	
to	send	API	calls	over	the	Internet,	parse	the	return	data	and	manipulate	it	into	the	
correct	form	to	create	desired	analyses	and	presentations.	For	professional	
programmers,	writing	the	necessary	code	to	do	these	things	could	be	tedious,	error-
prone	and	requires	significant	effort	and	learning	[96].	For	other	people,	the	
programming	barriers	are	often	too	difficult	to	overcome,	so	they	would	either	give	
up	or	try	to	find	professional	programmers	to	help,	which	can	be	costly	and	time-
consuming	[57].		
	

KERRY CHANG	|	Dissertation	 4

1.2 AN APPROACH: SPREADSHEET PROGRAMMING
My	dissertation	focuses	on	extending	familiar	spreadsheet	programming	to	facilitate	
the	use	of	online	data	and	data	services.	The	reason	for	choosing	spreadsheets	is	
obvious:	spreadsheets	are	the	most	successful	and	pervasive	data	tool.	They	are	
popular	among	users	of	all	programming	levels	[69].	The	spreadsheet’s	table	
interface,	its	language	syntax,	functions	and	its	live	programming	have	been	shown	
to	be	friendly	to	learn	and	use	especially	for	end-user	programmers	(EUPs)	[69].	
Features	in	the	conventional	spreadsheet	model	have	been	used	by	millions	of	
people	throughout	the	years	and	many	usability	problems	have	been	removed.	
Leveraging	this	model	and	extending	it	to	support	new	programming	activities	
could	mean	having	a	higher	chance	of	success	and	making	a	greater	impact	through	
benefiting	the	spreadsheet’s	large	user	base,	ranging	from	professional	
programmers	and	data	analysts	to	end	users.		
	

1.3 GNEISS: A SPREADSHEET TOOL FOR USING ONLINE DATA
My	dissertation	presents	a	new	spreadsheet	model	that	supports	four	challenging	
aspects	of	using	web	services:	exchanging	data	with	web	data	services,	creating	
interactive	applications	that	use	web	services,	using	structural	hierarchical	data	such	
as	JSON	data,	and	using	live	streaming	data.	This	new	spreadsheet	model	is	realized	
in	an	interactive	programming	environment	that	I	created	called	Gneiss1	(Figure	
1.1).	Like	conventional	spreadsheets,	Gneiss	is	a	live	programming	tool	[81]	where	
new	values	are	distributed	throughout	the	program	and	reflected	in	the	output	as	
soon	as	the	user	makes	an	edit.	It	uses	a	“programming-with-example”	[64]	style	as	
it	allows	the	user	to	develop	programs	using	visible	example	values	from	real	data	
sources.	Gneiss	introduces	the	following	innovations:		
	

1.3.1 A MODEL FOR USING WEB DATA SERVICES
First,	my	dissertation	extends	spreadsheets	to	support	exchanging	data	with	web	
services.	To	use	web	service	data	otherwise	requires	a	programmer	to	write	
asynchronous	network	callbacks	to	send	API	requests	and	wait	for	the	returned	
data.	The	code	for	the	callbacks	is	often	lengthy	and	complicated	structurally	[70]	as	
the	return	of	a	request	could	trigger	other	requests	to	be	sent	or	cause	some	data	to	
be	recomputed.	The	programmer	also	needs	to	write	additional	code	to	parse	the	
returned	document	and	extract	the	desired	data.	Some	conventional	spreadsheets	
provide	functions	to	fetch	data	from	the	web	given	an	URL.	However,	the	returned	
document	is	put	into	a	single	cell	as	plain	text	and	becomes	almost	unreadable	and	
unusable.	Parsing	the	returned	data	requires	writing	non-spreadsheet	code.	There	is	
also	no	mechanism	to	send	spreadsheet	data	to	web	data	sources	besides	creating	

																																																								
1	Gneiss	(pronounced	the	same	as	“nice”)	is	a	kind	of	rock.	Here	it	stands	for	“Gathering	Novel	End-user	Internet	Services	
using	Spreadsheets”.	Publications,	demo	videos	and	the	source	code	of	Gneiss	can	be	found	at	

KERRY CHANG	|	Dissertation	 5

custom	spreadsheet	functions	using	non-spreadsheet	languages	(such	as	creating	an	
Excel	macro	using	Visual	Basic	for	Applications).			
	
Gneiss	provides	a	model	for	utilizing	data	from	arbitrary	REST	web	services	that	
allows	users	to	construct	two-way	data	flows	between	multiple	web	services	and	a	
spreadsheet	without	writing	conventional	code.	It	integrates	the	spreadsheet	
environment	with	a	“source	pane”	(Figure	1.1	at	1)	lets	users	execute	web	API	
requests	and	view	the	return	data.	Spreadsheet	languages	and	interaction	
techniques	replace	event	callbacks	and	query	languages	to	send	data	to	and	retrieve	
and	extract	data	from	web	services.	Gneiss	further	leverages	the	spreadsheet’s	
constraint	evaluation	to	handle	different	states	of	asynchronous	network	requests,	
enabling	independent	web	service	calls	to	run	in	parallel.	This	part	of	the	work	is	
described	in	Chapter	3.		
	

1.3.2 A MODEL FOR CREATING INTERACTIVE WEB DATA PPLICATIONS
One	of	the	common	uses	of	web	services	is	for	creating	custom	web	pages	or	web	
applications	that	use	online	data.	ProgrammableWeb.com	lists	over	6000	such	
applications.	Some	of	them	provide	new	search	features	such	as	aggregating	data	
from	multiple	sources,	and	some	of	them	provide	new	ways	to	understand	data	such	
as	sharing	new	data	analysis	results	and	visualizations.	Those	applications	usually	
have	many	interactive	features	to	let	users	perform	custom	operations	on	the	
backend	data,	such	as	setting	their	own	sorting	and	filtering	rules,	viewing	the	data	
in	visualizations,	and	have	the	content	dynamically	generated	based	on	the	user’s	
actions.	Creating	such	applications	would	require	a	programmer	to	write	a	lot	of	
JavaScript	code.	Current	spreadsheets	can	let	users	create	static	charts	and	graphs,	
but	they	do	not	support	programming	web	applications	that	use	web	data	sources	
and	have	custom	interactivity.			
	

	
Figure	1.1.	Gneiss’s	user	interface	consists	a	browser-like	source	pane	(1),	a	spreadsheet	editor	(2),	and	
a	web	interface	builder	(3).		

KERRY CHANG	|	Dissertation	 6

Gneiss	unifies	the	properties	of	the	elements	of	web	applications	with	the	
spreadsheet	model,	so	the	user	can	create	web	applications	that	dynamically	use	
and	present	spreadsheet	data	using	the	familiar	spreadsheet	languages.	It	extends	
the	spreadsheet	language	syntax	to	let	properties	of	a	GUI	element	created	in	a	web	
interface	builder	(Figure	1.1	at	3)	be	referenced	and	used	in	spreadsheet	formulas	in	
the	same	way	as	spreadsheet	cells,	allowing	the	user	to	program	two-way	data	
bindings	between	the	web	application	and	the	spreadsheet.	Instead	of	using	event-
based	(“push-based”)	programming,	it	contributes	a	way	to	program	interactivity	in	
web	applications	using	the	spreadsheet’s	equation-based	(“pull-based”)	evaluation	
model.	This	allows	users	to	program	data-related	interactive	behaviors	in	a	web	
application	such	as	retrieving	new	data	from	sources,	storing	user	inputs,	and	
interactively	sorting,	filtering	and	visualizing	data,	all	using	the	familiar	spreadsheet	
mechanisms.	This	part	of	work	is	described	in	Chapter	4.			
	

1.3.3 A MODEL FOR USING HIRARCHICAL DATA
After	users	acquire	data	from	web	services,	they	must	have	ways	to	properly	
manipulate	and	analyze	the	data,	or	the	data	will	not	be	useful	to	them.	The	majority	
of	modern	web	services	return	data	in	hierarchical	formats,	such	as	JSON	and	XML2.	
However,	current	spreadsheets	do	not	support	hierarchical	data	formats.	The	only	
way	to	use	a	JSON	or	XML	document	in	spreadsheets	is	to	convert	it	into	a	flat	table.	
But	this	method	would	inevitably	create	much	repetitive	data	in	the	table	because	
spreadsheets	have	no	notion	of	hierarchies.	Flat	tables	also	make	it	impossible	to	
select	and	manipulate	data	using	the	hierarchical	structure.		
	
My	dissertation	extends	the	
spreadsheet	model	to	support	
using	hierarchical	data,	defining	
how	hierarchical	objects	can	be	
shown	and	manipulated	in	
spreadsheets.	Instead	of	
removing	the	hierarchies	in	data	
to	flatten	it	to	a	table,	this	new	
spreadsheet	model	visualizes	
hierarchies	in	data	and	uses	
them	to	facilitate	data	
manipulation	and	exploration.	Under	this	model,	the	user	can	use	interaction	
techniques	to	reshape	(Figure	1.2),	regroup	or	join	hierarchical	objects	in	a	
spreadsheet.	This	model	also	extends	spreadsheet	languages,	sorting	and	filtering	to	
support	selecting	and	manipulating	data	by	its	hierarchies,	allowing	the	user	to	

																																																								
2	See	http://www.programmableweb.com/apis/directory.	 	

	
Figure	1.2.	Gneiss	visualizes	hierarchies	in	data	using	
nested	spreadsheet	cells	(1),	and	lets	users	
restructure	the	data	by	any	fields	by	drag-and-
dropping	a	column	to	a	different	location	(2	and	3).			

KERRY CHANG	|	Dissertation	 7

calculate	summaries	of	data	using	spreadsheet	formulas	without	the	need	of	pivot	
tables.	This	part	of	work	is	described	in	Chapter	5.	
	

1.3.4 A MODEL FOR USING STREAMING DATA
Streaming	data	is	another	type	of	online	data	that	has	become	increasing	popular.	
Data	like	weather,	traffic,	finance	information,	and	social	network	feeds	changes	live	
and	often	need	to	be	collected	and	analyzed	in	real-time.	While	there	are	many	
professional	programming	tools	(e.g.,	[3,32,97])	that	help	developers	in	getting	
streaming	data	from	data	sources	and	analyzing	them,	they	are	not	usable	by	end	
users.	There	are	plugins	for	conventional	spreadsheets	that	let	users	stream	data	
from	specific	data	sources	to	a	spreadsheet	(e.g.,	[83,98]).	But	end	users	are	not	able	
to	add	new	data	sources	to	use	in	those	plugins	by	themselves,	because	the	data	
sources	are	hardwired	in	by	developers.		
	
Gneiss’s	new	spreadsheet	model	provides	interaction	techniques	for	users	to	stream	
data	from	arbitrary	REST	web	services	to	a	spreadsheet.	It	shows	streaming	data	
using	live	columns	whose	length	grows	as	new	values	come	in,	enabling	users	to	
easily	program	live	analyses	using	spreadsheet	formulas.	This	model	also	introduces	
the	concept	of		“spreadsheet	cell	metadata”	that	allows	each	spreadsheet	cell	to	have	
metadata	that	describe	attributes	other	than	its	value,	such	as	the	value’s	fetch	time.	
Cell	metadata	can	be	used	to	manipulate	spreadsheet	data,	enabling	the	user	to	
manipulate	streaming	using	temporal	information	such	as	to	compute	the	average	
of	only	the	data	which	arrived	within	a	certain	time	period.	This	part	of	work	is	
described	in	Chapter	6.		
	

1.4 CONTRIBUTIONS
This	dissertation	contributes	a	new	spreadsheet	model	and	a	tool	that	implements	
this	model	to	facilitate	the	use	of	online	data.	Specifically,	this	dissertation	
contributes:		
	

• A	spreadsheet	language	to	send	data	in	arbitrary	spreadsheet	cells	to	
arbitrary	REST	web	services	(Chapter	3).	

• An	interaction	technique	to	extract	or	stream	arbitrary	fields	in	structured	
data	returned	from	web	services	to	spreadsheet	columns	(Chapters	3	and	6).	

• An	extension	to	spreadsheets	to	support	sorting	and	filtering	dynamic	values	
returned	from	web	services	(Chapter	3).		

• An	extension	to	spreadsheet’s	autofilling	gesture	for	sending	similar	web	API	
requests	by	example	(Chapter	3).		

• A	spreadsheet	language	to	program	data	bindings	between	web	GUI	
elements	and	a	spreadsheet	(Chapter	4).		

KERRY CHANG	|	Dissertation	 8

• As	a	result	of	the	above	contributions,	my	dissertation	contributes	a	
spreadsheet	environment	that	supports	constructing	two-way	data	flows	
among	REST	web	data	services,	web	applications	and	spreadsheets.			

• An	extension	to	spreadsheets	to	allow	the	sorting	and	filtering	rules	to	be	
computed	from	web	GUI	controls	and	spreadsheet	cells	(Chapter	4).		

• Dynamic	web	GUI	elements	that	can	be	shown	and	hidden	at	run	time	based	
on	the	data	in	the	spreadsheet	(Chapter	4).	

• An	extension	to	spreadsheet’s	autofilling	gesture	for	referencing	dynamic	
web	GUI	elements	in	spreadsheet	formulas	(Chapter	4).		

• A	framework	for	programing	interactive	behaviors	in	web	applications	using	
spreadsheet’s	equation-based	syntax	(Chapter	4).		

• A	method	to	dynamically	visualize	hierarchical	data	in	spreadsheets	based	on	
the	hierarchical	relationship	among	columns	(Chapter	5).	

• Interaction	techniques	to	reshape,	regroup	and	join	hierarchical	data	in	a	
spreadsheet	(Chapter	5).		

• A	method	to	connect	multiple	hierarchical	objects	by	common	fields	without	
flattening	the	objects	(Chapter	5).		

• A	spreadsheet	language	for	using	hierarchical	data	in	spreadsheet	formulas,	
allowing	the	user	to	calculate	summaries	of	data	without	using	pivot	tables	
(Chapter	5).	

• Evidence	from	a	lab	study	which	showed	that	Gneiss	helped	spreadsheet	
users	explore	and	analyze	hierarchical	datasets	significantly	faster	than	Excel	
and	than	programmers	writing	JavaScript	or	Python	code	(Chapter	5).		

• A	method	for	visualizing	streaming	data	in	spreadsheets	(Chapter	6).	
• A	design	for	spreadsheet	cell	metadata	that	records	attributes	of	a	cell’s	

value,	such	as	a	cell’s	provenance	and	fetched	time	(Chapter	6).	
• New	spreadsheet	functions	that	can	access	a	cell’s	metadata	and	select	cells	

using	their	metadata	(Chapter	6)	
• An	extension	to	spreadsheet’s	sorting	and	filtering	mechanisms	to	support	

manipulating	spreadsheet	cells	using	their	metadata,	such	as	to	sort	and	
filter	a	column	using	temporal	information	(Chapter	6).		

	

1.5 THESIS STATEMENT
My	thesis	statement	is:	
	

A	new	spreadsheet	model	can	enable	spreadsheet	users	to	program	
interactive	web	applications	and	data	analyses	that	use	hierarchical	data	and	
streaming	data	from	web	services.		
	

To	evaluate	this	statement,	I	used	Gneiss	to	create	a	series	of	example	applications	
to	demonstrate	the	ability	and	range	of	this	spreadsheet	model.	Those	examples	are	
described	in	Sections	3.3,	3.5,	4.2,	4.4,	5.2,	5.4,	6.2	and	6.4.		

KERRY CHANG	|	Dissertation	 9

	
I	also	conducted	a	lab	study	where	I	recruited	intermediate	spreadsheet	users	who	
are	not	professional	programmers	to	use	Gneiss	or	Excel	to	analyze	hierarchical	
JSON	documents.	In	the	same	study	I	also	recruited	professional	programmers	to	
write	JavaScript	or	Python	to	analyze	the	same	data.	On	average,	Gneiss	helped	
spreadsheet	users	complete	study	tasks	almost	two	times	faster	than	Excel,	and	they	
even	outperformed	professional	programmers	in	most	tasks.	The	study	is	described	
in	Section	5.5.		
	

1.6 OUTLINE
The	rest	of	the	dissertation	is	organized	as	follows:	Chapter	2	is	related	work.	
Chapter	3	describes	how	Gneiss	supports	using	web	services.	Chapter	4	describes	
how	Gneiss	supports	creating	data-driven	applications.	Chapter	5	describes	how	
Gneiss	supports	using	hierarchical	data.	Chapter	6	describes	how	Gneiss	supports	
using	streaming	data.	Chapter	7	describes	the	implementation	and	architecture	of	
Gneiss.	Chapter	8	discusses	the	future	directions	for	this	research.	Chapter	9	
concludes	this	dissertation	by	revisiting	its	contributions.			
	
	
	 	

KERRY CHANG	|	Dissertation	 10

CHAPTER 2 RELATED WORK
This	dissertation	is	motivated	by	research	in	spreadsheet	programming	and	end-
user	programming.	It	is	also	related	to	professional	and	end-user	tools	for	using	
web	services,	hierarchical	data,	streaming	data	and	programming	data-driven	web	
applications.		
	

2.1 MOTIVATING RESEARCH
This	dissertation	presents	a	new	spreadsheet	model	for	using	online	data.	Upon	
reading	this,	one	might	ask	two	questions:	First,	why	spreadsheets?	Second,	who	
will	benefit	from	having	this	spreadsheet	model?		
	

2.1.1 WHY SPREADSHEET PROGRAMMING?
The	success	of	spreadsheet	programming	has	been	a	subject	of	studies	in	many	
publications.	Here	I	discuss	three	characteristics	of	spreadsheets	that	inspire	the	
design	and	creation	of	Gneiss.	Those	are	the	directness	and	liveness	of	spreadsheet	
programming,	and	the	modularity	of	spreadsheets	that	may	be	extended	to	support	
creating	templates	for	data-driven	applications.		
	
Much	research	attributed	the	ease	of	learning	and	use	of	spreadsheet	programming	
to	the	directness	of	both	its	language	[69]	and	its	programming	interface	[11,42,78].	
Nardi	[69]	observed	that	the	formula-based	syntax	was	straightforward	to	users	
familiar	with	numerical	manipulation,	and	the	spreadsheet	functions	provided	a	
direct	way	for	people	to	perform	high-level	operations	without	having	to	attend	to	
low-level	programming	details,	allowing	users	to	focus	on	the	task	at	hand.	An	
example	described	by	Nardi	was	to	calculate	the	sum	of	a	list	of	values:	instead	of	
having	to	initialize	a	variable	and	write	a	for	loop	to	add	up	items	in	an	array	
manually,	in	spreadsheets	the	user	could	do	so	by	simply	typing	something	like	
=SUM(A1:A10)in	a	spreadsheet	cell.	The	spreadsheet	interface	is	a	visual	
programming	environment	[64].	Unlike	in	many	professional	languages	such	as	Java	
or	Python	where	the	data	is	hidden,	in	spreadsheets	the	users	can	directly	see	the	
data	while	programming.	The	spreadsheet	interface	supports	many	direct	
manipulation	techniques	[78]	to	let	people	manipulate	spreadsheet	data	without	
writing	code,	such	as	the	autofilling	(select-and-drag)	gesture	to	fill	in	spreadsheet	
cells	based	on	examples.		
	
I	chose	to	extend	the	spreadsheet	model	with	the	goal	of	bringing	this	directness	of	
spreadsheet	programming	into	other	data-related	programming	activities,	such	as	
analyzing	more	kinds	of	data	and	creating	data-driven	applications.	Often	times	
when	programming	applications	that	use	databases,	the	developers	have	to	work	
with	dynamic	data	–	they	do	not	have	the	actual	data	and	cannot	see	the	data	when	

KERRY CHANG	|	Dissertation	 11

writing	code,	as	the	data	are	retrieved	by	the	users	at	run	time.	In	contrast,	
spreadsheets	allow	me	to	create	a	visual	environment	where	users	can	use	visible	
example	data	to	construct	the	computation	logic	and	the	look	of	the	program.	I	was	
also	able	to	leverage	spreadsheet	languages	and	interaction	techniques	to	avoid	
writing	lower-level,	non-task-related	code	in	my	system.	For	example,	in	Gneiss	the	
programmer	can	type	the	formula	=IF(Checkbox1!Checked, “Descending”,
“Ascending”)	into	the	formula	textbox	in	a	sort	widget	to	create	the	interactive	
behavior	of	sorting	a	list	of	data	by	checking	a	checkbox	in	a	web	page.	In	contrast,	
in	JavaScript,	the	programmer	would	have	to	declare	an	event	handler	for	the	
checkbox,	and	write	functions	or	loops	to	sort	the	data	inside	the	handler.	Another	
example	is	extending	the	drag-and-drop	gesture	to	reshape	a	JSON	object	that	
currently	requires	writing	multiple	(and	often	nested)	loops	to	traverse	through	the	
object	and	change	its	structure.		
	
The	spreadsheet	is	also	a	live	programming	environment.	It	provides	immediate	
visual	feedback	to	the	programmers	after	they	make	an	edit	[11,13,81].	Research	
has	shown	that	live	programming	environments	allow	developers	to	quickly	switch	
between	editing	and	testing	a	program	and	help	them	find	and	fix	bugs	more	quickly	
[52].	For	using	online	data,	the	live	nature	of	spreadsheets	provides	an	opportunity	
for	handling	streaming	data	sources	that	change	live.	It	also	allows	the	applications	
created	to	be	interactive	by	default.	In	many	examples	described	in	this	dissertation,	
the	user	takes	advantages	of	Gneiss’	live	programming	environment	not	just	to	test	
or	debug	their	programs	but	also	to	retrieve	new	data	that	they	need	in	an	
interactive	manner.			
	
Finally,	conventional	spreadsheets	have	a	known	way	to	be	modularized	and	
reused–	through	spreadsheet	templates.	Spreadsheet	templates	have	been	widely	
used	by	people	to	share	expert	knowledge	[68]	and	avoid	errors	[1].	In	web	
programming,	HTML	and	CSS	templates	are	common	ways	for	novice	programmers	
to	reuse	the	look	of	a	web	page	in	a	WISIWIG	editor.	However,	HTML	and	CSS	
templates	can	only	support	very	limited	interactivities	(namely,	hyperlinks	and	
hovering)	and	cannot	handle	dynamic	data	from	databases.	Developers	need	to	go	
back	to	a	text	editor	to	write	JavaScript	code	to	program	those	behaviors.		
	
By	extending	spreadsheets	to	support	programming	data	bindings	between	
frontend	user	interfaces	and	backend	data	sources,	my	dissertation	opens	the	
possibility	to	reuse	data-related	interactive	behaviors	in	the	form	of	a	spreadsheet	
template	that	can	be	used	in	a	live	visual	programming	environment.	Many	database	
applications	people	use	daily	have	common	interactive	behaviors,	such	as	searching	
the	database	through	a	textbox,	sorting	and	filtering	the	data	using	checkboxes	and	
sliders,	and	changing	between	a	list	view	and	a	map	view	[17].	One	can	imagine	such	
a	web	application	becoming	a	template	in	Gneiss	with	a	HTML/CSS	template	in	the	
web	interface	builder	at	the	right	for	the	look	of	the	application,	and	a	spreadsheet	

KERRY CHANG	|	Dissertation	 12

template	in	the	middle	that	has	all	the	computation	logic	of	how	the	data	should	be	
connected	to	and	manipulated	by	the	web	elements.	Users	can	easily	swap	the	data	
sources	used	in	the	spreadsheet	to	make	the	application	their	own,	such	as	
connecting	to	a	different	web	service	or	importing	a	local	file.	This	idea	is	inspired	
by	prior	spreadsheet	tools	that	support	creating	and	reusing	custom	GUI	objects	and	
interactive	behaviors,	such	as	Forms/3	[11]	and	InterState	[71].	But	I	would	argue	
that	the	spreadsheet	reuse	in	Gneiss	would	be	the	kind	that	is	more	familiar	to	
spreadsheet	users	–	that	is,	applying	a	template	to	manipulate	their	own	data.		
	

2.1.2 END-USER PROGRAMMERS
To	answer	the	second	question,	“who	will	benefit	from	this	research”,	I	review	prior	
literature	on	end-user	programmers.	By	leveraging	the	spreadsheet	model,	this	
research	aims	to	provide	a	more	intuitive	way	of	programming	to	support	using	and	
publishing	data	on	the	web	and	thus	bring	the	ability	to	do	these	things	to	end-user	
programmers	(although	professional	programmers	may	benefit	as	well).		
	
Myers	et	al.	[61]	defined	end-user	programmers	as	“people	who	write	programs,	but	
not	as	their	primary	job	function	–	they	write	programs	in	support	of	achieving	their		
main	goal,	which	is	something	else,	such	as	accounting,	designing	web	pages,	office	
work,	scientific	research,	entertainment,	etc.”	Ko	et	al.	[50]	defined	end-user	
programmers	as	people	who	program	to	achieve	personal	goals,	not	to	create	
software	that	is	intended	to	be	used	by	the	public.	Nardi	[69]	described	end	users	as	
anyone	who	uses	computer	software.	End-user	programmers	are	people	who	
program	to	achieve	their	computational	needs,	but	are	not	interested	in	doing	
programming	for	a	living.	In	contrast,	professional	programmers	are	people	whose	
job	is	to	write	code	and	create	computer	software	for	other	people	to	use.	Scaffidi	et	
al.	[77]	estimated	that	in	2012	in	the	USA	there	were	over	13	million	end	users	who	
would	say	that	they	“do	programming”	at	work,	while	the	number	of	professional	
programmers	was	estimated	to	be	only	3	million.	
	
Based	on	these	definitions,	it	seems	incorrect	to	assume	that	end-user	programmers	
are	“‘novice’	or	‘naïve’	users”	[69].	It	has	more	to	do	with	a	person’s	intent	when	she	
programs,	instead	of	her	programming	experience.	In	fact,	studies	have	shown	that	
end-user	programmers	vary	greatly	in	programming	experience	[50,54,67].	For	
example,	Lawson	et	al.’s	study	[54]	of	about	1600	spreadsheet	users	in	multiple	
organizations	found	almost	the	same	amount	of	novice	spreadsheet	users	and	
expert	spreadsheet	users,	with	most	people	being	intermediate	users.	The	literature	
describes	end-user	programmers	as	people	who	have	strong	domain	knowledge,	
such	as	scientists	and	engineers	[31],	financial	analysts	[54]	and	teachers	[6].	Since	
programming	is	not	their	profession	but	rather	a	way	to	help	them	achieve	other	
personal	or	professional	goals,	end-user	programmers	often	prefer	to	use	domain-

KERRY CHANG	|	Dissertation	 13

specific	languages	(such	as	spreadsheets)	to	program	since	those	languages	are	
easier	for	them	to	learn	and	address	their	goals	more	directly	[61,69].		
	
My	dissertation	extends	the	spreadsheet	model	while	keeping	it	as	a	domain-
specific	tool	focusing	on	using	data.	Although	many	new	concepts	introduced	in	this	
dissertation	will	require	users	to	learn	and	practice	to	use	correctly,	prior	research	
has	shown	that	end	users	could	and	would	learn	programming	if	the	programming	
language	matches	closely	the	users’	domain	knowledge	and	their	interests	[69].	So	
to	identify	targeted	end-user	programmers,	I	argue	that	we	look	at	the	literature	on	
the	needs	of	end	users	for	programming	instead	of	their	programming	expertise	and	
if	they	were	able	to	learn	new	things.	After	all,	spreadsheets	have	been	shown	
particularly	friendly	to	learn,	as	discussed	in	section	2.1.1.	
	
Prior	research	shows	that	end	users	have	the	need	to	work	with	database	data.	For	
example,	Chambers	at	al.	[14]	analyzed	400	spreadsheets	randomly	selected	from	a	
nearly	4500	end-user	spreadsheet	corpus.	They	found	that	25%	of	the	spreadsheets	
were	exported	from	databases	for	end	users	to	use	and	analyze	in	Excel.	Scaffidi	et	
al.	[77]	estimated	that	in	2012	there	were	over	55	million	end	users	who	used	
spreadsheets	and	databases	at	work	in	the	USA.	Another	way	to	look	for	evidence	of	
this	is	to	look	at	the	large	amount	of	commercial	tools	that	help	end	users	construct	
SQL	queries	in	a	GUI	and	export	the	data	as	spreadsheets	for	further	manipulation,	
such	as	Microsoft	Access’s	Query	Design	view	[99],	SQLyog	[100]	and	SQLeo	[101].	
This	dissertation	aims	to	help	those	spreadsheet/database	users.	Since	more	and	
more	web	databases	now	provide	hierarchical	data	(for	example,	MongoDB,	a	JSON	
database	popular	among	web	developers,	has	been	one	of	the	fastest	growing	
database	systems	in	recent	years3)	and	streaming	data,	extending	current	end-user	
data	tools	(such	as	spreadsheets)	to	support	these	new	data	types	could	have	great	
value.		
	
This	dissertation	also	presents	a	visual	environment	to	interactively	query	web	data	
sources	through	web	services	and	collect	data	in	a	familiar	spreadsheet	manner	that	
provides	many	ways	to	do	analysis	and	visualizations	on	the	data.	A	study	by	Van	
Kleek	et	al.	[49]	found	that	people	regularly	use	multiple	data	sources	on	the	
Internet	to	complete	everyday	tasks.	For	example,	people	would	repeatedly	gather	
information	from	multiple	sources	to	validate	the	correctness	or	accuracy	of	the	
information,	such	as	comparing	product	reviews	on	multiple	shopping	websites.	
Another	use	case	was	to	reference	multiple	sources	to	help	make	a	decision,	such	as	
Google,	social	network	sites	and	dedicated	reviews	websites	(like	Yelp).	The	same	
study	also	found	that	to	integrate	data	from	multiple	web	services	was	a	challenge	
for	end-users,	as	the	same	information	from	different	sources	was	often	named	
differently	or	recorded	in	different	structures.	Gneiss’	ability	to	let	users	use	web	

																																																								
3	See	http://db-engines.com/en/ranking	

KERRY CHANG	|	Dissertation	 14

services	without	writing	conventional	code	allows	users	to	create	reusable	
spreadsheet	programs	that	directly	get	data	from	multiple	data	sources	instead	of	
having	to	manually	gather	and	compare	data	from	multiple	websites.	As	Gneiss	
provides	solutions	to	use	structured	data	in	spreadsheets,	it	also	allows	users	to	
filter,	transform,	and	integrate	the	collected	data	using	familiar	spreadsheet	
mechanisms.	
	
Another	popular	end-user	programming	scenario	is	to	program	a	graphical	user	
interface,	such	as	to	create	design	prototypes	[86]	or	web	applications	[10,27,38].	
Many	end-user	tools	help	users	create	static	graphical	user	interfaces,	such	as	
WYSIWYG	editors	for	prototyping	(e.g.	Balsamic,	Adobe	Fireworks)	and	making	web	
pages	(e.g.,	Microsoft	FrontPage,	Adobe	Dreamweaver).	Gneiss	gives	end	users	the	
ability	to	create	graphical	user	interfaces	that	can	interactively	use	backend	data.	
This	is	motivated	by	research	showing	that	end	users	want	to	publish	their	data	
online	and	create	interactive	web	pages	for	browsing	and	using	those	data.	Benson	
et	al.	[9]	studied	users	and	web	pages	created	using	Exhibit	[43],	a	tool	that	helps	
users	publish	structured	data	as	web	pages	online	(discussed	in	detail	in	section	
2.3).	They	found	that	instead	of	publishing	the	data	as	a	shared	document	or	
spreadsheet,	end	users	published	data	as	web	applications	to	provide	advanced	data	
navigation	features,	such	as	facets	and	visualizations,	and	to	share	analysis	results	in	
a	more	understandable	way	to	the	audience.	Exhibit	users	were	in	general	
frustrated	with	the	traditional	web	development	process	and	sought	a	
“programming-free”	way	to	author	their	web	applications	without	writing	
conventional	code.		
	
There	are	three	findings	in	Benson	et	al.’s	study	that	further	support	Gneiss’s	
design:	First,	while	Exhibit	lets	users	create	an	application	that	shows	spreadsheet	
data,	many	end	users	used	JSON	data	instead	because	they	acquired	the	data	in	JSON	
format	or	they	saw	tutorials	using	JSON	to	create	the	visualizations	they	wanted.	
Exhibit	users	could	read	the	JSON	data	but	had	much	trouble	editing	it	because	of	
the	syntax	(e.g.,	dealing	with	missing	brackets).	In	contrast,	Gneiss	lets	users	edit	
JSON	Data	in	a	spreadsheet,	eliminating	the	need	to	worry	about	the	JSON	syntax.	
Second,	they	found	that	the	data	models	that	end	users	used	were	often	more	
complicated	than	a	table	that	conventional	spreadsheets	could	support.	Gneiss	
extends	spreadsheets	to	support	hierarchical	data	using	nested	cells	and	allows	
grouping	the	data	by	arbitrary	fields	to	create	custom,	nested	data	structures.	
Finally,	end	users	felt	that	they	were	often	limited	by	the	content	management	
systems	they	used	when	publishing	data,	and	sought	a	way	to	have	complete	control	
over	the	web	pages	and	data	models.	In	Chapter	4,	I	will	discuss	how	Gneiss	
supports	creating	completely	custom	web	applications	including	the	layouts,	the	
interactions,	and	the	data	to	use	in	the	backend.			
	

KERRY CHANG	|	Dissertation	 15

Other	studies	have	shown	that	non-professional	web	programmers	had	trouble	
building	applications	that	included	database	functionality.	Rosson	et	al.	[75]	found	
that	non-professional	web	developers	valued	data-related	features,	such	as	making	
forms,	surveys	and	accessing	online	databases.	as	much	as	professional	developers	
did	but	often	were	not	able	to	implement	them.	Voida	et	al.	[85]	studied	volunteer	
workers	and	found	that	many	people	used	spreadsheets	as	an	informal	database	for	
tasks	such	as	recording	the	RSVP	information	for	a	training	session	since	they	did	
not	know	how	to	program	a	database	application.	In	Chapter	6,	I	will	present	how	
Gneiss	can	turn	a	spreadsheet	into	a	real	database	for	a	web	application	that	lets	
users	store	input	values	entered	on	a	web	page.			
	

2.2 MASHUP TOOLS
My	dissertation	contributes	a	way	to	use	data	from	multiple	web	services	and	
perform	custom	analyses	using	spreadsheet	mechanisms	without	writing	
conventional	code.	In	the	literature,	applications	that	make	custom	use	of	online	
data	are	often	called	“Mashups.”	such	as	applications	that	combine	data	from	
multiple	data	sources	or	provide	new	ways	to	interact	with	the	data	[92].	Many	
prior	mashup	tools	focused	on	helping	end	users	get	data	from	the	web	and	connect	
or	combine	them	without	writing	conventional	code.	Many	of	them	use	non-
spreadsheet	approaches.	For	example,	d.mix	[38]	supports	a	way	to	let	developers	
annotate	their	web	pages	to	enable	end	users	to	copy	web	service	calls	from	those	
pages	and	use	them	in	their	personal	mashups.	Marmite	[91]	and	Yahoo	Pipes	[102]	
use	data-flow	languages	to	let	users	connect	data	from	multiple	sources.	Dontcheva	
et	al.	[28]	lets	users	extract	web	page	data	as	“cards”	that	can	have	custom	layouts	
and	be	wired	together	to	specify	data	flows.	DataPalette	[49]	provides	an	interface	
for	users	to	combine	similar	data	from	multiple	built-in	data	sources	through	drag-
and-drop	and	compare	the	data	in	visualizations.	Those	systems	are	essentially	
different	from	Gneiss	as	they	do	not	use	spreadsheets.		
	
Many	other	prior	systems	used	spreadsheets	or	tables	to	help	users	create	mashups.	
C3W	[34]	lets	users	copy	web	elements	from	different	web	pages	such	as	text	boxes,	
drop-down	menus	and	text	labels	to	a	single	user	interface	to	unify	them	and	specify	
how	data	can	go	from	one	page	to	another	using	a	spreadsheet-like	language.	
MashMaker	[30]	extracts	the	content	of	a	web	page	as	a	tree	and	lets	users	modify	
tree	nodes	using	spreadsheet	functions	or	special	widgets	such	as	a	filter	widget	to	
show	certain	values	and	a	map	widget	to	plot	data	on	a	map.	Mashroom	[87]	lets	
users	get	data	from	web	services	and	web	pages	and	described	the	structure	of	the	
data	using	nested	relational	tables,	in	order	to	map	the	data	to	a	GUI	template.	
SpreadATOR	[51]	supports	getting	web	service	data	to	spreadsheets.	It	provides	a	
query	language	to	extract	desired	fields	from	retrieved	documents	and	lets	users	
define	spreadsheet	templates	on	how	the	extracted	data	are	displayed.	Baglietto	et	
al.	[5]	introduced	an	architecture	that	lets	users	create	mashups	by	linking	multiple	

KERRY CHANG	|	Dissertation	 16

spreadsheets	and	automatically	updates	the	spreadsheets	live.	Karma	[82]	allows	
users	to	extract	data	from	a	web	page	by	example	by	dragging	the	first	item	to	a	
table	and	letting	the	system	populate	the	rest	of	the	rows.	It	also	allows	the	user	to	
simultaneously	edit	multiple	similar	cells	by	example,	such	as	to	reformat	all	phone	
number	cells	at	once.	Vegemite	[58]	lets	users	extract	data	by	copying	and	pasting	
data	from	web	pages	to	a	table.	It	further	records	the	user’s	activities	in	the	browser	
such	as	entering	text	and	pressing	buttons,	to	generate	step-by-step	scripts	to	reuse	
in	the	future.	
	
Gneiss	is	different	from	all	those	tools	in	many	ways.	The	biggest	difference	is	its	
ability	to	create	completely	customizable	and	interactive	web	pages	to	show	data	
collected	from	web	sources.	All	the	above	spreadsheet	mashup	tools	can	display	
mashup	data	in	spreadsheets	or	tables.	Some	provide	web	templates	or	
presentation	models	to	let	users	map	the	data	to	a	graphical	user	interface	(e.g.,	
[87])	or	show	in	visualizations.	But	none	of	them	supports	programming	custom	
web	layouts,	data	bindings	and	interactive	behaviors	using	as	this	work	does.	Gneiss	
supports	constructing	two-way	data	flows	with	web	services,	which	is	different	
from	tools	that	get	data	from	web	pages	(e.g.,	[34,58,82])	and	tools	that	only	allow	
retrieving	data	from	but	not	sending	data	to	web	sources	(e.g.,	[30,82,87]).	Gneiss	
also	supports	using	hierarchical	documents	and	restructuring	hierarchical	data	all	
using	spreadsheet	mechanisms	without	having	to	introduce	new	query	languages	
(as	in	[51])	or	data	models	(as	in	[51,87]).		
	
Some	other	prior	work	focused	on	algorithms	to	extract	data	from	web	pages.	Most	
of	them	use	the	structure	of	the	web	page	and	heuristics	generated	from	the	
characteristics	of	the	page.	For	example,	Dontcheva	et	al.’s	work	[29]	uses	the	user’s	
selection	and	the	structure	of	the	web	page	to	extract	images	and	text	labels	to	
create	summaries	of	a	web	page.	Sifter	[44]	extracts	search	items	on	a	web	page	
using	the	HTML	structure	and	scrapes	subsequent	web	pages	by	examining	
hyperlinks	(such	as	“Next	page”)	and	URL	parameters.	Vispedia	[15]	extracts	
Wikipedia	infoboxes	using	the	table	structure	and	uses	the	hyperlinks	in	an	infobox	
to	retrieve	related	topics.	There	are	also	commercial	web	scrapers,	such	as	Scraper	
[118],	a	Chrome	plugin	for	scraping	similar	items	in	web	pages,	ScraperWiki	[119],	a	
tool	that	specifically	targets	scraping	Twitter	and	tabular	data,	and	Microsoft	Excel’s	
Web	Query	[103]	that	collects	similar	data	on	a	web	page	and	puts	them	into	an	
Excel	spreadsheet.	Gneiss	is	different	from	those	tools	as	it	supports	using	web	
services	and	also	supports	creating	data-driven	applications,	using	hierarchical	data	
and	streaming	data.		
	

2.3 TOOLS FOR CREATING DATA-DRIVEN APPLICATIONS
My	dissertation	also	contributes	a	novel	way	to	program	interactive	data-driven	
web	applications	–	web	applications	whose	main	goal	is	to	let	people	interactively	

KERRY CHANG	|	Dissertation	 17

use	data	or	databases	–	by	using	spreadsheet	languages.	In	Gneiss,	spreadsheets	
serve	as	an	intermediate	place	to	hold	backend	data	from	different	data	sources	and	
can	be	further	connected	with	a	web	application	that	can	show	and	even	modify	the	
spreadsheet	data.	The	prior	work	most	relevant	to	this	contribution	of	Gneiss	is	
research	on	spreadsheet	tools	that	supports	programming	graphical	interfaces	that	
use	spreadsheet	data.	FAR	[12]	is	a	spreadsheet	tool	for	creating	interactive	e-
commerce	applications.	In	FAR,	the	user	can	create	a	web	page	by	dragging-and-
dropping	objects	where	each	object	is	either	a	cell	or	a	table.	Cells	can	hold	constant	
values	or	dynamic	values	computed	using	formulas,	and	the	values	can	be	text	or	
images.	Tables	are	groups	of	cells	that	share	common	formulas,	similar	to	a	
conventional	spreadsheet	using	the	autofill	gesture	to	create	common	formulas	in	
multiple	cells.	FAR	provides	a	special	type	of	cell	called	a	“query	cell”	that	can	take	a	
user’s	input,	use	it	to	query	a	pre-wired	database,	and	return	the	query	results.	
Other	objects	(cells)	in	the	web	page	can	use	the	query	cell’s	value	in	formulas	to	
display	data	from	the	database.				
	
Gneiss	is	different	from	FAR	in	many	ways.	First,	FAR	uses	an	unconventional	
spreadsheet	interface	where	cells	are	objects	that	can	float	anywhere	in	the	
interface.	In	contrast,	Gneiss	adapts	a	conventional	spreadsheet	interface	that	is	a	
table	having	letters	as	column	labels	and	numbers	as	row	labels.	Second,	FAR	uses	
special	query	cells	to	get	data	from	a	single	pre-wired	database.	In	contrast,	Gneiss	
lets	users	to	use	multiple,	arbitrary	REST	web	services	as	backend	data	sources	of	a	
web	application.	Any	GUI	input	elements	can	be	programmed	using	spreadsheet	
languages	to	query	a	web	service	or	to	control	how	the	retrieved	data	are	sorted	and	
filtered.	Finally,	Gneiss	supports	programming	multi-page	applications	and	
interactive	behaviors	such	as	interactive	visualizations	and	animations.	It	is	not	
clear	from	the	publication	to	what	extent	FAR	could	support	those	things.				
	
Quilt	[10]	is	a	JavaScript	library	developed	around	the	same	time	as	Gneiss	that	lets	
people	use	HTML	attributes	to	connect	a	DOM	element	in	a	web	page	to	data	in	a	
Google	Spreadsheet.	To	show	data	in	a	spreadsheet,	a	DOM	element	can	be	bound	to	
a	single	cell	(for	example,	the	code		makes	the	span	
element	show	data	in	spreadsheet	cell	B2)	or	be	bound	to	a	column	in	a	spreadsheet	
(in	that	case,	Quilt	will	create	multiple	DOM	elements	based	on	the	number	of	rows	
in	the	column).	If	an	HTML	form	is	bound	to	a	spreadsheet,	data	flow	from	the	web	
page	to	the	spreadsheet	happens	when	the	form	is	submitted,	which	will	add	a	new	
row	of	data	to	the	spreadsheet.	Gneiss	is	different	from	Quilt	as	it	provides	a	visual	
environment	to	create	data	bindings	between	a	web	page	and	a	spreadsheet,	
whereas	Quilt	users	must	create	the	data	bindings	by	editing	HTML	files	in	a	text	
editor.	All	the	data	bindings	in	Gneiss	are	specified	using	familiar	spreadsheet	
languages	and	can	be	formulas	that	return	dynamic	values,	whereas	in	Quilt	users	
specify	data	bindings	using	special	HTML	attributes.	Finally,	Quilt	does	not	let	users	

KERRY CHANG	|	Dissertation	 18

program	interactive	behaviors	using	spreadsheet	languages,	such	as	the	ability	to	
interactively	sort,	filter	and	visualize	data,	which	Gneiss	supports.		
	
A1	[48]	is	a	spreadsheet	environment	for	programming	system	administrator	tasks	
such	as	monitoring	network	usage.	A1	extends	spreadsheet	cells	to	be	objects	that	
can	have	different	functions,	such	as	queues	for	storing	lists	of	data,	GUI	input	
widgets	such	as	buttons,	or	objects	that	connect	to	external	systems	such	as	SSH	
objects.	Like	in	object-oriented	programming,	an	object	(which	is	a	cell	in	A1)	can	
contain	properties	and	methods.	A1	provides	a	language	with	a	mix	of	syntax	from	
spreadsheet	languages	and	scripting	languages	to	use	the	objects	(for	example,	if	
cell	B1	is	a	queue	object,	the	language	=B1.size()	will	return	the	size	of	the	queue).	
A1	uses	the	conventional	callback	mechanisms	to	handle	events	(for	example,	if	B2	
is	a	button	and	B1	is	a	queue,	the	code	on(B2){B1.clear()}	will	clear	the	queue	
when	the	button	is	clicked).	Different	from	A1,	Gneiss	focuses	on	creating	
applications	that	use	backend	data	sources.	Gneiss	uses	only	the	spreadsheet	
language	and	supports	programming	interactive	behaviors	using	a	pull-based	
approach	that	is	consistent	with	the	spreadsheet	model.	It	does	not	require	the	user	
to	be	familiar	with	scripting	language	syntax	and	the	event	callback	mechanism.			
	
Exhibit	[43]	is	a	tool	that	let	users	publish	their	data	as	a	web	page	with	faceting	and	
visualization	abilities.	To	use	Exhibit,	the	user	starts	by	embedding	the	Exhibit	
JavaScript	library	and	the	data	she	wants	to	use	in	the	heading	of	a	HTML	file.	The	
user	can	then	create	web	elements	by	writing	HTML	code,	and	turn	an	element	into	
an	Exhibit	data	browsing	widget	(such	as	a	control	panel	that	provide	options	for	
filtering)	or	visualization	(such	as	a	map	or	a	list	to	show	the	data)	by	giving	the	
element	a	predefined	ID	supported	by	Exhibit	(for	example,	the	code	<div
id=”exhibit-control-panel”></div>	makes	the	div	element	a	control	panel).	The	
user	can	further	use	HTML	attributes	to	specify	options	for	the	Exhibit	object,	such	
as	what	fields	in	the	data	this	control	panel	should	provide	for	faceting.		
	
Exhibit	is	clearly	different	from	Gneiss	as	it	does	not	use	spreadsheets	and	does	not	
support	using	web	services	or	programming	interactive	behaviors.	However,	it	has	a	
similar	motivation	as	Gneiss,	which	is	to	enable	end	users	to	create	custom	web	data	
applications.	Exhibit	users	have	more	control	of	the	look	of	the	web	page	as	they	can	
freely	edit	the	HTML	file,	compared	with	in	many	content	management	systems	
such	as	WordPress	where	data	are	published	using	premade	templates.	Gneiss	
further	extends	this	idea	to	support	creating	web	data	applications	with	not	only	
custom	data	and	look	but	also	custom	interactive	behaviors	for	using	the	data.	And	
Gneiss	provides	the	ability	to	program	all	of	them	using	spreadsheet	mechanisms	
without	requiring	the	user	to	write	HTML	or	other	web	programming	code.		
	

KERRY CHANG	|	Dissertation	 19

2.3.1 SPREADSHEET TOOLS FOR MAKING GRAPHICAL USER INTERFACES
Some	prior	systems	extend	the	spreadsheet	model	to	support	programming	
graphical	user	interfaces.	NoPumpG	[89]	uses	special	types	of	spreadsheet	cells	to	
create	graphical	elements	(such	as	text	cells	or	lines	cells)	or	interactive	behaviors	
(such	as	a	“toggle	cell”	that	respond	to	click	events)	in	a	GUI	application.	C32	[65]	
introduces	a	tabular	interface	to	edit	GUI	element	properties	using	spreadsheet	
languages.		
	
Like	C32,	Penguims	[41]	also	uses	a	tabular	interface	for	editing	GUI	element	
properties	using	spreadsheet	languages.	It	further	lets	users	construct	custom	GUI	
elements	using		“interactor	objects”	which	are	primitive	GUI	elements	provided	by	
the	system	(such	as	lines)	that	have	editable	style	properties	such	as	X	and	Y	
coordinates	and	have	some	predefined	interaction	abilities	(for	example,	a	line	
object	automatically	changes	its	X	and	Y	coordinates	to	follow	the	mouse	
coordinates	when	a	dragging	behavior	occurs).	Users	can	combine	multiple	
interactor	objects	to	form	a	custom	GUI	object	(such	as	to	use	four	lines	to	form	a	
rectangle).	Besides	style	properties,	a	custom	GUI	object	can	also	have	arbitrary	
numbers	of	“regular	properties”	for	computation	purposes	(like	variables	in	a	Java	
object).	Like	a	spreadsheet	cell,	a	property	can	have	a	constant	value	or	a	dynamic	
value	computed	from	other	properties.	Penguims	also	support	object	inheritance.	
The	user	creates	a	custom	GUI	application	by	combining	multiple	GUI	elements.		
	
Forms/3	[11]	is	another	system	that	also	supports	programming	custom	GUI	
objects.	It	uses	an	unconventional	spreadsheet	interface	where	cells	can	float	in	the	
interface	based	on	where	the	user	puts	them.	Like	Penguims,	Forms/3	provides	a	
set	of	graphical	primitives	(such	as	circles	and	lines)	whose	properties	can	be	edited	
like	spreadsheet	cells	using	spreadsheet	languages.	It	also	has	a	drawing	interface	
that	lets	users	create	custom	graphics	and	gestures.	The	user	can	combine	multiple	
objects	to	form	a	new	object.	Forms/3	supports	programming	interactive	behaviors	
by	introducing	a	model	of	time	to	the	system.	The	system	can	record	a	cell’s	value	
and	the	current	time	when	the	cell	changes.	Considering	input	events	as	cells,	this	
essentially	allows	the	system	to	queue	the	events	based	on	the	time	they	happened,	
enabling	the	user	to	write	spreadsheet	formulas	that	use	the	most	recent	events,	
thus	creating	custom	interactive	behaviors.	This	is	different	from	Penguims	where	
interactive	behaviors	are	not	written	in	spreadsheet	languages.		
	
InterState	[71]	is	a	recent	tool	that	focuses	on	programming	interactive	behaviors	
using	constraints	and	state	machines.	It	uses	a	table	interface	for	specifying	
properties	of	a	GUI	element.	Each	row	in	a	table	is	a	property	(such	as	an	X	
coordinate	row	and	a	Y	coordinate	row),	and	each	column	in	the	table	represents	a	
different	state	(such	as	a	“drag”	state	and	a	“no_drag”	state	when	implementing	the	
drag	behavior).		A	property	value	can	be	a	constant	or	a	constraint	which	is	written	
using	a	modified	JavaScript	syntax.	For	example,	in	a	“drag”	state,	the	X	coordinate	

KERRY CHANG	|	Dissertation	 20

of	a	GUI	element	can	be	=mouse.X,	and	in	the	“no_drag”	state	can	be	=X	(a	self-
reference).	The	transition	for	one	state	to	another	is	triggered	by	events	such	as	
mouse	down	or	up.		
	
Gneiss	is	different	from	those	systems	as	its	central	idea	is	to	use	the	spreadsheet	as	
an	intermediate	database	that	can	store	user	inputs	and	also	collect	data	from	web	
sources	as	the	back	end	of	a	GUI	application.	The	systems	discussed	above	do	not	
have	a	notion	of	database	and	do	not	handle	data	sources.	While	Gneiss	also	allows	
users	to	program	interactive	behaviors	using	spreadsheet	languages,	it	focuses	on	
supporting	data-related	interactive	behaviors	such	as	interactive	sorting,	filtering	
and	visualizing	data	instead	of	creating	general	interactive	behaviors	such	as	
hovering	or	dragging	(although	users	can	program	some	of	them	in	Gneiss	too).		
	
Like	Forms/3,	Gneiss	also	has	the	notion	of	“time”	in	the	spreadsheet,	which	is	the	
“cell	metadata”	that	stores	the	fetched	time	of	a	cell	having	streaming	data.	But	
Gneiss	only	records	the	fetched	time	of	the	current	value	of	a	cell	and	does	not	allow	
tracing	a	cell’s	previous	values	by	time	as	Forms/3’s	time	model	supports.	Again,	
Gneiss	focuses	on	supporting	new	ways	to	use	data,	and	its	time	model	serves	as	a	
mechanism	to	let	users	select,	sort	and	filter	streaming	data	using	temporal	
information.	Whereas	Forms/3’s	time	model	is	for	handling	GUI	I/O	and	
programming	custom	interactive	behaviors,	and	thus	is	more	complicated.	Adding	
the	Forms/3	model	to	Gneiss	might	be	interesting	future	work,	to	enable	reasoning	
about	the	changes	of	data	from	non-streaming	sources.	
	

2.3.2 MODEL-VIEW-CONTROLLER LIBRARIES
“Model-view-controller”	(MVC)	is	an	architecture	pattern	popular	for	programming	
GUI	applications	that	use	backend	data	[2,55].	It	lets	developers	divide	the	
application	into	three	parts:	the	“model”,	which	is	the	data	that	the	application	uses;	
the	“view”,	which	is	the	user	interface	of	the	application;	and	the	“controller”,	which	
links	the	model	and	the	view	and	accepts	user	inputs	in	the	view	to	update	the	
model.	This	partition	helps	in	both	maintainability	and	reusability	of	the	application,	
as	the	developer	can	theoretically	modify	one	part	without	changing	the	other	two.		
	
MVC	is	especially	popular	among	web	applications	[55],	and	there	are	many	
JavaScript	libraries	designed	to	support	programming	MVC	applications.	Many	of	
them	use	templating	[59,76]	to	let	developers	create	dynamic	web	elements	
generated	based	on	the	backend	data.	A	common	syntax	of	a	JavaScript	template	
combines	HTML	tags	to	specify	DOM	elements	and	double	curly	brackets	to	specify	
the	data	used	(such	as	the	name	of	a	JSON	object	property).	Some	popular	
commercial	libraries	that	support	templating	are	AngularJS	[104],	Handlebar.js	
[105],	Mustache.js	[106]	and	Underscore.js	[107].	Both	one-way	(e.g.,	React	[108])	
and	multi-way	(e.g.,	AngularJS)	constraints	are	implemented	for	data	bindings.	Some	

KERRY CHANG	|	Dissertation	 21

libraries	also	help	developers	handle	user	inputs	and	program	controllers.	For	
example,	AngularJS	lets	developers	attach	controller	functions	reacting	to	a	certain	
input	event	to	a	DOM	element	using	HTML	attributes.	Gneiss	is	implemented	with	
ConstraintJS	[70],	a	research	JavaScript	library	for	creating	one-way	constraints	in	
web	applications.	Details	on	Gneiss’s	use	of	constraints	for	its	implementation	are	
described	in	Chapter	7.		
	
Gneiss	contributes	a	live	visual	programming	environment	that	supports	creating	
data-driven	applications	in	an	MVC	fashion	but	using	only	spreadsheet	languages	
and	interaction	techniques.	In	Gneiss,	the	model	and	the	view	are	separated	into	the	
spreadsheet	and	the	web	interface	builder.	Data	bindings	and	interactive	behaviors	
are	programmed	using	spreadsheet	languages.	Like	in	many	templating	libraries,	
web	elements	in	Gneiss	can	hold	dynamic	values	or	be	shown	and	hidden	based	on	
the	backend	data	they	are	bound	to.	Details	on	how	Gneiss	supports	programming	
data-driven	applications	are	described	in	Chapter	4.		
	

2.3.3 END-USER WEB PROGRAMMING AND VISUALIZATION TOOLS
Web	interface	builders	and	WYSIWYG	web	editors	have	been	widely	used	in	
commercial	products	and	research	projects	to	help	end-users	make	web	interfaces.	
However,	connecting	a	web	page	using	a	regular	interface	builder	(like	Adobe	
Dreamweaver	or	Microsoft	Visual	Studio)	to	a	data	source	and	presenting	dynamic	
content	still	require	writing	extensive	code.	WebSheet	[90]	and	Click	[74]	try	to	let	
users	create	web	applications	that	use	databases	in	a	WYSIWIG	editor	but	are	
limited	to	a	few	simple	built-in	database	actions	supported	in	the	system	such	as	
adding	a	new	row	(both	tools	also	do	not	appear	to	be	fully	developed).	Some	other	
research	tools	help	people	use	examples	to	create	static	styles	[18,53]	or	interactive	
behaviors	[72]	of	a	web	page.	But	they	do	not	help	users	understand	or	reproduce	
how	the	example	web	pages	use	and	interact	with	the	backend	data	sources.	
	
Many	conventional	spreadsheet	tools	(such	as	Google	Spreadsheets	and	Microsoft	
Excel)	and	visualization	tools	(such	as	Tableau	[80]	and	IBM	ManyEyes	[84])	
support	creating	interactive	visualizations	that	use	spreadsheet	or	table	data.	But	
those	tools	do	not	support	building	a	web	application	where	the	dataflows	between	
the	web	interface	and	the	spreadsheet	are	bi-directional.	
	

2.4 TOOLS FOR USING HIERARCHICAL DATA
Gneiss	extends	spreadsheets	to	support	using	structural	hierarchical	data	formats	
such	as	JSON	data.	The	goal	is	to	enable	end	users	to	work	with	those	formats	of	
data,	as	these	data	are	becoming	more	and	more	popular	due	to	the	increasing	
amount	of	web	services	and	web	applications.	There	are	already	many	libraries	that	
help	professional	programmers	use	hierarchical	data,	such	as	JSON.simple	[109],	

KERRY CHANG	|	Dissertation	 22

GSON	[110],	FasterXML’s	Jackson	project	[111],	Jansson	[112]	and	jsonQ	[113]	for	
JSON	data.		In	this	section,	I	focus	on	reviewing	prior	tools	that	help	end-users	work	
with	hierarchical	data.			
	
In	1991,	Lotus	Improv	introduced	the	concept	of	“categories”	that	contain	related	
attributes	of	the	spreadsheet	data.	The	user	can	create	custom	categories,	such	as	a	
“season”	category	that	has	“spring”,	“summer”,	“fall”	and	“winter,	and	a	“year”	
category	that	has	a	list	of	years.	The	user	can	then	use	these	categories	as	row	and	
column	labels	to	reshape	the	data,	such	as	to	create	a	plot	using	years	as	column	
labels	and	seasons	as	row	labels.	This	feature	was	eventually	replaced	by	pivot	
tables	in	today’s	spreadsheets,	where	the	user	can	perform	different	groupings	on	
data	and	calculate	summaries	such	as	counting	the	items	in	each	group.		
	
Although	a	pivot	table	allows	users	to	create	nested	groups,	it	assumes	the	
underlying	data	are	flat	and	do	not	contain	multiple	nested	structures,	which	in	
hierarchical	data	are	very	common.	For	example,	a	movie	database	could	return	a	
list	of	movies	where	each	movie	has	a	list	of	actors,	a	list	of	reviews,	and	a	list	of	
awards.	Turning	such	data	into	a	flat	table	will	either	create	lots	of	repetitive	rows	
or	lots	of	columns	with	many	empty	cells	(depending	on	how	the	lists	are	
expanded),	as	each	movie	can	have	different	numbers	of	actors,	reviews	and	awards.	
Some	tools	support	transforming	table	data	into	long	and	wide	format	[37,47,73].	
However,	our	user	study	showed	that	transforming	a	hierarchical	document	into	
either	format	would	still	require	users	to	do	additional	data	manipulation	before	
using	pivot	tables.	There	are	data	cleaning	tools	that	let	users	quickly	edit	strings,	
such	as	Excel’s	Flash	Fill	[36]	and	Wrangler	[47].	Those	tools	also	do	not	help	much	
when	using	hierarchical	files,	as	the	problem	is	with	the	data	structures	rather	than	
the	string	values.	
	
A	lot	of	work	focuses	on	visualizing	hierarchical	data	using	tables	and	graphs.	Gneiss	
is	inspired	by	prior	work	on	using	nested	tables	to	visualize	nested	relational	
models	(see	[56]	for	an	overview).	In	a	nested	relational	model,	the	nested	table	
often	has	a	nested	heading	showing	the	schema	that	may	contain	attributes	and	sub-
relations,	and	a	nested	content	area	showing	the	instances	of	the	model.	Many	
systems	were	built	based	on	the	nested	relational	model	to	support	basic	editing	
and	querying	databases	[88]	and	visualizing	hierarchical	documents	to	increase	
readability	[8,26].	Compared	with	those	systems,	Gneiss	uses	a	different	method	to	
turn	hierarchical	data	into	nested	tables	that	focuses	on	supporting	reshaping	and	
regrouping	data.	Gneiss’	visualization	method	allows	users	to	dynamically	create	
different	views	of	the	same	hierarchical	object	using	interaction	techniques,	with	
the	goal	of	facilitating	data	exploration.	This	is	different	from	prior	systems	that	
generate	a	single	static	view	for	a	hierarchical	object.		
	

KERRY CHANG	|	Dissertation	 23

Related	Worksheets	[7]	lets	users	create	inner	cells	in	a	row	to	show	one-to-many	
relationships	in	data.	A	cell	can	be	set	to	reference	values	from	another	worksheet	
and	thus	may	create	additional	nested	cells.	Their	study	showed	that	users	could	
understand	the	nested	cells	and	could	use	them	to	find	information.	However,	the	
Related	Worksheets	does	not	support	further	manipulating	the	nested	data,	such	as	
sorting,	filtering	or	calculating	new	data	with	functions	like	in	our	tool.	The	nested	
cells	serve	only	for	viewing	purposes.	This	is	another	difference	of	this	work	and	
prior	research.	Gneiss’	hierarchical	visualization	is	designed	to	enable	users	to	
reference	nested	cells	(and	even	select	them	using	their	hierarchies)	to	use	in	
formulas	using	the	familiar	spreadsheet	syntax	(the	combination	of	column	label	
and	row	number).	Another	difference	is	that	many	prior	systems	(such	as	[8,26])	
did	not	address	how	data	in	the	complex	nested	tables	generated	by	their	systems	
could	be	further	manipulated	by	the	users.		
	
There	are	spreadsheet	tools	that	use	nested	cells	or	linked	spreadsheets	to	
represent	hierarchies	in	other	programming	activities,	such	as	defining	new	
spreadsheet	functions	and	parameters	in	functions	[46],	creating	spreadsheet	
templates	[1],	specifying	data	models	[87],	and	programming	graphical	interfaces	
and	object	inheritance	[11].	However,	those	systems	do	not	support	exploring	and	
manipulating	hierarchical	datasets	as	our	tool	does.	
	
Some	other	research	tools	focus	on	extracting	hierarchical	relationships	in	
conventional	spreadsheets	created	implicitly	by	users.	For	example,	Hermans	et	al.	
used	content	layout	and	cell	dependencies	to	extract	hierarchical	information	in	
spreadsheets	and	visualize	it	as	diagrams	to	improve	spreadsheet	readability	
[39,40].	Chen	et	al.	used	fonts	and	alignments	to	extract	hierarchical	information	in	
a	spreadsheet	to	generate	relational	tables	which	can	be	used	in	relational	
databases	[23,24].	Different	from	those	tools,	our	work	targets	hierarchical	data	
formats	such	as	JSON	and	XML	that	are	not	designed	for	relational	databases,	and	
the	hierarchies	in	the	data	are	explicitly	defined.	Our	tool	directly	operates	on	
hierarchical	objects	(instead	of	flattening	them	into	tables)	and	focuses	on	
leveraging	those	objects’	structural	information	to	facilitate	data	manipulations	such	
as	to	support	hierarchical	grouping,	sorting	and	filtering.	
	

2.5 TOOLS FOR USING STREAMING DATA
Finally,	Gneiss	contributes	a	way	to	use	streaming	data	in	spreadsheets.	Developed	
around	the	same	time	as	Gneiss,	ActiveSheets	[83]	is	a	spreadsheet	tool	built	on	top	
of	Excel	that	supports	live	streaming	data.	ActiveSheets	supports	many	similar	
features	for	using	streaming	data	in	a	spreadsheet	as	Gneiss,	such	as	the	ability	to	
have	live	data	and	live	computation	in	a	spreadsheet,	to	be	able	to	filter	data,	and	to	
preserve	history	values.	The	main	difference	between	ActiveSheets	and	Gneiss	is	in	
the	interactions.	ActiveSheets	support	most	of	its	features	using	text-based	

KERRY CHANG	|	Dissertation	 24

approaches.	For	example,	creating	a	stream	is	done	by	clicking	on	an	icon	and	
entering	a	stream	name	and	a	window	size	(for	how	many	values	to	display	in	the	
spreadsheet).	Filtering	a	stream	is	done	by	a	spreadsheet	function.	In	contrast,	
Gneiss	uses	more	interaction	techniques	to	achieve	those	things.	For	example,	
creating	a	stream	in	Gneiss	is	done	by	dragging-and-dropping	a	field	from	the	
source	pane	to	a	spreadsheet	column.	Filtering	a	stream	is	done	using	the	sorting	
and	filtering	widget	as	in	conventional	spreadsheets.	Gneiss	supports	streaming	
data	from	arbitrary	REST	web	services,	whereas	ActiveSheets	uses	pre-wired	
streaming	data	sources	on	a	dedicated	server.	The	two	tools	also	have	different	
ways	to	manipulate	streaming	data	using	temporal	information.	ActiveSheets	has	a	
focus	on	generating	new	streams	using	spreadsheets.	It	allows	users	to	produce	a	
stream	calculated	based	on	values	from	the	original	streaming	source	and	export	a	
stream	to	share	with	other	spreadsheet	clients.	Gneiss	does	not	support	those	
features.	Instead,	Gneiss	focuses	on	creating	web	applications	and	can	let	users	
create	interactive	web	applications	that	use	and	control	data	streams	(such	as	
pausing	a	stream	or	changing	streaming	frequency).	While	ActiveSheets	can	let	
users	create	live	visualizations,	it	does	not	support	creating	web	applications.		
	
Woo	et	al.	[93]	introduce	an	architecture	for	using	continuous	sensor	data	in	
spreadsheets.	This	work	focuses	strictly	on	sensor	data	and	is	quite	different	from	a	
general-purpose	tool	like	Gneiss	that	supports	arbitrary	data	sources.	There	are	also	
many	commercial	tools	that	let	users	use	and	analyze	streaming	data	in	
spreadsheets.	Most	of	the	commercial	tools	use	pre-wired	data	sources	on	the	
server	and	many	of	them	provide	analytics	ability.	Examples	are	StreamBase	[98],	
IBM’s	Streaming	Analytics	Service	and	InfoSphere	Streams	for	Excel	[114],	and	
Microsoft’s	Azure	Stream	Analytics	for	PowerBI	[115].		
	
There	are	many	professional	languages	and	libraries	that	help	programmers	work	
with	streaming	data	by	writing	code.	For	example,	StreamIt	[35]	is	a	language	for	
processing	streaming	data	on	multicore	processors.	Spark	Streaming	is	a	library	
that	supports	analyzing	streaming	data	using	the	Spark	engine	[94].	Some	work	
leverages	SQL	techniques	to	support	streaming	data,	such	as	Microsoft	
StreamInsight	[3]	and	PipelineDB	[116]	that	extend	SQL	to	support	querying	
streaming	data	over	time	windows	and	return	live	results.	Some	other	systems	
support	both	querying	streaming	data	and	creating	visualizations	to	help	
programmers	understand	the	data.	For	example,	Tempe	[32]	is	a	live	programming	
environment	for	data	scientists	to	query	streaming	data	and	view	and	interact	with	
the	results	in	both	tables	and	graphs.	Kibana	[97]	is	a	visualization	tool	that	allows	
developers	to	create	live	visualizations	of	streaming	data.	All	these	tools	target	users	
who	are	sophisticated	programmers.		
	

KERRY CHANG	|	Dissertation	 25

2.6 CONCLUSIONS
This	research	is	motivated	by	many	use	cases	described	in	prior	literature	where	
end	users	needed	to	work	with	web	sources	and	databases	and	publish	data	online.	
Gneiss	extends	the	spreadsheet	model,	aiming	to	leverage	its	familiar	and	direct	
programming	language	and	its	natural	live	computing	model	to	make	using	web	
services	and	creating	data-driven	applications	easier	for	people	familiar	with	
spreadsheets.	I	have	discussed	many	related	systems	and	showed	how	Gneiss	
makes	unique	contributions	in	comparison.	Next	I	will	describe	those	contributions	
in	detail,	starting	by	introducing	how	Gneiss	supports	programming	two-way	data	
communications	with	arbitrary	REST	web	services	using	spreadsheet	mechanisms.			
	
	 	

KERRY CHANG	|	Dissertation	 26

CHAPTER 3 USING WEB DATA SERVICES4
Today,	many	data	sources	provide	web	services	that	allow	people	to	access	their	
data	programmatically.	Some	web	services	not	only	provide	data	but	also	
computational	services	on	data,	such	as	transforming	geo	locations	to	country	codes	
(e.g.,	GeoNames),	or	running	machine	learning	algorithms	and	storing	the	data	sent	
by	the	user	(e.g.,	Amazon).	Web	services	can	be	powerful	resources	for	people	who	
have	the	need	to	use	online	data	in	custom	ways.	However,	using	web	services	
currently	requires	writing	a	significant	amount	of	surprisingly	intricate	code	that	
deals	with	asynchronous	network	calls	which	may	fail	to	return,	often	requiring	
complex	and	sometimes	nested	callbacks	[70,95].		
	

3.1 MOTIVATION, CHALLENGES AND CONTRIBUTIONS
As	discussed	in	Chapter	2.1.1,	spreadsheets	are	the	most	popular	end-user	data	
tools	and	have	many	familiar	functions	and	interaction	techniques	for	manipulating	
data.	Conventional	spreadsheet	systems	support	using	data	from	files,	databases,	
and	some	even	support	scraping	data	from	web	pages	(such	as	Excel’s	Power	Query	
[103]).	But	when	it	comes	to	using	web	services,	current	spreadsheet	systems	fall	
short	in	several	ways:		
	

• Some	conventional	spreadsheets	provide	general	functions	that	let	users	get	
data	from	an	arbitrary	web	service	given	a	web	URL,	such	as	Excel’s	
WEBSERVICE(url)	function.	However,	these	functions	return	the	entire	
retrieved	document	as	a	plain	text	string	and	put	it	in	a	single	cell.	Thus	the	
data	becomes	difficult	to	read,	select	and	manipulate.	Those	functions	also	do	
not	support	sending	data	to	a	web	service.	

• Some	spreadsheets	provide	functions	that	get	data	from	or	send	data	to	
specific	data	sources.	For	example,	Google	Spreadsheets	have	a	
GOOGLEFINANCE	function	with	which	the	user	can	get	finance	data	for	a	
company	at	a	certain	time	using	parameters	to	the	function.	Those	functions	
often	return	more	readable	and	usable	data	than	functions	that	let	people	get	
data	from	arbitrary	web	services,	but	creating	a	new	function	like	those	to	
use	a	new	data	source	would	require	programming	in	non-spreadsheet	
languages,	such	as	JavaScript	for	Google	Spreadsheets	or	VBA	for	Excel.		

• In	conventional	spreadsheets,	since	web	service	data	are	retrieved	
dynamically	using	formulas,	they	cannot	be	sorted	and	filtered	in	
conventional	spreadsheets,	as	sorting	and	filtering	do	not	work	on	formula	
data.	The	user	would	need	to	copy	the	data	and	paste	them	as	constants	to	
perform	further	manipulations.		

																																																								
4	The	research	in	this	chapter	was	also	described	in	our	publication	at	VL/HCC’14	[20].		

KERRY CHANG	|	Dissertation	 27

• The	majority	of	modern	web	services	today	return	hierarchical	documents	
such	as	JSON	and	XML	data.	However,	current	spreadsheets	only	support	
table	data.	Hierarchical	documents	need	to	be	flattened	first	before	used	in	a	
spreadsheet.	This	removes	much	structural	information	in	the	data	that	
could	be	useful	for	analyzing	and	manipulating	the	data.		

• Some	web	services	provide	real-time	data,	such	as	finance	data	or	geo-
locations	of	people	and	vehicles.	Currently,	some	spreadsheet	plugin	tools	
support	streaming	live	data	in	spreadsheets.	However,	those	tools	require	
data	sources	to	be	hardwired	into	the	system.	Adding	a	new	data	sources	is	
often	impossible	for	end	users.		

	
My	dissertation	extends	the	spreadsheet	model	to	address	these	problems.	In	this	
chapter,	I	focus	on	describing	Gneiss’s	contributions	to	address	the	first	three	bullet	
points.	Contributions	on	the	last	two	bullet	points	about	how	Gneiss	supports	
hierarchical	data	and	streaming	data	are	described	respectively	in	Chapters	5	and	6.	
	
Specifically,	in	this	chapter	I	present	the	following	contributions:		
	

• Gneiss’s	spreadsheet	language	and	interaction	technique	to	send	data	to	and	
retrieve	data	from	arbitrary	REST	JSON	web	services	without	writing	
conventional	code.		

• Extensions	to	spreadsheet’s	sorting	and	filtering	to	apply	persistent	sorting	
and	filtering	rules	on	web	service	data.	

• Extensions	to	spreadsheet’s	autofilling	gesture	to	support	sending	similar	
web	service	requests	by	example.		

• Gneiss’s	nested	cell	visualization	to	show	hierarchical	data,	and	the	
spreadsheet	language	to	select	the	data	by	its	structure.		

• A	way	to	refresh	web	service	data	in	spreadsheets.	
• How	the	spreadsheet	model	naturally	handles	different	states	of	an	

asynchronous	web	service	call	including	errors,	and	creates	parallel-running	
data	extraction	programs	based	on	the	user’s	sequential	demonstration.		

	

3.2 INTERFACE OVERVIEW
Gneiss	contains	three	panes	(see	Figure	3.1):	a	“source	pane”	(left)	for	where	the	
user	can	load	data	from	a	web	service	by	entering	a	web	API	in	the	URL	bar	at	the	
top	or	load	a	local	file	using	the	“Choose	file”	button;	a	spreadsheet	editor	(center);	
and	a	web	interface	builder	(right)	where	the	user	can	create	a	web	application	by	
dragging-and-dropping	GUI	elements	from	the	side	bar	at	the	far	right	to	web	pages	
and	editing	the	properties	of	elements	in	the	property	sheets	at	the	lower	right	
corner	(not	shown)	The	user	can	choose	to	hide	the	source	pane	and	the	web	
interface	builder	if	she	does	not	need	them.	This	three-pane	design	is	based	on	
many	conventional	code	editors	where	the	file	directories	are	put	at	the	left	of	the	

KERRY CHANG	|	Dissertation	 28

source	code	(such	as	in	Eclipse),	and	the	graphical	view	of	textual	code	is	put	at	the	
right	of	the	source	code	(such	as	in	Adobe	Dreamweaver).	While	the	current	Gneiss	
prototype	does	not	support	letting	users	customize	the	locations	of	the	panes	(such	
as	putting	the	source	pane	to	the	right),	one	can	imagine	this	feature	to	be	easily	
added	to	Gneiss	as	in	conventional	editors.		
	
Gneiss’s	source	pane	uses	a	browser-like	design.	The	user	can	load	an	external	data	
source	by	entering	a	web	API	to	the	top	URL	bar,	or	by	clicking	the	“Choose	file”	
button	to	use	a	local	file.	The	user	can	click	on	the	“+”	icon	next	to	the	rightmost	tab	
to	open	a	new	tab	to	use	multiple	data	sources	in	Gneiss.		
	
To	allow	myself	the	required	flexibility,	I	implemented	my	own	spreadsheet	and	
web	interface	builder.	Gneiss’s	spreadsheet	looks	and	works	similar	to	conventional	
spreadsheet	editors.	The	user	can	double-click	on	a	cell	to	edit	it.	On	each	column’s	
heading,	there	is	a	small	arrow	icon	on	which	the	user	can	click	to	open	a	dialog	box	
to	sort	and	filer	data	by	that	column.	Gneiss	currently	supports	a	limited	set	of	
spreadsheet	functions.	The	complete	list	of	supported	functions	is	in	Appendix	A.	
Currently	Gneiss’s	spreadsheet	has	50	rows.	If	the	data	exceed	50	rows,	the	
spreadsheet	will	show	the	first	50	rows	of	data	and	hide	the	rest	of	the	rows	for	
performance	reasons.	All	the	data	operations	such	as	sorting,	filtering,	grouping	and	
joining	are	executed	on	the	entire	dataset.	Similarly,	for	autofill,	as	long	as	the	user	
drags	down	to	the	last	displayed	row,	the	system	will	apply	the	operation	to	the	
entire	dataset	including	the	hidden	rows.	To	view	the	hidden	data,	the	user	can	use	
sorting	and	filtering	to	bring	the	data	she	wants	to	the	top,	or	open	the	entire	data	in	
a	read-only	spreadsheet	using	a	menu	command.	Many	conventional	tools	have	
similar	design.	For	example,	Google	Fusion	Tables	show	100	rows	at	a	time	and	have	
a	“next”	button	to	let	the	user	view	the	next	100	rows	of	data.	For	future	work,	I	
could	also	add	a	“next”	button	to	our	system	to	enable	more	fluid	browsing.	
	
Gneiss’s	web	interface	builder	lets	users	create	a	UI	element	in	web	page	by	drag-
and-dropping	an	element	from	the	side	bar	to	the	page.	The	UI	elements	are	

	
Figure	3.1.	A	screenshot	of	Gneiss’s	interface.	

KERRY CHANG	|	Dissertation	 29

organized	into	categories.	The	user	can	select	a	category	using	a	dropdown	menu	
and	view	a	set	of	available	UI	elements	(for	example,	in	Figure	3.1,	the	currently	
category	is	“Text	&	Image”,	and	there	are	three	types	of	UI	elements	available,	which	
are	“Text”,	“Image”	and	“Heading”).	The	complete	lists	of	currently	supported	web	
UI	elements	are	in	Appendix	B.	Gneiss	also	provides	a	set	of	visualizations	in	the	
web	interface	builder	using	Google’s	Visualization	API.	The	web	interface	builder	
has	an	“Edit”	mode	and	a	“Preview”	mode	(selected	by	pressing	the	“Edit”	and	
“Preview”	buttons	at	the	upper	right).	In	edit	mode,	the	user	can	drags	UI	elements	
from	the	side	bar,	click	on	a	UI	element	and	edit	its	properties	in	a	property	sheet	
(shown	in	Figure	4.1	at	5	in	chapter	4).	In	preview	mode,	the	system	hides	the	side	
bar	and	lets	users	test	the	created	application	as	if	it	was	opened	in	a	regular	web	
browser.	Similar	to	the	source	pane,	the	user	can	click	on	the	“+”	icon	next	to	the	
rightmost	tab	to	open	a	new	page	to	create	a	multi-page	application.	
	

3.3 USAGE SCENARIO
Here	I	describe	a	usage	scenario	to	give	an	overview	of	how	Gneiss	enables	users	to	
create	spreadsheet	programs	that	integrate	data	from	multiple	web	services.		
In	this	scenario,	Alice,	a	college	student,	is	using	Gneiss	to	create	a	spreadsheet	
program	that	uses	a	restaurant	web	service	to	look	for	the	highest	rated	restaurants	
and	then	uses	a	direction	web	service	to	calculate	the	driving	time	from	her	school	
to	the	restaurant.	This	task	(finding	places	in	one	data	source	and	calculating	the	
route	to	the	place	in	another)	is	a	popular	task	frequently	used	in	prior	literature	

	
Figure	3.2.	A	screenshot	of	Gneiss	showing	the	spreadsheet	program	created	in	the	usage	scenario.	At	
the	left	is	a	source	pane	that	shows	the	raw	data	returned	from	a	web	service.	(1)	is	the	URL	textbox	
where	the	user	enters	the	address	of	a	web	API.	Note	that	the	value	of	the	cell	A1	has	been	used	as	the	
search	term.	(2)	is	the	returned	data.	(3)	is	the	spreadsheet	interface	where	the	user	can	store	desired	
fields	extracted	from	the	raw	web	service	data	and	do	manipulations.	(4)	If	the	extracted	data	have	
structure,	they	are	shown	in	nested	tables.	The	final	results,	the	driving	time	from	Alice’s	school	to	the	
restaurant,	are	shown	in	column	F	at	(5).	

KERRY CHANG	|	Dissertation	 30

(e.g.,	[28,91]).	Figure	2	shows	a	
screenshot	of	the	final	result	(the	web	
interface	builder	is	not	used	in	this	
scenario	and	thus	is	hidden.)		
	
Alice	starts	by	searching	for	a	web	
service	for	restaurants	online.	She	
quickly	finds	that	Yelp	provides	a	
restaurant	query	API	that	returns	a	list	
of	restaurants	given	a	search	term.	Alice	
copies	the	query	API	from	Yelp’s	
documentation	page	and	pastes	it	into	
the	URL	textbox	(Figure	3.2	at	1)	in	
Gneiss’s	source	pane.	The	return	data	
are	shown	below	the	textbox	(Figure	3.2	
at	2).	Alice	puts	the	search	term	in	cell	
A1	and	sends	it	to	the	web	services	to	
retrieve	data.	To	do	so,	she	changes	the	
value	for	“term”	to	be	{{A1}}	(Figure	3.2	at	1).	Now	every	time	that	A1	changes,	a	
new	restaurant	search	request	is	sent	using	A1’s	value	as	the	query	string,	and	the	
source	pane	updates	to	show	the	latest	return	data.		
	
Alice	does	a	few	tests	and	makes	sure	this	part	works	correctly	by	trying	different	
search	strings	in	A1.	She	then	starts	to	extract	the	fields	she	wants.	Alice	first	wants	
the	name	of	each	restaurant.	She	clicks	on	the	“name”	field	of	the	first	restaurant.	
The	field	gets	highlighted	with	a	blue	background.	She	then	drags	the	field	and	
drops	it	on	column	B	in	the	spreadsheet.	The	tool	automatically	extracts	the	names	
of	all	restaurants	and	puts	them	in	column	B,	and	a	grey	label	appears	in	column	B’s	
label	to	show	the	field	name	from	where	the	data	was	extracted.	Alice	then	extracts	
the	rating,	address	and	reviews	of	each	restaurant	in	the	same	way.	The	API	returns	
multiple	reviews	for	a	restaurant.	Alice	selects	the	first	review	text	of	the	first	
restaurant	and	drops	it	on	column	E.	The	tool	populates	the	rest	of	the	cells	in	the	
column	and	shows	the	reviews	in	nested	tables	(Figure	3.2	at	4).	
	
Alice	only	wants	to	view	the	top	5	rated	restaurants.	To	do	so,	she	clicks	on	the	
arrow	button	at	the	top	of	column	C,	the	column	that	stores	the	ratings,	to	bring	up	a	
dialog	box	that	lets	her	sort	and	filter	the	extracted	data	(Error!	Reference	source	
not	found.).	She	sorts	the	column	descending	and	filters	to	show	only	the	first	five	
items.	She	does	a	few	more	tests	by	editing	A1	to	search	for	a	new	kinds	of	
restaurants.	Changing	A1	triggers	a	new	request	using	A1	as	the	query	term	to	be	
sent	to	the	web	service.	When	the	request	returns,	the	spreadsheet	updates	with	the	
latest	search	results	and	shows	a	new	list	of	restaurant	names,	addresses,	ratings	

	
Figure	3.3.	Pressing	the	arrow	icon	at	the	top	of	
each	column	brings	up	a	dialog	box	that	lets	the	
user	apply	sorting	and	filtering	to	that	column.	Data	
extracted	from	the	same	source	(in	neighboring	
columns)	are	sorted	and	filtered	together	and	are	
highlighted	with	a	purple	background.	The	column	
from	which	the	dialog	box	is	opened	is	highlighted	
with	a	purple	border.	

	

KERRY CHANG	|	Dissertation	 31

and	reviews.	The	sorting	and	filtering	rules	are	re-executed	dynamically	every	time	
new	data	arrive,	so	the	spreadsheet	will	always	show	the	top	5	rated	restaurants.		
	
The	last	step	is	to	use	a	direction	web	service	to	calculate	the	time	from	Alice’s	
school	to	the	restaurants.	Alice	enters	Google’s	direction	API	in	the	URL	bar,	and	she	
binds	the	value	of	parameter	“origin”	and	“destination”	of	the	API	to	the	value	of	cell	
A2,	which	has	the	address	of	her	school,	and	D1,	the	address	of	the	first	restaurant.	
The	API	returns	the	time,	and	she	drags-and-drops	it	into	cell	F1,	while	F2	to	F5	stay	
empty.	To	send	four	more	direction	requests	using	the	other	four	restaurants’	
addresses	as	destinations	to	fill	in	F2	to	F5,	Alice	selects	F1	and	moves	the	mouse	to	
its	bottom-right	corner.	The	mouse	becomes	a	“plus”	sign	for	the	familiar	“auto-fill”	
command.	She	presses	the	mouse	and	drags	down	to	F5	to	fill	in	F2	to	F5	with	the	
time-to-destination	of	the	other	restaurants	(Figure	3.2	at	5).	
	
Alice	has	now	finished	her	data	extraction	program	that	uses	Yelp’s	and	Google’s	
web	services	to	find	top-rated	restaurants	and	the	driving	time	from	her	school	to	
the	restaurants!	She	can	easily	look	for	another	type	of	restaurants	by	changing	A1,	
or	instead	view	the	time-to-destination	from	her	house	to	the	restaurants	by	
changing	A2.	The	spreadsheet	will	update	to	show	the	results	based	on	the	latest	
values	in	A1	and	A2.	While	the	direction	requests	can	only	be	sent	after	the	
restaurant	search	request	returns	so	all	the	addresses	are	filled	in,	among	the	
direction	requests	there	are	no	dependencies.	Therefore,	the	five	direction	requests	
are	sent	in	parallel	to	speed	up	the	performance.	Alice	saves	the	spreadsheet	she	
just	created.	The	next	time	when	she	needs	to	do	another	restaurant	query,	she	only	
has	to	load	the	spreadsheet	back	into	the	tool.	
	

3.4 KEY FEATURES FOR USING WEB SERVICES
In	this	section	I	describe	the	key	features	in	Gneiss’s	spreadsheet	model	to	assist	
people	in	using	web	services.		
	

3.4.1 SELECTING AND EXTRACTING WEB SERVICE DATA
In	Gneiss,	raw	data	returned	from	web	services	are	shown	in	the	source	pane	at	the	
left	of	the	interface.	Gneiss	supports	arbitrary	REST	web	services	that	return	JSON	
data	(extending	Gneiss	to	handle	other	formats	such	as	XML	would	be	
straightforward	but	is	left	for	future	work.	See	also	section	3.6).	The	returned	data	is	
formatted	in	the	source	pane	to	increase	readability.	To	extract	a	desired	field,	the	
user	first	selects	the	field	by	clicking	on	it.	In	the	source	pane,	there	is	a	“select	
similar	fields”	checkbox	(Figure	2	at	2).	If	the	checkbox	is	checked,	the	system	will	
select	other	similar	fields	using	the	user’s	selection	as	an	example.	To	select	similar	
fields,	the	system	will	recursively	go	through	other	items	in	the	same	array	as	the	
selected	field	and	collect	fields	that	have	the	same	path.	For	example,	in	the	usage	

KERRY CHANG	|	Dissertation	 32

scenario,	the	user	selects	the	first	review	of	the	first	restaurant	
($businesses[0].reviews[0].text_excerpt).	With	the	“select	similar	fields”	
checkbox	checked,	the	system	will	select	all	reviews	of	all	restaurants	
($businesses[*].reviews[*].text_excerpt)	for	the	user.	The	selected	fields	will	
be	highlighted	in	a	blue	background	in	the	source	pane.	If	the	“select	similar	fields”	
checkbox	is	not	checked,	the	system	will	only	select	the	field	that	the	user	clicks	on.		
	
As	described	in	the	usage	scenario,	the	user	can	extract	selected	fields	to	the	
spreadsheet	editor	by	drag-and-drop.	If	the	“select	similar	fields”	checkbox	is	
checked,	the	user	can	drag	selected	fields	to	a	spreadsheet	column,	and	the	column	
gets	reserved	to	only	show	those	data.	Empty	cells	in	the	column	are	greyed	out	to	
show	that	they	are	not	available	for	manual	edits.	Since	the	web	service	data	come	
in	dynamically,	we	adopted	this	design	to	avoid	the	situation	where	the	user’s	data	
gets	accidentally	erased	if	the	new	web	service	data	is	longer	than	the	first	
demonstration.	For	example,	in	the	scenario	in	section	3.3,	the	number	of	
restaurants	returned	from	the	web	service	might	be	different	each	time	based	on	
different	query	terms.	Therefore,	the	system	greys	out	cells	in	column	B-E	that	do	
not	have	data	(see	Figure	3.2,	column	B	–	E	from	row	6	and	below).		
	
To	remove	columns	that	contain	web	service	data	in	the	spreadsheet,	the	user	can	
select	a	column	and	choose	to	clear	all	contents	to	start	over.	Users	are	free	to	type	
anywhere	in	columns	that	just	contain	user-typed	data	(such	as	column	A	in	the	
usage	scenario).	If	the	“select	similar	fields”	checkbox	is	not	checked,	then	only	the	
selected	field	is	used	in	the	target	spreadsheet	cell.	Other	cells	in	that	column	are	
not	reserved	and	can	be	edited	like	regular	cells.		
	
In	an	earlier	version	of	Gneiss	[20],	after	selecting	a	field,	the	system	would	display	
the	path	of	the	selected	fields	in	the	source	pane	and	allow	the	user	to	edit	the	path	
to	perform	more	customized	selection	using	the	data	structure.	For	example,	in	the	
usage	scenario,	if	the	user	only	wants	the	first	review	of	each	restaurant,	she	could	
first	click	on	the	first	review	of	the	first	restaurant,	and	edit	the	path	to	be	
$businesses[*].reviews[0].text_excerpt	to	change	the	selection,	then	drag	the	
selected	fields	to	a	spreadsheet	column.	This	feature	was	removed	in	the	current	
version	[22]	as	the	user	can	perform	hierarchical	sorting	and	filtering	in	the	
spreadsheet	to	achieve	the	same	thing	without	having	to	understand	the	JSON	path	
syntax.	For	example,	the	user	can	now	first	extract	all	restaurant	names	and	all	their	
reviews	then	use	filtering	to	keep	only	the	first	review	of	each	restaurant.	Gneiss’s	
support	for	manipulating	hierarchical	data	is	discussed	in	detail	in	Chapter	5.		
	

3.4.2 SENDING SPREADSHEET DATA TO WEB SERVICES
As	described	in	the	usage	scenario,	the	user	can	send	data	in	a	spreadsheet	cell	to	a	
web	service	by	embedding	the	cell	name	in	a	web	API	using	the	syntax	

KERRY CHANG	|	Dissertation	 33

{{cellName}}.	The	double	braces	syntax	is	adapted	from	conventional	web	
template	libraries	such	as	Handlebar.js	[105]	that	let	the	programmer	escape	from	
HTML	and	write	JavaScript	statements	inside	the	braces.	Here,	I	use	this	syntax	to	
let	users	write	spreadsheet	expressions	in	web	API	URLs.	As	I	showed	in	the	
scenario	in	section	3.3,	the	spreadsheet	data	used	in	web	APIs	can	either	be	constant	
(like	A1)	or	computed	based	on	other	cells	(like	E1).	RESTful	web	APIs	are	typically	
HTTP	requests.	Gneiss	by	default	sends	an	API	request	as	a	GET	request.	The	user	
can	change	it	to	a	POST	request	when	using	a	POST	API	by	toggling	a	button	next	to	
the	URL	bar	in	the	source	pane	(Error!	Reference	source	not	found.	at	the	upper	
left).		
	
Gneiss	uses	the	spreadsheet’s	one-way	constraint	evaluation	model	to	send	a	web	
service	call	and	handle	the	return	data.	As	demonstrated	in	the	usage	scenario,	if	a	
web	service	request	uses	values	from	spreadsheet	cells,	every	time	when	the	cells	
change,	it	will	trigger	the	system	to	resend	the	request	using	the	new	values.	When	
waiting	for	the	request	to	return,	spreadsheet	cells	that	contain	data	extracted	from	
that	web	service	request	will	become	a	special	“Loading…”	value	(similar	to	how	
conventional	spreadsheets	handle	errors).	The	“Loading…”	value	will	propagate	
throughout	the	spreadsheet	to	other	cells	that	use	data	from	this	web	service	in	
formulas.	When	the	web	service	request	returns,	all	corresponding	spreadsheet	
cells	will	automatically	recalculate	using	the	latest	return	data.	If	a	spreadsheet	cell	
whose	value	comes	from	a	web	service	call	that	depends	on	another	spreadsheet	
cell	that	is	currently	loading,	the	system	will	not	send	the	web	service	call	until	the	
dependent	cell	receives	its	value.	For	example,	in	the	scenario	in	section	3.3,	when	
the	user	searches	for	a	new	type	of	restaurant,	cell	F1’s	web	service	call	(driving	
time	from	cell	A2	to	cell	D1)	will	not	be	sent	until	the	restaurant	search	results	
(column	B-E)	finish	loading,	and	F1’s	value	is	“Loading…”	while	waiting	for	D1.	If	a	
web	service	call	fails	to	return,	the	system	will	populate	an	“Error”	value	in	all	the	
related	cells.	The	users	do	not	need	to	write	any	code	to	deal	with	different	states	of	
an	asynchronous	network	call.	As	in	conventional	spreadsheets,	errors	are	localized	
and	will	not	affect	other	independent	spreadsheet	cells.		
	
The	drag-and-drop	gesture	for	extracting	web	service	data	to	spreadsheets	and	the	
double-braces	syntax	for	sending	spreadsheet	data	to	a	web	service	achieve	two-
way	data	flow	between	Gneiss	and	arbitrary	REST	web	services.	The	spreadsheets	
created	in	Gneiss	are	easily	reusable,	as	the	user	can	send	a	new	request	to	a	web	
service	and	retrieve	new	data	by	simply	editing	spreadsheet	cells.	The	spreadsheet	
can	further	be	linked	to	a	web	interface	created	in	Gneiss’s	web	interface	builder	
(Figure	3.1	at	the	right)	to	let	people	search	and	view	the	data	in	a	web	application	
(described	in	detail	in	Chapter	4).		
	

KERRY CHANG	|	Dissertation	 34

3.4.3 SORTING AND FILTERING WEB SERVICE DATA
As	described	in	the	scenario	in	section	3.3,	sorting	and	filtering	rules	specified	for	
columns	that	have	web	service	data	are	re-executed	every	time	when	the	system	
retrieves	new	data	from	the	web	service	to	maintain	the	relationship.	This	provides	
a	way	to	let	users	further	refine	the	collected	external	data,	such	as	in	the	scenario	
in	section	3.3,	Alice	can	use	sorting	and	filtering	to	always	view	the	top	5	rated	
restaurants	every	time	she	makes	a	new	query.	This	is	different	from	the	regular	
sorting	and	filtering	in	conventional	spreadsheets	that	only	sort	and	filter	the	
current	data	in	a	column	and	do	not	apply	to	future	edits.	In	fact,	in	conventional	
spreadsheets,	if	web	service	data	are	retrieved	by	functions,	they	cannot	even	be	
sorted	and	filtered	because	sorting	and	filtering	do	not	work	on	functions.	My	
design	in	Gneiss	avoids	this	problem	since	web	service	data	are	retrieved	through	
the	drag-and-drop	gesture.			
	
Currently,	Gneiss	supports	sorting	web	service	data	in	a	column	by	the	values.	If	the	
column	stores	streaming	data	from	a	web	service,	the	user	can	also	choose	to	sort	
the	data	by	its	fetched	time	(it	does	not	make	sense	to	sort	non-streaming	web	
service	data	in	a	column	by	fetched	time	since	they	are	all	retrieved	at	the	same	
time,	such	as	the	restaurant	search	results	in	the	scenario	in	section	3.3).	Details	on	
sorting	streaming	data	by	time	are	described	in	Chapter	6.		
	
For	filtering,	Gneiss	supports	filtering	to	view	the	first	X	elements	(as	in	the	scenario	
section	3.3	to	view	the	top	5	rated	restaurants);	to	view	data	that	are	equal	to,	less	
than,	greater	than,	less	than	or	equal	to,	greater	than	or	equal	to,	or	contain	(for	
strings	only)	a	certain	value;	or	to	remove	all	duplicate	values.	If	the	column	stores	
streaming	data	from	a	web	service,	the	user	can	also	choose	to	view	data	within	a	
certain	time	period.		
	
To	apply	sorting	and	filtering	to	a	column,	the	user	clicks	on	the	arrow	icon	at	the	
bottom-right	corner	of	the	column	title	(Error!	Reference	source	not	found.).	A	
dialog	box	will	appear	to	let	the	user	specify	how	they	want	the	column	to	be	sorted	
and	filtered.	Currently,	adjacent	columns	extracted	from	the	same	web	service	
request	are	sorted	and	filtered	together.	For	example,	in	the	scenario	in	section	3.3,	
the	user	opened	the	dialog	box	for	the	rating	column	(column	C)	and	applied	
sorting,	and	that	sorts	the	entire	restaurant	data	in	column	B-E	by	column	C.	A	
future	work	is	to	let	users	select	the	affected	columns	in	a	dialog	box	as	in	
conventional	spreadsheets.	When	the	sorting	and	filtering	dialog	box	is	open,	Gneiss	
highlights	all	the	affected	columns	using	a	purple	background,	with	the	column	to	
which	the	dialog	box	belongs	having	a	purple	border	to	make	this	clearer	to	the	
user.		

KERRY CHANG	|	Dissertation	 35

	
Sorting	and	filtering	rules	can	be	constant	rules	set	using	the	GUI	controls	in	the	
dialog	box	as	in	the	scenario	in	section	3.3.	They	can	also	be	dynamically	computed	
using	a	spreadsheet	formula	entered	into	the	“Use	computed	value”	textbox	in	the	
dialog	box	(see	Error!	Reference	source	not	found.).	For	sorting,	the	computed	
value	should	be	a	string	that	describes	the	sorting	method.	For	filtering,	the	
computed	value	should	be	a	comma-separated	string	with	the	first	item	being	the	
filtering	method	and	the	rest	of	the	items	being	the	parameters	required	by	the	
method	(see	Table	3.1	for	a	complete	reference).	For	example,	entering	=IF(A3>1,
“Descending”, “Ascending”)	in	the	“Use	computed	value”	textbox	for	sorting	will	
sort	the	data	descending	if	A1	is	bigger	than	1	and	ascending	otherwise.	This	feature	
is	mainly	designed	for	letting	users	create	web	applications	that	can	sort	and	filter	
spreadsheet	data	using	web	GUI	element,	such	as	by	entering	=“Filter value, >=,
”&Slider1!Value	as	the	rule	to	filter	out	cells	that	are	less	than	the	value	of	Slider1	
in	the	web	application.	I	will	explain	the	
details	about	building	web	applications	
in	Gneiss	in	the	next	chapter	(Chapter	
4).		
	
To	sum	up,	Gneiss	provides	two	levels	
of	dynamic	sorting	and	filtering	for	web	
service	data.	First,	sorting	and	filtering	
rules	are	re-executed	every	time	when	
new	data	are	retrieved	from	a	web	
service,	so	that	the	data	is	always	in	the	
desired	order	and	value	range.	Second,	
if	the	sorting	and	filtering	rules	are	
computed	values,	every	time	when	the	
computed	values	change	it	will	cause	
sorting	and	filtering	to	be	run	again	as	
well.			
	

3.4.4 “AUTOFILLING” CELLS WITH WEB SERVICE DATA
“Autofill”	(also	called	“fill	down”)	is	a	common	feature	in	spreadsheet	tools	where	
the	user	selects	one	or	multiple	cells	and	drags	to	fill	in	additional	cells.	In	Gneiss,	
when	the	user	selects	and	drags	a	cell	whose	value	comes	from	a	web	API	that	uses	
values	of	other	cells	in	the	same	row,	as	the	user	drags	it	down,	the	system	will	
replace	these	cells	in	the	web	API	with	the	corresponding	cells	in	the	new	row.	For	
example,	in	the	scenario	in	section	3.3,	cell	F1’s	value	comes	from	the	direction	API	
that	uses	the	value	of	cell	A2	and	E1	as	the	value	of	the	origin	and	destination	
parameter	(Figure	3.2	at	5).	When	the	user	selects	F1,	the	system	recognizes	that	E1	
is	in	the	same	row	as	F1.	When	the	user	drags	down	to	rows	2	and	3,	the	system	

Computed	Rules	for	Sorting	

“None”,	“Ascending”,	“Descending”,	“Ascending	
by	time”,	“Descending	by	time”	(the	last	two	
for	streaming	data	only	–	see	Chapter	6)	

Computed	Rules	for	Filtering	

Method	Name	 Parameter(s)	

“Filter	top”	 The	number	of	first	X	
items	to	keep	

“Filter	value”	 1)	“=”,	“contains”,	“>=”,	
“<=”,	“>”,	“<”	
2)	The	value	to	filter	

“Filter	duplicates”	 No	parameters	

“Filter	by	time”		
(for	streaming	data	

only)	

1)	“Before”,	“After”	
2)	The	time	to	filter	

Table	3.1.	Computed	rules	for	sorting	and	
filtering	supported	in	Gneiss.	

KERRY CHANG	|	Dissertation	 36

replaces	E1’s	value	in	the	web	API	with	E2’s	and	E3’s	values	(the	addresses	of	the	
second	and	third	restaurants),	sending	the	required	API	requests,	and	extracting	
data	using	the	same	path	as	data	in	F1	to	fill	in	F2	and	F3.	By	default,	our	tool	does	
not	replace	A2’s	value	in	the	web	API	with	A3	and	A4	because	A2	is	not	in	the	same	
row	as	the	selected	cell	E1.	If	the	user	wants	A2’s	value	to	also	be	replaced	by	the	
rest	of	the	cells	in	column	A,	she	can	manually	compose	a	second	cell	using	another	
direction	API	call	that	uses	the	value	of	A3	and	E2,	and	extracts	the	data	to	F2.	Then,	
if	she	selects	both	F1	and	F2	and	drags,	the	system	will	recognize	the	pattern	in	the	
selected	cells	and	apply	it	to	fill	in	the	new	cells.	This	is	the	same	way	that	Excel	and	
other	spreadsheets	work	now	–	if	the	autofill	pattern	is	not	apparent	from	a	single	
cell,	users	can	provide	two	cells	to	demonstrate	the	pattern.		
	
As	described	earlier,	a	web	service	request	could	return	different	numbers	of	data	
depending	on	the	query	terms.	In	Gneiss,	when	the	user	selects	a	cell	whose	value	
comes	from	a	web	API	that	uses	values	of	other	cells	in	the	same	row	and	drags	to	
the	last	row	of	the	current	column,	the	system	will	reserve	this	column	(empty	rows	
are	greyed	out)	and	autofill	it	to	have	the	same	number	of	items	as	the	example	
columns.	Of	course,	the	user	can	drag	it	to	a	specific	row	if	she	knows	exactly	how	
many	calls	to	send.	For	example,	in	the	scenario	in	section	3.3,	the	user	filters	to	only	
have	just	the	first	five	restaurants,	so	when	autofilling	column	F	with	direction	web	
service	calls,	she	knows	that	she	only	needs	to	drag	to	F5.	In	this	case,	column	F	will	
not	be	reserved,	and	the	user	can	use	the	rest	of	the	cells	in	F	for	other	things.	This	
can	also	improve	performance	at	run	time,	as	the	distance	web	service	only	needs	to	
be	called	5	times.	
	

3.4.5 USING STRUCTURED DATA
When	dragging	web	service	data	to	the	spreadsheet,	Gneiss	will	display	data	as	
nested	tables	to	show	the	hierarchical	structure	among	the	extracted	data.	For	
example,	in	the	usage	scenario,	when	the	user	extracts	the	reviews	to	the	
spreadsheet,	because	each	restaurant	can	have	multiple	reviews,	the	system	
generates	nested	tables	to	put	the	reviews	in	the	same	row	with	their	corresponding	
restaurant.	Each	nested	cell	in	a	nested	table	has	a	nested	row	label	that	can	be	used	
to	reference	a	cell	in	a	spreadsheet	formula	using	the	familiar	syntax	
ColumnlabelRowlabel.	For	example,	in	Figure	3.2	at	4,	E1.1	selects	the	value	“Went	
here	thanks	to…“	which	is	the	first	review	of	the	first	restaurant.	The	user	can	also	
uses	conventional	spreadsheet’s	“:“	operator	for	specifying	the	start	and	end	cell	of	
a	range	selection	to	select	values	in	multiple	cells.	For	example,	E1.1:E2.2	in	Figure	
2	at	4	returns	five	reviews.	The	user	can	also	use	the	parent	row	label	to	select	all	
cells	in	a	nested	table.	For	example,	E1	returns	all	three	reviews	of	the	first	
restaurant	in	Figure	3.2	at	4.	Finally,	our	language	includes	a	wildcard	character	(*)	
that	can	be	used	in	any	nested	row	index	to	further	assist	hierarchical	selection.	For	
example,	E*.1	in	Figure	3.2	at	4	returns	the	first	review	cell	of	all	the	restaurants.		

KERRY CHANG	|	Dissertation	 37

	
Values	returned	by	a	selection	are	put	in	a	one-level	array;	in	other	words,	the	
selected	nested	cells	are	flattened	and	put	in	a	flat	array.	For	example,	in	the	
spreadsheet	in	Figure	3.2,	E1	returns	an	array	of	three	items	with	each	item	being	a	
review.	Therefore,	conventional	spreadsheet	functions	that	accept	a	list	of	values	
can	also	work	for	nested	cells.	For	example,	the	user	can	write	this	formula	
=COUNTIF(E1, ”mussels”) to	use	the	conventional	COUNTIF	function	to	count	the	
number	of	reviews	of	the	first	restaurant	that	contain	the	word	“mussels”.		
	
This	extended	spreadsheet	language	syntax	leverages	the	structure	of	the	data	to	
support	selecting	hierarchical	data	and	using	the	data	in	spreadsheet	formulas.	In	
fact,	Gneiss’	hierarchical	data	visualization	is	dynamic	based	on	how	the	user	
organizes	data	in	spreadsheet	columns	and	allows	the	user	to	regroup	hierarchical	
data	using	arbitrary	fields.	The	user	can	also	sort,	filter	and	join	hierarchical	objects	
using	their	hierarchical	structure.	The	complete	features	for	using	hierarchical	data	
in	Gneiss	are	described	in	detail	in	Chapter	5.		
	

3.4.6 REFRESHING WEB SERVICE DATA
Many	web	services	provide	dynamic	data	that	change	over	time.	For	example,	in	the	
usage	scenario,	for	the	same	destination	the	Google	web	service	may	return	
different	driving	times	in	different	hours	of	a	day.	If	the	spreadsheet	has	been	
created	for	a	while,	the	user	may	want	to	update	the	spreadsheet	with	the	latest	
values.	Gneiss	allows	the	users	to	refresh	spreadsheet	data	manually	or	periodically	
through	a	menu	option	in	the	top	menu	bar.	The	system	will	resend	all	the	web	
service	requests	used	in	the	spreadsheet	to	retrieve	the	latest	data.		
	
As	briefly	mentioned	before,	Gneiss	also	lets	users	stream	data	from	web	services	to	
a	spreadsheet.	The	“refreshing	data”	feature	here	is	different	from	the	“streaming	
data”	feature	as	when	streaming	data	to	a	spreadsheet,	history	values	are	kept	and	
stored	in	Gneiss’s	database.	In	contrast,	the	refreshing	feature	simply	updates	
spreadsheet	cells	with	the	latest	data	and	does	not	store	the	old	values.	If	the	user	
only	cares	about	the	current	data,	such	as	in	the	usage	scenario	where	Alice	only	
wants	to	know	how	long	it	would	take	to	drive	to	the	restaurants	now,	then	using	
the	refreshing	data	feature	is	enough.	If	the	user	cares	about	not	only	the	current	
data	but	also	the	trends	in	the	data	or	wants	to	analyze	the	data	by	time	(e.g.,	if	the	
user	wants	to	analyze	the	traffic	jam	situation	throughout	a	day),	then	she	will	use	
the	streaming	data	feature.	Details	on	how	Gneiss	supports	streaming	data	are	
described	in	Chapter	6.		
	

KERRY CHANG	|	Dissertation	 38

3.4.7 PARALLEL-RUNNING PROGRAMS, ERROR HANDLING AND
MAINTENANCE

While	the	user’s	demonstration	and	manipulation	of	cells	is	always	performed	
sequentially,	the	spreadsheet	metaphor	allows	Gneiss	to	construct	a	parallel-
running	program	using	the	dependencies	among	the	spreadsheet	cells.	Cells	that	do	
not	have	any	dependencies	on	each	other	can	be	computed	independently	in	
parallel.	This	could	make	a	big	improvement	on	performance,	especially	when	
extracting	a	large	amount	of	data.	For	example,	if	the	user	wants	to	collect	data	
using	50	on-line	shopping	web	services	to	compare	prices,	she	can	easily	create	a	
spreadsheet	program	that	sends	50	web	API	requests	in	parallel,	and	gets	the	data	
within	seconds.	This	is	in	contrast	to	web	scraping	programs	(e.g.,	[30,58,82])	that	
can	only	execute	sequentially	in	the	same	order	as	when	the	user	demonstrated	
them.	Those	systems	also	must	insert	fairly	long	delays	into	the	program	(for	
example,	10	seconds	in	the	example	in	[58])	in	hopes	that	this	will	be	long	enough	to	
make	sure	the	web	pages	have	finished	loading.	Since	our	tool	uses	web	services,	we	
know	when	the	call	has	completed,	and	no	extra	delays	are	required.	
	
A	web	service	call	could	sometimes	fail	due	to	various	reasons	such	as	scheduled	
maintenance,	change	of	protocols,	a	bad	Internet	connection,	or	even	a	bug	in	the	
user’s	specification	of	the	URL.	As	briefly	discussed	in	section	3.4.1,	Gneiss	is	robust	
in	handling	bad	web	service	requests,	as	it	will	fill	the	error	cells	with	a	special	
“error”	value	and	propagate	this	value	to	all	dependent	cells	when	it	receives	a	
HTTP	error	when	accessing	the	web	service.	The	user	can	easily	see	the	errors	in	
the	spreadsheet	and	trace	back	to	the	origin	using	conventional	spreadsheet	
mechanisms.	Our	system’s	ability	to	execute	programs	in	parallel	also	allows	other	
parts	of	the	program	that	do	not	depend	on	the	error	cells	to	run	as	usual.	For	
example,	if	the	user	creates	a	spreadsheet	that	searches	a	product	on	10	different	
web	services	and	the	request	to	one	of	them	fails,	the	user	will	see	an	error	from	
that	web	service	but	still	will	still	get	data	from	the	other	9.	Debugging	is	also	easier	
in	our	tool	because	the	user	can	see	all	the	values	in	the	spreadsheet	and	see	them	
changing	at	run	time,	unlike	in	other	programming	languages,	such	as	Yahoo	Pipes,	
where	data	are	typically	hidden	unless	the	user	looks	for	them.	
	
As	described	in	the	scenario,	the	user	can	save	the	spreadsheet	program	and	load	it	
back	to	the	tool	at	a	future	time	when	she	needs	to	perform	similar	queries.	Reusing	
a	spreadsheet	is	easy	as	the	user	can	edit	a	spreadsheet	into	another	one	and	reuse	
appropriate	parts.	For	example,	in	our	scenario,	if	Yelp	stops	supporting	its	web	
service	after	the	spreadsheet	program	is	created,	the	user	could	use	another	web	
service	to	search	for	restaurants	(such	as	Google	Places)	and	replace	the	restaurant	
columns	in	the	same	spreadsheet	with	appropriate	fields	from	the	new	data	source,	
without	having	to	modify	the	location	part.	
	

KERRY CHANG	|	Dissertation	 39

3.5 DEMONSTRATIVE EXAMPLES
Here	I	use	two	more	examples	to	demonstrate	Gneiss’s	ability	to	create	spreadsheet	
programs	that	use	web	services	in	a	variety	of	ways.	
	

3.5.1 CITY TRIP PLANNER WITH A MAP
A	common	activity	when	a	person	plans	to	visit	a	new	city	is	to	search	for	all	
attractions	in	the	city,	pick	the	ones	he	is	interested	in,	and	plot	them	on	a	map.	In	
this	example,	I	will	show	how	a	user	with	basic	knowledge	of	spreadsheet	
programming	can	program	such	a	custom	application	with	Gneiss	using	spreadsheet	
languages.			
	
The	user	starts	by	using	Google’s	Place	Search	API	to	get	a	list	of	attractions.	She	
changes	the	value	of	the	query	parameter	in	the	API	to	{{A1}}	to	bind	it	to	cell	A1.	
From	the	return	data,	she	drags	the	name,	rating,	latitude	and	longitude	fields	to	
columns	B	to	E.	She	decides	to	make	column	F	the	“input	column”	–	if	she	likes	a	
place	and	wants	to	plot	it	on	the	map,	she	enters	“x”	in	that	place’s	row	in	column	F	
to	mark	it.	Otherwise	she	leaves	the	cell	blank.	
	
The	user	then	uses	Google’s	Static	Map	API,	which,	given	a	list	of	geo-coordinates,	
will	return	an	image	of	a	map	with	markers	marking	the	locations.	The	user	also	
wants	to	send	a	list	of	labels	to	be	used	on	the	markers.	To	add	a	marker	given	a	pair	
of	geo-coordinates	and	a	label,	the	user	needs	to	append	
	

&markers=label:labelValue|latitude,longitude

	
at	the	end	of	the	API.	To	do	so,	the	user	uses	the	following	regular	spreadsheet	
formula	in	cell	G1:	
	

=IF(ISBLANK(F1), “”,

CONCATENATE(“&markers=label:”,F1, “|”, D1, “,”, E1))

	
where	D1	and	E1	store	the	latitude	and	longitude	of	the	first	item.	What	this	formula	
does	is	to	first	see	if	F1	is	blank.	If	it	is,	return	nothing.	Otherwise,	return	the	
concatenated	string.	She	selects	G1	and	autofills	other	cells	in	column	G.	
Now	the	user	gets	all	the	“markers”	strings	she	needs	to	compose	the	whole	web	
API.	She	uses	the	CONCATENATE	function	again	in	H1	to	combine	the	constant	part	of	
the	URL	with	everything	in	column	G	using	the	formula	=CONCATENATE(“http://
maps.googleapis.com…”, G:G).	Now,	H1	is	the	complete	web	URL	that	returns	an	
image	of	a	map	with	the	makers	specified.	Gneiss	provides	an	IMAGE(url)	function	
(same	as	Google	Spreadsheet’s	IMAGE	function)	that	lets	users	display	a	image	in	a	
spreadsheet	cell	given	a	URL.	So,	the	user	enters	=IMAGE(H1)	in	H2,	and	H2	becomes	
the	actual	map	image.	The	result	is	shown	in	Figure	3.4.	

KERRY CHANG	|	Dissertation	 40

	
The	created	spreadsheet	program	is	highly	reusable.	The	user	can	search	for	
another	type	of	place	by	editing	the	cell	A1,	or	add	or	remove	a	place	from	the	map	
by	entering	or	deleting	contents	in	its	corresponding	cell	in	column	F.	None	of	these	
requires	the	user	to	change	any	programming	logic	in	the	spreadsheet.	The	user	
could	easily	share	this	city	trip	planner	spreadsheet	with	her	friends,	with	a	little	
explanation	about	what	the	columns	are	and	how	to	use	them.		
	
As	mentioned	in	Chapter	1,	Gneiss	also	allows	users	to	turn	data	in	the	spreadsheet	
into	a	web	application.	I	will	demonstrate	in	Chapter	4	how	the	user	can	create	a	
web	application	where	the	user	can	enter	the	search	term	in	a	textbox	and	
interactively	plot	places	on	a	clickable	map	using	checkboxes	(see	section	4.2).		
	

3.5.2 CUSTOMIZED BOOK LIST
Another	advantage	of	using	a	spreadsheet	is	that	it	enables	users	to	easily	combine	
their	own	data	with	web	service	data,	since	spreadsheets	are	familiar	tools	for	
people	to	store	personal	data.	Suppose	the	user	keeps	a	list	of	books	she	owns	in	a	
spreadsheet	and	wants	to	read	the	reviews	of	the	books.	Searching	the	book	titles	
one	by	one	on	Google	for	reviews	would	be	tedious.	Instead,	she	could	load	the	
spreadsheet	to	Gneiss5	and	use	New	York	Time’s	book	review	API	to	quickly	collect	
the	reviews	for	all	the	books.	New	York	Time’s	book	review	API	lets	users	search	the	
reviews	of	a	book	using	the	book’s	title,	and	returns	a	list	of	reviews	where	each	
review	has	a	summary	text	and	a	URL	to	the	full	review	on	New	York	Time’s	
website.	Using	Gneiss,	the	user	could	quickly	retrieve	the	review	information	for	all	
her	books	by	sending	the	first	book’s	title	as	the	query	term,	extracting	the	first	
book’s	review	information	to	the	first	row	of	an	empty	column,	and	autofill	that	
information	for	the	rest	of	the	books.	The	user	can	then	quickly	view	all	the	review	
summary	text	for	all	her	books,	and	if	she	sees	anything	she	is	interested	in,	she	can	
further	click	on	the	URL	to	open	the	full	review	on	the	New	York	Times	website	in	a	
																																																								
5	Gneiss	currently	does	not	support	loading	an	external	spreadsheet	file	(such	as	a	Excel	spreadsheet).	But	one	can	imagine	
this	feature	to	be	easily	added	to	Gneiss.				

	
Figure	3.4.	A	screenshot	of	the	demonstrative	example	in	section	3.5.1	

KERRY CHANG	|	Dissertation	 41

separate	browser	tab.		Multiple	reviews	of	a	book	will	be	put	in	nested	cells	to	be	in	
the	same	row	with	the	book	title	to	increase	readability.		
	

3.6 LIMITATIONS AND DISCUSSION
The	current	Gneiss	prototype	has	several	limitations.		
	

3.6.1 SPREADSHEET USABILITY
As	mentioned	in	section	3.2,	to	provide	the	necessary	freedom	to	experiment	with	
new	ideas,	I	chose	to	implement	my	own	spreadsheet	editor	in	Gneiss,	including	all	
the	spreadsheet	functions	along	with	the	sorting,	filtering	and	autofilling	
mechanisms.	As	a	result,	Gneiss	lacks	some	usability	features	that	are	common	in	
commercial	spreadsheet	tools.	To	name	a	few,	first,	Gneiss	supports	only	a	few	
spreadsheet	functions	(such	as	those	described	thoughout	this	dissertation	and	
summarized	in	Appendix	A)	that	I	implemented	for	the	sake	of	demonstration	and	
for	running	the	user	study	(described	in	section	5.5).	In	contrast,	commercial	
spreadsheets	such	as	Excel	support	hundreds	of	spreadsheet	functions.	Second,	the	
autofilling	gesture	in	Gneiss	is	not	as	intelligent	as	in	commercial	spreadsheets	in	
inferring	the	new	values	based	on	example	values.	For	example,	in	Excel	the	user	
can	enter	“Monday”	and	“Tuesday”	in	two	cells,	select	them	and	drag	down	to	fill	in	
the	rest	of	the	days	of	the	week.	Excel’s	Flash	Fill	[36]	can	recognize	patterns	in	
example	strings	and	use	the	patterns	to	create	new	values,	such	as	extracting	
everyone’s	first	name.	Gneiss	does	not	have	those	abilities.	Third,	Gneiss	currently	
does	not	support	undo	and	redo.	Fourth,	commercial	spreadsheets	provide	many	
copying	and	pasting	options,	such	as	pasting	multiple	cells	to	match	the	destination	
formatting	or	pasting	by	computed	values	only.	Gneiss	currently	only	supports	
copying	and	pasting	a	single	cell	at	a	time	and	can	only	paste	the	cell’s	input	value.		
	
Adding	the	various	missing	usability	features	to	Gneiss	is	a	future	work.	In	this	
dissertation,	I	focus	on	describing	the	research	contributions	of	Gneiss	and	also	
demonstrating	that	conventional	spreadsheet	features	can	be	intuitively	added	to	
Gneiss	with	very	little	modifications.		
	

3.6.2 SUPPORTING MORE TYPES OF WEB SERVICES
There	are	two	main	limitations	of	the	current	Gneiss	prototype	in	supporting	web	
data	services.	First,	Gneiss	supports	only	RESTful	web	services	that	return	JSON	
data.	It	does	not	support	web	services	using	other	protocols,	such	as	SOAP,	or	
returning	other	kinds	of	data	formats,	such	as	XML	or	CSV.	However,	I	believe	that	
the	key	features	described	above	should	still	be	able	to	be	applied	to	those	kinds	of	
web	services	with	minor	changes	in	the	source	pane	to	accommodate	the	

KERRY CHANG	|	Dissertation	 42

differences.	For	example,	the	same	drag-and-drop	gesture	for	extracting	a	field	in	a	
JSON	document	can	also	be	used	to	extract	a	field	in	a	XML	document.		
	
The	second	limitation	is	the	usability	of	web	data	services.	Gneiss	lets	users	load	
data	from	web	services	using	a	URL	bar.	This	is	a	simple	design	that	enables	users	
familiar	with	web	services	to	easily	use	any	basic	REST	web	services	they	want.	
However,	for	users	who	are	not	familiar	with	web	services,	they	might	need	more	
guidance	than	a	URL	bar	to	use	a	web	service.	For	example,	they	may	prefer	to	have	
several	built-in	web	APIs	and	to	configure	the	parameters	through	dialog	boxes.	The	
URL	bar	also	fails	to	support	more	complicated	web	services	that	may	require	
special	widgets	or	dialog	boxes	to	configure.	For	example,	some	web	services	limit	
the	number	of	data	returned	in	each	call	and	use	special	parameters	to	retrieve	the	
next	set	of	data.	Gneiss	currently	does	not	have	a	good	way	to	support	automatically	
retrieving	the	next	set	of	data	using	the	URL	bar	besides	having	the	user	manually	
configure	the	parameter	and	retrieve	the	data	again.	The	URL	bar	also	does	not	
support	web	services	that	use	additional	authentication	protocols,	such	as	OAuth.		
	
Obviously,	hardwiring	a	web	API	and	a	custom	configuration	dialog	box	for	people	
to	use	a	web	service	in	Gneiss	can	be	done	(and	many	prior	research	systems	such	
as	[49,91]	let	people	use	web	services	in	this	way),	and	most	of	the	novel	features	
described	above	could	still	be	used	to	support	interacting	with	that	web	service	data	
once	they	are	retrieved.	However,	I	had	previously	developed	a	tool	to	let	users	add	
a	new	web	service	to	use	in	a	finished	application	as	a	plugin.	This	tool,	called	Spinel	
[17],	consists	a	library	for	application	developers	to	create	such	an	extendable	
application,	and	a	GUI	tool	for	end	users	to	create	a	data	source	plugin	without	
having	to	write	any	code.	Spinel	was	originally	developed	for	Android	applications,	
but	it	can	be	applied	to	web	applications	like	Gneiss	as	well.	If	integrated	with	
Gneiss,	the	Spinel	architecture	could	allow	web	services	that	cannot	be	used	in	a	
simple	URL	bar	to	be	added	to	Gneiss	as	plugins	without	having	to	edit	Gneiss’	
source	code.	It	could	also	let	Gneiss	provide	GUI	widgets	to	help	people	use	a	plugin	
web	service.	Next,	I	briefly	describe	Spinel.	The	full	description	is	published	
elsewhere	[17].	
	

3.7 SPINEL: ADDING DATA SOURCES TO AN APPLICATION AS PLUGINS
Many	applications	that	people	use	daily	are	applications	that	provide	user	interfaces	
to	interact	with	some	backend	data	sources,	and	many	of	those	applications	have	
similar	user	interfaces.	For	example,	there	are	hundreds	of	applications	that	let	
people	search	data	about	different	types	of	places	(such	as	Google	Places,	Yelp,	
Hotels.com,	etc.),	and	these	applications	all	show	the	data	in	either	a	list	or	a	map.	
Spinel	is	motivated	by	this	observation	that	a	single,	consistent	user	interface	
application	(e.g.,	the	same	map	app)	may	be	used	to	display	many	different	kinds	of	
data	(e.g.,	Google	Places,	Yelp,	and	other	location	data	sources).	Therefore,	it	aims	to	

KERRY CHANG	|	Dissertation	 43

help	developers	create	an	
extendable	application	where	
the	backend	data	sources	can	
be	easily	added	and	removed	
by	end	users	to	make	the	
application	more	reusable	
and	tailored	to	individual	
needs.	Spinel	contributes	a	
software	architecture	that	
allows	applications	to	take	a	
data	source	as	a	plugin.	
Moreover,	Spinel	provides	a	
GUI	tool	to	let	people	create	such	a	plugin	without	having	to	write	any	code,	so	end	
users	may	be	able	to	make	their	own	plugin	for	the	data	sources	they	want.		
	
For	example,	I	previously	created	a	mobile	text	entry	tool	called	Listpad	[16]	that	
can	use	relevant	web	services	to	provide	autocomplete	suggestions	to	help	users	
enter	data,	such	as	using	Yelp	as	the	source	for	autocomplete	suggestions	when	the	
user	is	entering	a	personal	restaurant	list.	Listpad	uses	the	Spinel	architecture	and	is	
extendable	because	the	user	can	add	a	new	data	source	to	Listpad	to	use	as	
autocomplete	suggestions	by	installing	a	plugin	without	having	to	edit	Listpad’s	
source	code	or	rebuild	the	Listpad	app.		
	
One	can	imagine	that	Gneiss	could	also	use	the	Spinel	architecture	to	provide	web	
services	in	the	source	pane.	The	same	source	pane	UI,	along	with	a	dialog	box	
mechanism	for	configuring	parameters	in	a	web	URL,	can	be	used	on	different	APIs	
from	different	web	services.	The	mappings	between	the	Gneiss’s	UI	and	the	web	API	
used	would	be	described	in	the	data	source	plugin	file.	The	plugin	file	could	also	
include	advanced	authentication	information,	such	as	parameters	required	for	
OAuth	(which	is	the	predominant	authentication	protocol	for	modern	REST	web	
services),	to	allow	more	types	of	web	services	to	be	used	in	Gneiss.	In	this	way,	new	
web	services	could	be	easily	added	to	Gneiss	as	plugins.	These	plugins	could	be	
made	using	the	Spinel	GUI	tool	and	would	then	be	independent	from	the	main	
Gneiss	application.		
	
For	example,	if	a	user	wants	to	use	in	Gneiss	his	own	company	web	service	that	uses	
OAuth,	and	he	knows	all	the	required	parameters,	he	could	create	a	plugin	for	his	
company	web	service	using	Spinel’s	GUI	tool,	and	add	this	web	service	to	Gneiss	by	
installing	a	plugin	using	a	menu	command	in	Gneiss.	The	web	service	could	then	
appear	in	Gneiss’s	source	pane	as	one	of	the	available	data	sources.	As	the	created	
plugin	is	an	independent	file,	the	user	could	also	share	the	plugin	with	other	people,	
such	as	his	colleagues,	so	they	can	also	use	it	in	Gneiss	without	having	to	create	a	
plugin	of	the	same	data	source	themselves.			

	
Figure	3.4.	Spinel’s	architecture	and	modules	

KERRY CHANG	|	Dissertation	 44

	
Continuing	with	the	description	of	
the	Spinel	architecture,	it	consists	of	
a	developer	side	to	help	application	
developers	program	an	extendable	
application	(such	as	to	help	make	
Listpad	and	Gneiss	extendable),	and	
an	end	user	side	for	creating	a	data	
source	plugin	(such	as	to	help	the	
user	in	the	previous	paragraph	to	
create	a	new	plugin	to	add	a	new	
data	source	to	Gneiss).	Figure	3.4	
shows	how	the	developer	side	and	
the	user	side	work	together.	On	the	
developer	side,	Spinel	provides	a	
library	that	helps	developers	create	
and	test	an	application	(called	a	“Spinel	application”	in	Figure	3.4.)	without	having	
to	specify	a	fixed	data	source.	The	use	of	the	Spinel	library	is	shown	as	a	diagram	in	
Figure	3.5.	Spinel	currently	supports	REST	JSON	web	services	and	OAuth	
authentication.	In	the	application,	a	web	service	is	described	using	a	SpinelObject.	
A	SpinelObject	can	be	initialized	manually	by	the	developer	or	by	reading	a	plugin	
file	created	by	the	users,	which	is	a	file	in	JSON	format	describing	the	information	of	
the	web	service.	When	the	application	starts,	it	goes	to	a	predefined	directory	that	
has	all	the	plugin	files	to	read	all	the	plugins	and	create	the	SpinelObject.	The	
library	further	provides	many	convenient	functions	to	use	a	SpinelObject	for	
authentication	and	exchanging	data	web	services.						
	
To	enable	people	who	do	not	know	about	the	application’s	source	code	to	create	a	
data	source	plugin	to	use	in	the	application,	the	developer	has	to	specify	what	types	
of	data	this	application	needs.	For	example,	suppose	in	Gneiss	there	would	be	a	
widget	to	let	users	retrieve	the	next	set	of	data	using	a	web	API.	To	do	this,	the	
widget	needs	to	know	what	parameter	in	the	API	controls	the	“page	number”	of	the	
data.	Spinel	provides	a	web-based	plug-in	instruction	editor	for	the	developer	to	
describe	this.	So	continuing	the	previous	example,	to	let	users	create	a	plugin	to	use	
in	Gneiss’s	widget,	the	developer	would	specify	that	the	user	needs	to	mark	the	
parameter	for	retrieving	the	next	set	of	data	when	she	makes	a	plugin	using	Spinel’s	
plugin	configuration	tool,	which	I	will	explain	next	(how	to	mark	a	parameter	in	a	
web	API	is	shown	in	Error!	Reference	source	not	found.	at	2,	where	the	user	
marks	the	parameter	“q”	in	a	web	API	to	be	where	the	query	term	should	go	so	the	
application	can	know	how	to	use	this	API).		
	
To	create	a	plugin	for	an	application	to	use	a	new	web	service,	Spinel	provides	a	
web-based	plugin	configuration	tool	(Figure	3.6)	where	the	user	can	do	so	in	a	

	
Figure	3.5.	A	UML	sequence	diagram	showing	a	use	of	
the	Spinel	Library.	Time	goes	down	from	the	top.	

KERRY CHANG	|	Dissertation	 45

graphical	interface	without	writing	any	code.	The	configuration	tool	uses	the	
developer’s	instructions	to	guide	users	in	creating	and	testing	a	data	source	plugin,	
such	as	adding	the	required	APIs	(Figure	3.6	at	1),	marking	the	required	parameters	
in	an	API	(Figure	3.6	at	2)	and	the	required	fields	in	the	return	document	(Figure	3.6	
at	4).	Similar	to	Gneiss,	Spinel’s	configuration	tool	also	uses	a	“programming-with-
example”	style	to	lets	users	start	creating	a	plugin	by	giving	an	example	API	(since	
many	web	services	provide	example	web	APIs	on	the	website	to	teach	people	how	
to	use	them)	and	then	parses	it	to	a	more	readable	and	editable	format	(Figure	3.6	
at	1.	Gneiss	could	also	provide	a	dialog	box	similar	to	this	to	help	users	edit	a	web	
API).	The	user	can	download	the	created	plugin	and	add	it	to	an	application	to	use	
the	web	service,	and	choose	to	share	the	plugin	on	Spinel’s	server	for	other	people	
to	use.		
	
More	details	of	Spinel	are	described	elsewhere	[17].	As	future	work,	Gneiss	could	be	
adapted	to	use	the	Spinel	architecture	to	provide	easier-to-use	interfaces	to	several	
built-in	web	services	and	allow	additional	web	services	to	be	installed	as	plugins	to	
help	people	who	are	not	familiar	with	web	services.		
	

3.8 CONCLUSIONS
In	this	chapter,	I	presented	a	spreadsheet	model	for	using	web	data	services.	Gneiss	
extends	the	familiar	spreadsheet	language	and	drag-and-drop	interaction	to	support	
constructing	two-way	data	flows	between	multiple	web	services	and	a	spreadsheet	

	
Figure	3.6.	The	main	API	editing	page	in	the	Spinel	web-based	plug-in	configuration	tool	for	users.	(1)	An	
API	is	divided	into	a	base	URL	and	a	set	of	parameters,	which	are	filled	in	by	the	tool	if	the	user	provided	
an	example	API	request	on	a	previous	page	(not	shown).	(2)	The	user	selects	a	parameter	to	be	an	input	
field	and	gives	it	an	appropriate	name	using	the	drop-down	menu	that	is	generated	based	on	the	
developer’s	instructions.	(3)	The	user	can	click	on	the	“Test	this	API”	button	to	see	the	return	data	(4,	
with	the	gray	background).	The	user	can	select	the	desired	fields	as	the	final	output	of	this	API	call	using	
the	checkboxes.	The	tool	shows	all	selected	field	names	and	visualizes	the	output	model	that	will	be	sent	
to	the	application	in	a	tree	at	the	far	right,	to	help	the	user	confirm	that	her	selections	are	correct.	

	

KERRY CHANG	|	Dissertation	 46

editor.	Users	can	extract	structured	web	service	data	by	example	without	having	to	
write	any	code,	and	Gneiss	extends	the	spreadsheet	language	syntax	to	let	
structured	data	be	used	in	spreadsheet	formulas.	Spreadsheet	sorting	and	filtering	
are	executed	dynamically	as	a	mechanism	to	further	refine	newly	retrieved	data.	
The	familiar	autofill	gesture	is	extended	to	support	sending	a	batch	of	similar	web	
service	requests.	Gneiss	abstracts	away	the	complexity	of	dealing	with	different	
states	of	an	asynchronous	network	call	using	the	spreadsheet’s	live	constraint	
evaluation	model	to	automatically	send	requests,	update	data	and	computations,	
and	handle	failed	calls	for	the	users.	Moreover,	Gneiss	can	generate	parallel-running	
data	extraction	programs	using	the	dependency	among	spreadsheet	cells.		
	
With	Gneiss,	the	user	can	create	a	variety	of	spreadsheet	programs	that	make	
custom	use	of	multiple	web	data	services	as	I	demonstrated	in	the	examples	in	this	
chapter.	However,	a	spreadsheet	is	still	less	usable	and	sharable	compared	to	a	web	
application.	For	instance,	in	the	first	demonstrative	example,	the	created	
spreadsheet	that	lets	users	search	places	and	plot	them	on	a	map	by	editing	
spreadsheet	cells	may	be	quite	difficult	to	use	and	read	on	a	mobile	device	
compared	to	a	web	application	that	shows	data	in	a	grid	list	and	provides	more	GUI	
controls	to	handle	user	inputs.	In	the	next	chapter,	I	will	present	how	Gneiss	enables	
users	to	program	interactive	web	applications	that	make	use	of	the	data	and	
computational	logics	in	a	spreadsheet.		
	
	 	

KERRY CHANG	|	Dissertation	 47

CHAPTER 4 PROGRAMING DATA-DRIVEN WEB
APPLICATIONS6

Many	websites	that	people	use	daily	are	web	data	applications	–	applications	that	
use	backend	data,	supporting	the	searching,	sorting,	filtering	and	visualizing	of	the	
data	based	on	the	user	input.	For	example,	Yelp	lets	users	search	for	restaurants	and	
apply	filters	to	show	only	the	ones	that	accept	credit	cards.	Expedia	lets	users	search	
for	hotels,	sort	the	results	by	price,	and	plot	the	results	on	a	map.	Creating	this	kind	
of	application	requires	a	person	to	program	a	responsive	web	interface	that	can	
dynamically	manipulate	backend	data	and	create	a	display	based	on	the	results.	This	
usually	involves	writing	complex	code	that	has	multiple	nested	callbacks	to	handle	
user	events	and	perform	the	appropriate	actions	such	as	firing	web	service	requests,	
retrieving	new	data,	and	repopulating	the	interface.	
	

4.1 MOTIVATION, CHALLENGES AND CONTRIBUTIONS
In	the	previous	chapter,	I	had	discussed	the	programming	challenges	of	using	web	
data	services	and	how	a	spreadsheet	model	could	be	extended	to	address	those	
challenges	and	enable	users	to	create	spreadsheet	programs	that	exchange	data	
with	multiple	web	services	without	writing	conventional	code.	However,	new	
challenges	arrive	when	trying	to	create	a	web	application	that	uses	backend	data	
sources.		
	
One	challenge	is	to	program	web	pages	that	hold	dynamic	data	instead	of	static	
content.	In	basic	web	programming,	a	web	page’s	layout	and	content	are	written	in	
an	HTML	file.	Many	end-user	tools	(such	as	Adobe	Dreamweaver)	provide	WYSIWIG	
HTML	editors	to	let	people	edit	the	content	and	view	the	rendered	page	at	the	same	
time.	However,	for	web	pages	that	use	backend	data	sources,	the	content	is	often	
dynamic,	retrieved	from	a	remote	database	based	on	how	the	user	interacts	with	the	
web	page.	The	dynamic	content	is	injected	into	the	HTML	page	using	a	separate	
JavaScript	or	PHP	file.	Using	a	simple	news	web	application	for	example,	the	first	
page	often	shows	headline	news	that	is	retrieved	when	the	user	loads	the	page	in	
the	browser.	When	the	user	clicks	on	a	news	link,	the	content	in	the	next	page	is	
dynamically	generated	based	on	what	news	item	the	user	had	clicked.	Dealing	with	
dynamic	content	significantly	increases	the	programming	complexity,	as	a	person	
now	needs	to	write	more	advanced	code	in	languages	other	than	HTML	and	CSS	to	
link	the	web	page	and	the	data.	It	also	becomes	difficult	to	use	a	WYSIWYG	editor	to	
edit	and	view	a	web	page	since	many	GUI	elements	in	the	page	are	placeholders	that	
have	no	content.			
	

																																																								
6	The	research	in	this	chapter	was	also	described	in	our	publication	at	UIST’14	[19]	

KERRY CHANG	|	Dissertation	 48

Another	challenge	is	to	program	data-related	interactive	behaviors	in	the	web	
application.	Most	data-driven	web	applications	let	users	search,	sort,	filter	and	
visualize	data	interactively	using	GUI	controls.	The	user’s	actions	in	the	web	page	
sometimes	also	trigger	new	queries	to	be	sent	to	remote	data	sources,	such	as	
entering	a	new	search	term	in	a	textbox.	Currently,	programming	interactive	
behaviors	in	web	applications	is	mostly	done	using	JavaScript	event	handlers	to	
capture	user	input	events	and	execute	the	corresponding	actions	such	as	modifying	
some	data	or	changing	the	user	interface.	For	users	who	are	not	familiar	with	
JavaScript	programming,	this	adds	another	level	of	difficulties	to	creating	a	useful	
data-driven	application.		
	
To	address	these	challenges,	my	dissertation	contributes	a	spreadsheet	model	that	
supports	programming	interactive,	data-driven	web	applications.	Gneiss’s	
programming	environment	integrates	a	WYSIWYG	web	interface	builder	for	
creating	web	pages.	The	new	spreadsheet	model	unifies	the	access	to	web	GUI	
elements.	All	GUI	properties	have	the	capabilities	of	spreadsheet	cells	and	can	be	
referenced	anywhere	in	the	spreadsheet	using	a	spreadsheet-like	syntax.	Similarly,	
the	value	of	any	GUI	element	property	can	be	a	constant	or	a	value	computed	using	a	
spreadsheet	formula	that	depends	on	other	cells.	This	enables	users	to	use	
spreadsheet	languages	to	program	data	bindings	between	the	web	application	and	
the	spreadsheet	editor,	which	can	hold	constant	data	entered	by	the	user	and	
dynamic	data	retrieved	from	web	data	sources	as	described	previously.	The	data	
flow	between	the	web	interface	and	the	spreadsheet	editor	is	two-way,	allowing	the	
user’s	interactions	with	the	web	application	to	modify	data	in	spreadsheet	cells	and	
further	trigger	different	actions	at	run	time	such	as	to	fire	web	service	calls,	retrieve	
new	data,	apply	new	sorting	and	filtering	rules,	and	subsequently	repopulate	the	
web	interface.	Gneiss’	spreadsheet	model	not	only	provides	a	live	environment	for	
programming	and	testing	data-driven	applications,	but	also	enables	a	
“programming-with-example”	style	[64]	that	allows	users	to	create	a	web	interfaces	
with	visible	example	data	that	were	retrieved	from	actual	data	sources	instead	of	
working	with	placeholders	and	invisible	data	as	required	when	programming	in	
HTML	and	JavaScript.		
	
Also,	the	new	spreadsheet	model	facilitates	two-way	communication	by	providing	
the	“once-around”	semantics	of	one-way	constraint	solvers,	which	has	been	shown	
to	be	useful	in	previous	systems	[62,63,70].	This,	along	with	the	dynamic	properties	
of	GUI	elements	that	are	triggered	when	the	user	interacts	with	the	elements,	and	
new	formulas	that	control	when	a	spreadsheet	cell	is	re-evaluated,	enable	the	user	
to	program	a	wide	range	of	interactive	behaviors	solely	using	a	“pull	model”	that	is	
consistent	with	the	current	spreadsheet	formula	evaluation	paradigm.	It	eliminates	
the	need	for	a	conventional	event-based	“push	model”	that	is	used	by	other	GUI	
tools	and	toolkits.		
	

KERRY CHANG	|	Dissertation	 49

4.2 USAGE SCENARIO
Here	we	describe	a	scenario	where	Ted,	a	college	student	and	a	spreadsheet	user,	
uses	Gneiss	to	create	a	web	application	that	helps	him	decide	where	to	visit	in	a	city.	
The	application	has	a	textbox	that	searches	an	online	place	database	and	shows	the	
search	results	in	a	grid	list.	The	user	can	choose	to	sort	the	results	by	rating	or	price	
using	two	radio	buttons.	Each	item	in	the	grid	list	contains	the	name,	rating,	price	
level	of	a	place,	and	a	checkbox	that	lets	the	user	display	the	place	on	a	map.	Finally,	
the	user	can	click	on	a	place	name	to	go	to	a	“details”	page	that	shows	photos	of	the	
place	retrieved	from	an	online	photo	database.	Figure	1	is	a	screenshot	of	part	of	the	
end	result	(with	the	created	web	application	in	the	right	pane).	We	use	this	scenario	
to	give	an	overview	of	the	features	described	in	this	chapter.	
	
Ted	first	enters	Google’s	Place	Text	Search	API	in	the	URL	box	in	the	source	pane	
(Figure	4.1	at	1).	The	returned	data,	in	JSON	format,	are	shown	below,	and	Ted	can	
use	this	example	data	to	demonstrate	the	next	steps.	After	seeing	that	the	API	works	
with	a	constant	string,	Ted	wants	the	value	of	the	“query”	parameter	in	the	web	API	
to	be	whatever	the	user	types	in	the	text	box	in	the	web	application	at	runtime.	To	
make	the	query	string	be	dynamic,	Ted	first	sets	the	value	of	the	parameter	to	be	the	
value	of	cell	A1	in	the	spreadsheet,	using	the	syntax	{{A1}}	(Figure	4.1	at	1,	in	the	
URL	box),	as	discussed	at	length	in	chapter	3.4.2.	He	then	extracts	the	data	he	wants	
from	the	query	result	–	the	name,	rating,	price	and	address	fields	–	to	the	

	
Figure	4.1.	A	screenshot	of	Gneiss	showing	the	web	application	created	in	this	chapter’s	usage	scenario.	
(1)	is	the	source	pane	where	the	user	can	load	a	web	API	in	the	URL	box	and	extract	the	desired	fields	
from	the	return	data	to	the	spreadsheet	editor	through	drag-and-drop.	(2)	is	the	spreadsheet	editor	that	
stores	and	manipulates	the	data	to	be	used	in	the	web	application.	(3)	is	the	web	interface	builder	where	
the	user	can	create	a	web	application	by	dragging-and-dropping	GUI	elements	from	the	toolbar	on	the	
right	(4)	to	the	output	page.	The	user	can	select	a	GUI	element	in	the	output	page	(the	selected	element	is	
highlighted	with	a	dark	blue	border,	which	currently	is	the	textbox	at	the	top	of	the	page)	and	view	its	
properties	in	(5).	Property	values	are	cells	that	can	contain	formulas	and	can	be	referenced	by	other	
cells.		

KERRY CHANG	|	Dissertation	 50

spreadsheet	by	dragging-and-dropping	each	value	into	its	own	column	(Figure	4.1	
at	2,	columns	B-E).		
	
Ted	now	starts	to	create	the	web	application	using	the	web	interface	builder.	He	
first	drags	a	text	label	(for	the	header)	and	a	text	box	(for	entering	the	query	string)	
from	the	tool	bar	at	the	right	of	the	interface	builder	(Figure	4.1	at	4)	to	the	output	
page.	In	the	web	interface	builder,	Ted	can	select	any	GUI	element	in	the	output	page	
(which	will	then	be	highlighted	with	a	blue	border),	and	view	and	edit	its	properties,	
which	are	shown	as	a	small	one-column	spreadsheet	at	the	bottom	right	(Figure	4.1	
at	5).	Ted	selects	the	heading	text	and	changes	its	value	to	the	constant	“Places	to	
Go”.	Ted	then	selects	the	text	box.	The	“value”	property	of	the	text	box	is	a	dynamic	
property	depending	on	what	the	user	enters	at	runtime	(currently	“Jazz	bar	New	
York	City”).	Back	in	the	spreadsheet,	Ted	enters	=TextBox1!Value	in	cell	A1	to	make	
it	use	the	text	box’s	value.		
	
Now	every	time	Ted	types	in	the	text	box	in	the	web	interface	builder	and	hits	enter,	
cell	A1	in	the	spreadsheet	changes	to	the	text	box’s	value.	As	described	in	chapter	3,	
this	will	trigger	the	system	to	fire	a	new	API	request	using	A1’s	new	value	(which	is	
the	text	box’s	value)	as	the	query	term	(by	default,	a	textbox’s	value	property	
changes	when	the	user	presses	the	enter	key.	The	user	can	change	the	“live”	
property	of	a	textbox	to	be	“true”	to	let	its	value	change	as	soon	as	the	user	types	
each	character	into	the	textbox,	but	that	is	not	appropriate	for	this	scenario	as	
incomplete	strings	would	be	sent	as	queries	to	the	web	service).	This,	in	turn,	will	
refresh	the	extracted	data	in	spreadsheet	columns	B-E	with	the	latest	retrieved	data.	
To	display	the	search	result	in	the	web	application,	Ted	drags	a	grid	list	to	the	
output	page.	In	the	first	item	of	the	grid	list,	Ted	drags	two	text	labels,	and	the	
system	populates	the	rest	of	the	grid	items	with	the	same	UI	objects.	Ted	wants	the	
top	text	item	in	each	grid	item	to	be	the	name	of	the	place.	To	do	so,	Ted	selects	the	
top	text	in	the	first	grid	item,	and	changes	its	value	property	to	be	=B1.	The	top	text	
in	each	of	the	rest	of	the	grid	items	automatically	changes	to	be	the	value	of	the	
corresponding	cell	in	column	B.	Ted	then	makes	the	second	text	label	in	each	grid	
item	show	the	rating	and	the	price	level	of	a	place	by	setting	the	value	property	of	
the	second	text	label	in	first	item	to	be	=	“rating: ”&C1&“, price level:	”&D1,	and	
letting	the	system	populate	the	rest	of	the	items.	Ted	makes	a	few	tests	by	entering	
new	values	in	the	search	textbox	in	the	web	interface.	He	can	see	that	the	grid	list	in	
the	web	page	updates	automatically	to	show	the	latest	search	results.	The	length	of	
the	grid	list	changes	according	to	the	number	of	search	result	items	returned.		
	
Ted	then	drags	in	two	radio	buttons	to	the	web	page	to	control	how	the	search	
results	are	sorted.	Ted	changes	the	label	of	the	first	radio	button	to	“Sort	descending	
by	rating”.	Then	he	clicks	on	the	small	arrow	icon	at	the	top	of	column	C,	the	column	
that	stores	the	ratings,	to	open	up	a	dialog	box	that	controls	the	sorting	and	filtering	
of	that	column.	Ted	sets	the	sorting	rule	to	come	from	a	computed	value,	and	enters	

KERRY CHANG	|	Dissertation	 51

the	formula	
=IF(RadioButton1!Checked,

“Descending”, “None”)	to	sort	the	
results	descending	by	the	rating	column	
if	the	first	radio	button	is	checked	
(Figure	4.2).	Ted	uses	the	same	method	
to	set	up	the	second	radio	button	to	
control	if	the	results	are	sorted	by	price	
(column	D).	Now	as	Ted	toggles	the	
radio	buttons	in	the	web	page,	he	can	
see	the	spreadsheet	data	being	sorted	
accordingly,	and	the	grid	list	in	the	web	
application	being	updated	at	the	same	
time	to	reflect	the	results.		
	
Ted’s	next	task	is	to	let	people	be	able	to	view	selected	places	from	the	search	
results	on	a	map.	To	do	so,	Ted	drags	a	checkbox	to	the	gird	items	and	sets	its	label	
to	be	“Plot	on	map!”.	In	the	spreadsheet,	Ted	enters	=CheckBox1!Checked in	cell	F1	
to	get	if	the	checkbox	in	the	first	grid	item	is	checked.	Ted	then	selects	F1	and	uses	
the	standard	spreadsheet	mechanism	to	drag	down	to	fill	in	column	F	with	the	
values	of	the	“checked”	property	of	each	of	the	checkboxes.	Now	as	Ted	checks	and	
unchecks	a	checkbox	in	the	web	interface,	its	corresponding	cell	in	the	spreadsheet	
column	F	changes	between	“true”	and	“false”	too.	In	cell	G1,	Ted	types	in	=IF(F1,
E1, “”)	and	autofills	the	rest	of	column	G.	This	formula	fills	in	the	cell	in	column	G	
with	the	address	cell	(column	E)	in	the	same	row	if	the	checkbox	cell	in	that	row	
(column	F)	is	checked.	Finally,	in	the	web	interface	pane,	Ted	drags	a	map	
visualization	from	the	toolbar	to	the	output	page,	and	sets	the	“addresses”	
parameter	of	the	map	to	be	all	cells	in	column	G	by	typing	in	=G:G	(the	standard	
spreadsheet	syntax	to	reference	a	whole	column).	Now	Ted	has	an	interactive	map	
that	dynamically	displays	the	checked	places.	
	
The	last	step	to	finish	this	web	application	is	to	allow	the	place’s	name	to	be	a	
hyperlink	that	goes	to	a	new	page	that	shows	photos	of	the	place	from	an	online	
place	database.	This	demonstrates	how	people	can	use	Gneiss	to	create	a	multi-page	
application	where	the	content	of	the	next	page	is	generated	dynamically	based	on	
what	the	user	selects	in	the	previous	page.	This	also	demonstrates	how	people	can	
use	Gneiss	to	combine	data	from	multiple	data	sources.		
	
To	do	so,	Ted	creates	a	new	page	called	“Details”	by	pressing	the	“+”	icon	next	to	the	
page	tabs	at	the	web	interface	builder	(Figure	4.1	at	3)	and	enters	the	name	of	the	
new	page	in	a	dialog	box.	He	then	selects	the	place	name	text,	and	uses	the	property	
sheet	at	the	lower	right	to	set	its	“link”	property	to	be	“Details”.	This	causes	a	place	
name	text	to	be	hyperlink	so	that	when	clicked,	it	will	bring	the	Details	page	to	the	

	
Figure	4.2.		Sorting	and	filtering	rules	can	be	
computed	from	GUI	element	properties	in	a	web	
application	using	a	spreadsheet	formula.		

KERRY CHANG	|	Dissertation	 52

front.	Ted	then	needs	to	get	the	latest	clicked	place	name	in	order	to	send	a	different	
API	request	to	retrieve	the	photos	for	that	place,	and	fill	in	the	details	page.	In	
Gneiss,	all	UI	objects	have	a	“state”	property	that	reflects	how	the	mouse	cursor	
interacts	with	it.	For	example,	when	the	mouse	moves	over	the	text	object	and	then	
clicks	on	the	text,	the	state	for	the	text	changes	from	“idle”	to	“hovered”	to	
momentarily	be	“clicked”	then	goes	back	to	“idle”.	Ted	autofills	column	I	with	the	
state	property	of	the	corresponding	place	name	text.	Then	in	cell	J1	he	types:		

=IF(COUNTIF(I:I, "clicked")>0,LOOKUP("clicked", I:I, B:B),J1)

This	uses	the	standard	spreadsheet	functions	COUNTIF	and	LOOKUP,	and	will	count	
how	many	cells	in	column	I	have	value	“clicked”.	If	there	are	any,	then	cell	J1	
becomes	the	cell	in	column	B	(the	name	column)	that	is	in	the	same	row	with	the	
“clicked”	cell	in	column	I.	Otherwise	the	formula	does	not	change	J1’s	value.	This	
makes	J1	be	the	name	of	the	most	recently	clicked	place.	Ted	then	uses	Flickr’s	
Photo	Search	API	and	cell	J1	as	the	query	string	to	search	for	the	photos	of	the	
clicked	place,	and	uses	similar	methods	as	before	to	extract	the	photo	data	returned	
by	Flickr	and	show	the	photos	using	a	grid	list	in	the	web	interface	builder.	Lastly,	
Ted	adds	a	“Back”	button	to	the	Details	page	to	let	the	user	go	back	to	the	index	
page.	Note	that	values	are	passed	around	and	interactions	are	triggered	using	
standard	spreadsheet	functions	and	formulas,	without	the	need	for	any	event-based	
programming.	
	
Ted	now	has	finished	creating	the	application!	He	plays	with	the	application	in	
preview	mode,	does	a	few	test	queries,	and	exports	the	application	when	done.	
Gneiss	generates	a	URL	that	can	be	used	to	open	this	application	anywhere	in	a	
browser.	Ted	sends	this	URL	to	his	friends	to	share	the	application.	
	

4.3 KEY FEATURES FOR CREATING INTERACTIVE WEB APPLICATIONS
In	this	section	I	describe	the	key	features	in	Gneiss	to	assist	people	in	creating	
interactive,	data-driven	web	applications.		
	

4.3.1 CREATING A DYNAMIC UI THAT SHOWS SPREADSHEET DATA
As	in	many	commercial	web	interface	builders,	Gneiss	lets	users	create	UI	elements	
in	a	web	page	by	drag-and-drop.	As	mentioned	in	chapter	3.2,	I	implemented	my	
own	web	interface	builder,	and	thus	Gneiss	currently	supports	a	limited	set	of	UI	
elements.	Gneiss	currently	supports	text	and	image	objects,	input	elements	(such	as	
text	boxes	and	buttons),	lists,	and	visualizations,	with	the	full	set	of	HTML5	
elements,	properties	and	GUI	controls	as	obvious	future	work.	In	general,	the	
properties	of	these	elements	include	string	properties	(e.g.,	the	text	in	a	heading,	the	
label	of	a	button),	styling	properties	(e.g.,	color	and	width),	link	properties,	and	

KERRY CHANG	|	Dissertation	 53

interactive	properties	that	change	values	as	the	user	interacts	with	the	element	
(explained	in	detail	later).	String	and	styling	properties	let	users	style	GUI	elements	
using	conventional	mechanisms.	A	Link	property	turns	a	GUI	element	into	a	
hyperlink	that	goes	to	the	value	of	the	property.	The	value	can	be	a	URL	or	the	name	
of	another	page	opened	in	the	interface	builder,	allowing	the	user	to	create	a	multi-
page	application.	The	user	can	specify	how	the	application	transfers	from	one	page	
to	another,	and	how	the	contents	of	one	page	may	depend	on	values	from	another,	
as	described	in	the	usage	scenario.	A	complete	list	of	currently	supported	web	UI	
elements	and	their	properties	is	in	Appendix	B	and	discussions	of	extending	this	list	
is	in	section	8.1.5.		
	
In	Gneiss,	the	user	can	edit	a	GUI	element	property	just	like	editing	a	cell	in	the	
spreadsheet	editor.	A	GUI	element	property	can	be	a	constant	or	a	dynamic	value	
computed	from	the	spreadsheet	data.	Setting	a	property	value	to	use	spreadsheet	
cells	will	cause	the	property	be	recomputed	every	time	that	these	cells	change.	For	
example,	if	the	user	sets	the	“value”	property	of	a	text	object	to	be	
=CONCATENATE("Rating: ", C1)),	then	each	time	that	cell	C1	in	the	spreadsheet	
editor	changes,	the	text	object	will	also	change	to	show	the	latest	value.	
	

4.3.1.1 Dynamic Lists
Gneiss	currently	supports	vertical	lists	and	grid	lists.	Lists	have	a	“Populate”	
property	that	if	true	will	fill	in	all	items	of	the	list	with	the	corresponding	elements	
based	on	edits	to	the	first	item.	For	example,	in	the	usage	scenario,	Ted	only	needs	
to	drag	two	text	labels	and	a	checkbox	into	the	first	item	of	the	grid	list,	and	the	rest	
of	the	items	in	the	list	are	populated	with	the	same	objects	as	are	in	the	first	item.	
Property	values	of	a	UI	element	in	a	list	also	populate	in	the	same	way,	so	changing	
the	property	of	a	UI	element	in	the	first	item	of	the	list	will	affect	all	of	the	
corresponding	UI	elements	in	the	rest	of	the	items	of	the	list.	If	the	property	value	is	
a	constant,	all	other	UI	elements	are	populated	with	the	same	value.	If	the	property	
value	is	a	formula	that	computes	the	value	based	on	some	cells	in	the	spreadsheet,	
the	system	will	populate	other	UI	elements	in	the	list	with	the	corresponding	cells	in	
the	same	column	but	using	the	row	based	in	the	element’s	index.	For	example,	in	the	
usage	scenario,	Ted	sets	the	value	of	the	top	text	label	in	the	first	item	of	the	grid	list	
to	be	=B1	(the	name	of	the	first	place).	The	system	automatically	populates	the	top	
text	label	in	the	second	list	item	to	be	=B2,	and	so	on.	
	
Items	in	a	list	can	be	shown	and	hidden	dynamically	at	run	time	based	on	the	
spreadsheet	data.	When	the	“Populate”	property	is	set	to	“true”,	the	system	will	
adjust	the	length	of	the	list	to	show	the	non-empty	rows	in	the	column	that	the	UI	
element’s	value	depends	on.	For	example,	in	the	usage	scenario,	the	length	of	the	
grid	list	changes	dynamically	based	on	the	number	of	search	result	items	returned.	

KERRY CHANG	|	Dissertation	 54

The	user	can	use	the	“MaxNumberOfItems”	property	to	set	the	maximum	number	of	
items	in	a	list	object.	The	system	will	hide	the	empty	items	automatically.		
	
Alternatively,	the	user	can	set	the	“Populate”	property	of	a	list	object	to	“false”.	In	
this	case,	the	list	object	becomes	a	pure	layout	object	and	the	user	can	manually	put	
different	UI	elements	in	different	list	items.	
	

4.3.1.2 Nested Lists
As	described	in	the	chapter	3.4.5,	Gneiss	is	able	to	visualize	the	hierarchies	in	data	
using	nested	spreadsheet	cells.	In	the	web	interface	builder,	the	user	can	also	create	
nested	lists	to	display	nested	data	in	the	spreadsheet.	For	example,	Figure	4.3	at	the	
left	shows	a	list	of	restaurant	names	in	column	A,	and	each	restaurant	has	a	list	of	
categories	displayed	in	nested	tables	in	column	B.	The	user	can	create	a	nested	list	
such	as	in	Figure	4.3	at	the	right	to	show	the	data	in	a	web	application.	To	create	a	
nested	list,	the	user	drags	a	list	object	inside	the	first	item	of	another	list	object,	and	
lets	the	system	populate	the	rest	of	the	items.	Spreadsheet	cells	used	in	a	nested	list	
are	iterated	over	the	corresponding	nested	row	index.	For	example,	in	Figure	4.3	at	
right,	the	restaurant	names	are	shown	in	the	first	level	list	by	setting	the	first	text	in	
the	first	item	in	the	first	level	list	to	be	=A1.	Each	restaurant’s	categories	are	
displayed	in	the	second	level	list	by	setting	the	first	text	in	the	first	item	in	the	
second	level	list	to	be	=B1.1	(Figure	4.3	at	the	lower	right	corner).	As	the	system	
populates	the	second	restaurant’s	data,	it	first	iterates	over	the	first	row	index	which	
therefore	shows	data	in	A2	as	the	restaurant	name	in	the	first-level	list.	Then	the	
system	goes	to	the	second-level	list	and	iterates	over	the	second	row	index	(B2.1	to	
B2.3)	to	display	values	in	all	nested	cells	in	B2.	Currently,	how	the	nested	indexes	

	
Figure	4.3.	The	user	can	display	hierarchical	data	in	the	spreadsheet	(left)	as	nested	lists	in	the	web	
application	(right).	Here,	the	user	creates	a	first-level	list	to	show	restaurant	names	(column	A),	and	
within	each	restaurant	in	the	first-level	list	the	user	drags	a	second	list	that	displays	the	categories	of	the	
restaurant	(column	B).		

KERRY CHANG	|	Dissertation	 55

are	iterated	in	a	list	is	decided	by	the	system.	Future	work	can	be	to	generalize	this	
to	let	users	be	able	to	customize	the	rules.	However,	currently	the	users	have	
complete	control	over	the	data	in	the	nested	table	–	they	can	click	on	a	nested	cell	to	
edit	it	just	like	editing	a	regular	cell.	Users	can	also	create	a	new	column	that	has	the	
same	nested	structure	as	a	selected	column,	use	formulas	to	compute	values	for	that	
column	using	other	cells	in	the	spreadsheet,	and	show	that	computed	column	in	the	
web	application.	For	example,	in	Figure	4.3,	the	user	might	want	to	write	a	formula	
to	make	the	text	prettier	for	the	categories	by	using	string	manipulation	functions	
such	as	replacing	underscores	with	spaces.	Features	for	calculating	new	nested	
values	are	described	in	detail	in	chapter	5.3.2.		
	

4.3.2 MODIFYING SPREADSHEET DATA FROM WEB APPLICATIONS
In	Gneiss,	user	inputs	into	the	web	application	can	also	affect	the	spreadsheet	data,	
making	the	data	flow	two-way.	As	described	before,	GUI	element	properties	are	
treated	as	spreadsheet	cells	in	Gneiss.	The	user	can	reference	any	property	of	a	UI	
element	using	the	syntax	ElementID!PropertyName,	using	a	syntax	similar	to	how	a	
cell	in	another	worksheet	is	referenced	in	conventional	spreadsheets.	References	
like	this	can	be	used	not	only	in	the	spreadsheet	editor	but	also	in	the	GUI	property	
sheets	in	the	web	interface	builder	as	well.	For	example,	the	user	can	set	Text2’s	
value	property	to	be	=Text1!Value,	making	the	two	text	objects	display	the	same	
content.	We	further	added	a	convenient	keyword	THIS	to	let	a	GUI	element	property	
reference	other	properties	in	the	same	element	using	THIS!PropertyName.	
	
Currently,	a	web	GUI	element’s	ID	is	assigned	by	the	system	and	is	not	changeable.	
This	is	a	limitation	of	the	current	prototype	system.	Future	work	includes	letting	
users	edit	an	element’s	ID	in	the	same	way	as	editing	its	other	properties.	For	
example,	in	the	usage	scenario,	a	user	might	want	to	change	the	search	textbox’s	ID	
from	TextBox1	to	SearchBox	to	make	the	ID	more	meaningful.		
	

4.3.2.1 “Autofilling” GUI Property Values
We	extend	the	autofill	gesture	to	facilitate	referencing	properties	of	populated	GUI	
elements	when	they	are	in	a	list	object.	The	user	only	needs	to	enter	a	reference	into	
a	spreadsheet	cell	for	the	desired	property	of	the	UI	element	in	the	first	list	item,	
and	then	select	that	cell	and	autofill	down.	For	example,	in	the	usage	scenario,	Ted	
types	Checkbox1!Checked	in	cell	F1,	selects	F1	and	autofills	down	to	F10.	The	
system	then	fills	in	F2	to	F10	with	the	“Checked”	property	of	the	checkboxes	in	the	
second	to	tenth	items	in	the	grid	list.		The	IDs	for	the	checkboxes	in	lists	are	
automatically	assigned	as	FirstElementID-Index.	For	example,	in	the	usage	
scenario,	the	ID	of	the	checkbox	in	the	second	list	item	is	Checkbox1-2.	Therefore	
when	the	user	autofills	the	checkboxes’	checked	properties	in	column	F,	the	system	
inserts	=Checkbox1-2!Checked	in	cell	F2.	The	system	does	not	make	this	naming	

KERRY CHANG	|	Dissertation	 56

convention	transparent	to	the	user,	as	the	user	is	not	able	to	select	and	edit	a	
populated	GUI	element	from	the	web	interface	builder	(since	all	its	properties	are	
maintained	by	the	system).		
	

4.3.2.2 Using Web GUI Controls to Sort and Filter Data
As	described	in	chapter	3.4.3,	Gneiss	supports	two	levels	of	dynamic	sorting	and	
filtering	of	web	service	data.	Not	only	are	the	sorting	and	filtering	rules	reapplied	
every	time	when	new	data	are	retrieved,	but	also	can	the	rules	themselves	be	
computed	dynamically	using	formulas.	Since	Gneiss	unifies	the	access	to	web	GUI	
elements	in	the	spreadsheet	model	to	treat	GUI	element	properties	as	spreadsheet	
cells,	sorting	and	filtering	rules	can	even	be	computed	based	on	GUI	element	
properties	in	a	web	application.	This	allows	the	user	to	program	the	interactive	
behavior	to	be	based	on	the	values	of	various	GUI	controls	such	as	checkboxes,	radio	
buttons	or	sliders	to	sort	and	filter	web	service	data	shown	in	the	web	application.		
	
As	described	in	chapter	3.4.3	and	in	the	usage	scenario	in	section	4.2,	to	specify	
computed	sorting	and	filtering	rules,	the	user	would	open	the	dialog	box	of	the	
column	to	sort	and	filter	the	data,	check	the	“Use	computed	value”	checkbox	and	in	
the	textbox	below	enter	a	spreadsheet	statement	that	returns	a	string	of	predefined	
values	that	represent	the	rules	(listed	in	Table	3.1).	So	for	example,	to	sort	the	
column	only	when	Checkbox1	is	checked,	the	user	enters	=IF(Checkbox1 !Checked,
“Descending”, “None”)	as	the	rule	in	the	“Use	computed	value”	textbox	for	sorting.	
Or	if	the	user	wants	to	program	the	behavior	of	using	a	slider	to	filter	the	data,	she	
can	enter	a	formula	like	=“Filter value, >=, ”&Slider1!Value	in	the	“Use	
computed	value”	textbox	for	filtering	to	filter	out	cells	that	are	less	than	the	value	of	
Slider1	in	the	web	application.	
	

4.3.3 MAKING APPLICATIONS BE INTERACTIVE
One	of	the	innovations	in	Gneiss	is	the	way	that	users	can	make	their	web	
applications	be	interactive.	Originally,	we	explored	having	Gneiss	use	a	conventional	
event-based	or	callback	architecture	like	Java	and	JavaScript,	where	UI	elements	
would	contain	actions	to	be	performed	when	operated.	However,	it	is	awkward	to	
combine	these	“push”	actions	(where	the	action	routine	in	a	UI	element	would	set	
other	cells—pushing	values	to	them)	with	the	spreadsheet	“pull”	model	(where	cells	
compute	their	own	values	with	formulas	by	pulling	in	the	needed	values).	Therefore,	
I	designed	a	way	for	the	Gneiss	user	to	define	interactive	behaviors	without	ever	
needing	to	write	any	callback	or	event	procedures.	As	Gneiss	is	a	live	and	visual	
programming	environment,	I	wanted	the	user’s	interaction	to	be	live,	with	all	of	the	
values	being	visible	in	Gneiss	in	the	same	way	that	spreadsheet	cells	are	normally.		
	

KERRY CHANG	|	Dissertation	 57

To	achieve	this,	I	designed	a	new	way	to	connect	the	spreadsheet	to	properties	of	
GUI	elements.	The	interactive	properties	of	a	GUI	element	show	the	value	set	by	the	
user.	These	properties	are	displayed	in	the	property	sheet	in	the	web	interface	
builder	using	grey	color	cells	to	show	that	their	values	are	not	editable	there.	
Instead,	interactive	properties	change	values	live	based	on	how	the	user	interacts	
with	the	GUI	element.	For	example,	all	GUI	elements	have	an	interactive	property	
called	“State”	that	shows	how	the	mouse	cursor	interacts	with	them.	The	“State”	
property	changes	its	value	between	“idle”,	“hovered”,	“pressed”	and	“clicked”.	For	
events	that	have	a	very	short	duration,	such	as	“clicked”,	the	value	will	stay	a	few	
extra	milliseconds	after	the	event	so	the	user	can	notice	that	it	happened	and	use	
that	value	in	spreadsheet	formulas.	Other	interactive	properties	are	mostly	for	data	
input	elements,	such	as	“Value”	for	text	boxes	and	sliders,	and	“Checked”	for	radio	
buttons	and	checkboxes.	The	user	can	easily	test	the	interactive	properties	by	
interacting	with	different	GUI	elements	in	the	web	interface	builder	and	viewing	the	
changes.				
	
Interactive	properties	can	be	used	in	the	spreadsheet	cells	to	compute	different	data	
based	on	the	user’s	action.	In	both	the	spreadsheet	editor	and	the	property	sheet,	
values	of	interactive	properties	change	dynamically	in	keeping	with	Gneiss’s	
“programming-with-example”	style.	One	limitation	of	the	design	of	interactive	
properties,	though,	is	that	the	user	cannot	programmatically	set	the	value	of	an	
interactive	property,	such	as	to	set	the	initial	value	of	a	textbox,	as	the	value	is	
always	decided	at	run	time	based	on	how	people	interact	with	the	application.	I	
discuss	this	further	in	the	limitations	section	of	this	chapter	in	section	4.5.				
	

4.3.3.1 Constraint Evaluation and Circular Constraints
Like	some	other	one-way	constraint	solvers	[62,63,70],	our	spreadsheet	formula	
solver	provides	“once-around”	semantics	for	circular	constraints.	Here	I	use	an	
example	to	explain	how	this	works.	Suppose	the	user	sets	A1	to	be	0	and	A2	to	be	
A1+1,	which	makes	A2	be	1.	The	user	then	sets	A1	to	be	A2-1,	which	creates	a	
circular	reference.	Most	conventional	spreadsheets	such	as	Excel	do	not	allow	
circular	references	and	thus	will	return	errors	in	both	A1	and	A2.	In	contrast,	Gneiss	
allows	circular	references,	and	always	evaluates	any	dependent	cells	exactly	once	
when	any	cell	in	the	cycle	changes.	Here,	the	system	starts	computing	A1	by	asking	
A2’s	value.	Since	A2	is	A1+1,	it	goes	back	to	A1	and	finds	that	it	has	reached	the	
beginning	of	the	cycle.	The	system	then	stops	the	circular	reference	here	and	
returns	A1’s	old	computed	value,	0.	That	makes	A2’s	value	be	1	(0+1),	and	A1’s	
value	stays	0	(1-1).	
	
Supporting	“once-around”	circular	constraints	in	the	spreadsheet	makes	more	types	
of	expressions	possible.	For	example,	a	spreadsheet	cell	can	now	reference	itself.	
The	system	will	return	the	cell’s	original	value	before	it	is	recomputed.	Combined	

KERRY CHANG	|	Dissertation	 58

with	the	IF	statement,	this	allows	the	user	to	set	a	cell’s	value	to	something	if	a	
condition	is	true,	otherwise	having	the	cell	retain	its	original	value.	This	is	a	common	
behavior	many	modern	programming	languages	where	a	programmer	specifies	an	
if	condition	without	having	a	else	condition.	In	Gneiss,	the	user	can	program	the	
same	thing	using	spreadsheet	languages	by	having	the	“else”	parameter	in	the	IF	
function	be	a	reference	to	the	cell	itself,	or	leave	the	else	condition	blank.	For	
example,	in	the	usage	scenario,	if	the	user	adds	a	“search”	button	next	to	the	text	box	
and	wants	the	system	to	send	the	search	term	only	when	the	“search”	button	is	
clicked,	she	can	enters	=IF(Button1!State=”clicked”, TextBox1!Value, A1)	(or	
=IF(Button1 !State=”clicked”, TextBox1!Value),	omitting	the	else	condition)	in	
cell	A1.	Now	when	Button1	(the	ID	for	the	search	button)	is	clicked,	its	State	
property	will	become	“clicked”	for	a	few	milliseconds,	making	the	condition	in	the	
IF	statement	be	true	and	thus	changing	A1	to	be	TextBox1’s	value.	When	Button1’s	
State	goes	back	to	“idle”	or	other	values	that	are	not	“clicked”,	the	IF	statement	
goes	to	the	“false”	condition	and	references	A1	itself,	thus	A1	remains	the	same	
value.	This	creates	the	desired	behavior	the	user	wants.		
	
This	expression	is	useful	to	program	interactive	behaviors	as	it	allows	the	user	to	
set	a	cell’s	value	when	a	GUI	element	enters	a	certain	state,	but	does	not	change	the	
value	back	when	the	element	enters	another	state.	For	example,	suppose	the	user	
wants	to	change	a	blue	hyperlink	text	to	be	red	once	it	is	pressed.	This	can	be	done	
simply	by	entering	the	formula	=IF(THIS!State=”pressed”, “red”)	in	a	text	
element’s	color	property.	Now	despite	the	“State”	of	the	text	will	go	back	to	“idle”	
from	“pressed”	after	the	user	releases	the	mouse	button,	using	a	self-reference,	the	
text	is	able	to	stay	red.		
	

4.3.3.2 Timers, Animations and Refreshing Constraints
While	Gneiss	is	not	designed	for	creating	animation-heavy	applications	such	as	
games	or	art	websites,	it	does	provide	a	few	functions	to	program	simple	
animations.	Gneiss	has	a	TIMER(exp, ms)	function	that	will	run	the	expression	exp	
every	ms	milliseconds.	For	example,	entering	=TIMER(IF(THIS!State=”hovered”,
THIS!Width+10), 15)	as	a	GUI	element’s	width	property	value	will	increase	its	
width	by	10	pixel	every	15	milliseconds	when	the	element	is	hovered	by	the	mouse	
cursor.		I	also	designed	a	convenient	function	ANIMATE(startValue, endValue, ms)	
that	animates	startValue	to	endValue	in	the	duration	of	ms	milliseconds.	The	
function	uses	the	same	animation	algorithm	as	jQuery’s	animate	function	and	is	able	
to	animate	not	only	numbers	but	also	color	codes.	For	example,	entering	
=IF(THIS!State=”hovered”, ANIMATE(#ffffff, #000000, 500),

ANIMATE(#000000, #ffffff, 500))	in	a	GUI	element’s	color	property	creates	a	
fade-in/out	effect	when	the	element	is	hovered.	Another	example	is	presented	in	the	
demonstrative	examples	section	4.4.2.	
	

KERRY CHANG	|	Dissertation	 59

As	in	most	conventional	spreadsheets,	by	default	when	a	spreadsheet	cell’s	value	
changes,	the	cell	will	invalidate	all	other	cells	that	directly	depend	on	it.	This	causes	
the	dependent	cells	to	re-compute	their	values.	If	the	value	of	that	cell	changes,	then	
the	cell	continues	to	invalidate	other	cells	that	directly	depend	on	it,	and	so	on.	
However,	if	the	value	stays	the	same,	then	the	cell	will	not	invalidate	its	dependent	
cells,	and	the	propagation	stops.	This	increases	the	system’s	performance	and	also	
ensures	that	web	API	requests	are	not	run	when	a	parameter	value	is	updated	to	the	
same	value	as	before.	This	tends	to	happen	with	formulas	that	contain	IFs	or	other	
control	structures,	where	the	constraint	must	be	re-evaluated,	but	ends	up	
calculating	the	same	value.	
	
Gneiss	also	offers	a	function	REFRESH(exp)	to	let	users	invalidate	all	children	of	a	
cell	every	time	the	cell	is	recomputed	(even	if	after	recomputing,	the	cells	value	does	
not	change).	For	instance,	if	cell	A1	is	used	as	the	query	parameter	of	a	web	service	
call,	setting	A1	to	=TIMER(REFRESH(“world cup”), 600000)	will	invalidate	the	
children	of	A1	every	10	minutes	even	though	A1’s	value	is	always	“world	cup”,	
triggering	the	system	to	query	the	web	service	every	10	minutes	to	retrieve	the	
latest	search	results	for	“world	cup”.	I	described	in	the	previous	chapter	that	the	
user	could	force	re-evaluating	all	formulas	in	the	spreadsheet	using	a	menu	setting.	
This	REFRESH	function	acts	differently	as	it	only	re-evaluates	the	direct	dependencies	
of	a	cell.			
	

4.4 DEMONSTRATIVE EXAMPLES
Here	we	use	three	more	examples	to	demonstrate	our	system’s	ability	to	build	
elaborate	interactive	interfaces	
and	support	different	types	of	
web	applications.	
	

4.4.1 PHOTO SLIDESHOW
Slideshow	is	a	common	UI	design	
to	show	a	list	of	photos.	It	usually	
contains	a	large	photo	at	the	
center	of	the	interface,	
“previous”	and	“next”	buttons	
that	let	the	user	change	the	
photo	displayed	by	going	up	and	
down	the	list,	and	thumbnails	of	
all	photos	at	the	bottom	of	the	
interface.	I	will	show	here	how	
the	user	can	create	a	photo	
slideshow	interface	using	Gneiss	

	
Figure	4.4.	A	screenshot	of	making	a	slideshow	interface	
with	photos	from	Flickr.	At	the	left,	column	P	stores	a	list	of	
photo	URLs,	Q1	stores	the	current	slideshow	index	(3),	and	
Q2	stores	the	button	that	the	user	last	clicked	on	(“Next”).	At	
the	right	is	the	slideshow	application.	The	thumbnails	show	
the	photos	in	column	P.	The	large	image	is	the	photo	at	row	3	
(the	index	value	stored	in	Q1)	and	the	3rd	thumbnail	is	
highlighted.	

KERRY CHANG	|	Dissertation	 60

and	spreadsheet	functions.	The	screenshot	of	the	created	application	is	in	Figure	4.4.	
	
First,	the	user	would	retrieve	a	list	of	URLs	of	photos	using	a	photo	web	service	
(such	as	Flickr)	and	stores	the	photo	URLs	in	column	B,	in	the	same	way	as	
described	in	the	usage	scenario.	The	user	then	filters	the	search	results	to	see	the	
first	5	photos.	In	the	web	interface	builder,	the	user	can	drag	an	image	object	to	the	
output	page	and	two	buttons	before	and	after	the	image,	changing	the	label	of	the	
buttons	to	be	“Previous”	and	“Next”.	The	previous	and	next	buttons	control	the	
index	of	the	photo	being	shown.	The	user	decides	to	store	the	index	of	the	current	
photo	in	cell	A1.	She	types	in	“0”	in	A1	first.	She	then	needs	know	if	the	“Previous”	
button	or	the	“Next”	button	gets	clicked.	To	do	so,	she	types	in	A2:	
	

=IF(Button1!State=”clicked”, “Previous”,

IF(Button2!State=”clicked”, “Next”, A2))

	
where	Button1is	the	previous	button	and	Button2the	next	button.	This	nested	IF	
formula	changes	A2	to	be	set	to	either	“Previous”	or	“Next”	when	a	button	is	clicked.		
	
Now	the	user	needs	to	add	or	subtract	the	index	cell	(A1)	by	one	based	on	what	
button	is	clicked.	She	changes	A1	to	be:	
	

=IF(AND(A2=”Previous”, A1>1), A1-1,

IF(AND(A2=”Next”, A1<5), A1+1, A1))

	
This	nested	IF	formula	not	only	updates	A1’s	value	based	on	what	button	is	clicked,	
but	also	makes	sure	it	stays	between	1-5,	as	the	photo	URLs	are	in	rows	1	to	5	of	
column	B.	(To	alternatively	make	the	buttons	wrap	around	would	be	a	simple	
change	to	this	formula.)	From	the	property	sheet	in	the	web	interface	builder,	the	
user	sets	the	“Source”	property	of	the	center	image	object	to	=INDEX(B:B, A1).	
INDEX	is	a	standard	spreadsheet	function	that	takes	an	array	of	cells	(the	first	
argument)	and	returns	the	cell	at	the	given	index	(the	second	argument).	The	center	
image	object	now	displays	the	photo	at	the	index	specified	in	A1,	and	will	change	
when	the	user	presses	the	previous	or	next	buttons.	
	
Lastly,	the	user	has	to	create	a	list	of	thumbnails	of	all	the	photos.	To	do	so,	she	
drags	a	grid	list	to	the	bottom	of	the	interface,	drags	an	image	object	to	the	first	item	
of	the	grid	list,	and	set	the	“Source”	property	of	that	image	object	to	be	=B1.	The	
system	then	populates	the	list	to	show	photos	from	B2	to	B5.	The	user	wants	the	
thumbnail	displayed	as	the	center	image	to	be	highlighted	with	a	blue	border.	To	do	
so,	the	user	enters	the	following	formula	in	the	“Border”	property	of	the	thumbnail	
image:	
	

=IF(THIS!Source=Image1!Source, “solid blue 1px”, “none”)

KERRY CHANG	|	Dissertation	 61

	
where	Image1	is	the	center	image.	The	formula	sets	the	border	of	a	thumbnail	to	be	
blue	when	the	source	of	the	thumbnail	is	the	source	of	the	center	image.	The	user	
now	has	finished	creating	a	web	application	that	shows	photos	in	a	slideshow	
interface,	using	only	a	few	spreadsheet	formulas.	
	

4.4.2 ANIMATIONS
Continuing	the	photo	slideshow	example,	suppose	the	user	wants	the	width	and	
height	of	the	image	to	increase	from	50	pixels	to	100	pixels	when	the	mouse	enters	
it,	and	to	go	back	to	50	pixels	when	the	mouse	leaves.	She	first	sets	spreadsheet	cell	
C1	to	be	50	and	sets	the	“Width”	property	of	the	thumbnail	image	to	be	C1.	She	then	
types	the	following	formula	in	C1:	
	

=IF(Image2!State=”hovered”,

ANIMATE(C1, 100, 500), ANIMATE(C1, 50, 500))	
	
where	Image2	is	the	thumbnail	image.	When	the	image	is	in	the	hovered	state,	this	
formula	gradually	increases	C1	from	its	current	value	to	100	in	500	milliseconds.	
Otherwise,	when	not	hovered,	the	formula	gradually	decreases	C1	to	50	in	500	
milliseconds.	The	user	can	then	set	cell	D1	in	the	same	way	and	make	D1	be	the	
height	of	the	thumbnail	to	animate	the	height	as	well.		
	

4.4.3 POSTING DATA
Gneiss	can	also	create	application	that	posts	data	back	to	a	web	data	source	using	a	
POST	web	API.	Suppose	the	user	wants	to	create	an	application	where	she	can	type	
in	a	textbox	and	press	a	“Send”	button	to	send	the	data	to	a	web	data	source	(instead	
of	pressing	the	“enter”	key	as	in	the	scenario	in	section	4.2).	The	user	starts	by	
creating	a	text	box	and	a	button	in	the	output	page.	Then	in	spreadsheet	cell	A1,	she	
types	=IF(Button1!State="clicked",TextBox1!Value, A1)	to	fill	A1	with	the	text	
box	value	when	the	button	is	clicked.	She	can	then	bind	A1	to	the	value	of	the	data	
parameter	of	the	POST	web	API,	which	will	send	it	to	the	data	source.	
	

4.5 LIMITATIONS AND DISCUSSION
This	section	discusses	some	limitations	on	how	Gneiss’	spreadsheet	model	supports	
programming	interactive	web	applications.	First,	as	mentioned	previously	in	section	
4.3.3,	the	current	design	of	interactive	properties	does	not	allow	the	user	to	set	the	
value	of	an	input	element	programmatically,	as	all	interactive	properties	are	not	
editable	and	change	only	based	on	the	user’s	interaction.	This	may	be	inconvenient	
in	several	situations,	such	as	when	the	user	wants	to	initialize	a	GUI	control	to	have	
a	non-empty	value,	or	to	implement	a	“select	all”	checkbox	that	if	checked	will	

KERRY CHANG	|	Dissertation	 62

automatically	check	some	other	checkboxes.	Gneiss	could	easily	provide	a	new	
property	that	let	user	set	the	initial	value	of	an	input	element.	Another	possible	
design	to	solve	this	problem	is	to	make	the	input	value	and	the	user	event	separate	
properties,	enabling	the	input	value	property	to	be	calculated	from	event	properties	
and	other	spreadsheet	cells.	For	example,	a	checkbox	could	have	a	editable	value	
property	that	by	default	is	=IF(THIS!State=”Clicked”, IF(THIS!Value=”true”,
“false”, “true”))	to	have	the	default	toggle	behavior	while	allowing	the	user	to	
customize	the	checkbox’s	behavior.	But	this	also	makes	the	system	more	
complicated.		
	
Also,	Gneiss	does	not	have	a	good	way	to	let	users	combine	sequences	of	events,	
such	as	detecting	a	drag-and-drop	behavior.	The	user	could	do	so	by	“streaming”	
events	to	spreadsheets	(explained	later	in	Chapter	6),	but	admittedly,	it	is	quite	
awkward	to	program	this	in	Gneiss.	Prior	spreadsheet	tools	that	support	
programming	graphical	user	interfaces	have	different	ways	to	support	this.	For	
example,	Forms/3	[11]	supports	a	time	model	that	can	record	an	event	and	the	time	
the	event	ended,	enabling	a	programmer	to	reference	past	sequences	of	events,	such	
as	using	a	mouse	down	–	mouse	move	–	mouse	up	sequence	to	identify	the	behavior.	
InterState	[71]	uses	a	combination	of	states	and	constraints	to	specify	transitions	
between	different	events	to	form	a	new	behavior.	So	the	user	could	let	a	GUI	
element	have	“drag”	and	“no	drag”	states	such	that	in	the	“drag”	state	the	element’s	
position	would	be	bound	to	the	mouse	position,	and	in	the	“no	drag”	state	the	
element	will	stay	at	its	current	position.	Transitions	between	“drag”	and	“no	drag”	
are	triggered	by	mouse	down	and	mouse	up	events.	Forms/3	and	InterState	were	
discussed	in	detail	in	section	2.3.1.		
	
It	is	important	to	remember	that	Gneiss	is	designed	as	an	end-user	tool	focusing	on	
making	web	data	more	usable	and	useful.	Therefore,	while	I	have	demonstrated	in	
this	chapter	that	with	Gneiss	the	user	can	program	many	interactive	behaviors,	it	is	
not	the	goal	of	this	dissertation	to	support	programming	all	kinds	of	custom	
graphics	and	interactive	behaviors	that	one	could	think	of	with	Gneiss.	A	
programming	system	will	inevitably	get	more	and	more	complex	when	trying	to	
support	more	things.	As	an	end-user	tool,	I	designed	Gneiss	to	focus	on	supporting	
data-related	interactive	behaviors	that	I	observed	were	essential	in	conventional	
data-driven	applications,	namely	querying,	sorting,	filtering	and	visualizing	data.	In	
contrast,	Forms/3	and	InterState,	while	more	powerful	in	creating	custom	graphics	
and	interactive	behaviors	compared	to	Gneiss,	introduce	many	new	concepts	with	
which	spreadsheet	users	may	not	be	familiar.	I	discuss	more	future	work	on	
extending	Gneiss	to	better	support	programming	interactive	behaviors	in	section	
8.3	
	
The	research	in	this	chapter	focuses	on	using	spreadsheets	to	support	programming	
data	bindings	and	data-related	interactive	behaviors	in	a	web	application.	Much	

KERRY CHANG	|	Dissertation	 63

future	work	can	be	done	to	enhance	Gneiss	to	support	styling	a	web	application.	For	
example,	the	web	interface	builder	in	Gneiss	could	have	a	“code”	mode	to	let	users	
directly	edit	the	HTML	and	CSS	code	of	the	web	application	to	give	users	more	
control	(similar	to	what	conventional	web	editors	such	as	Adobe	Dreamweaver	do),	
or	just	let	users	import	HTML	and	CSS	files	written	elsewhere	to	use	in	Gneiss’s	
interface	builder.	I	discuss	this	further	in	section	8.6.	
	
As	described	in	this	chapter’s	usage	scenario	in	section	4.2,	the	user	can	choose	to	
export	a	web	application	to	use	outside	of	Gneiss	in	any	device	that	has	a	browser.	
Details	on	how	Gneiss	exports	a	web	application	are	described	in	section	7.1.4.	
Future	work	includes	increasing	the	usability	of	the	exported	web	application	on	
mobile	devices,	such	as	using	responsive	CSS	frameworks	to	support	different	
screen	sizes,	or	to	further	support	exporting	mobile	applications	instead	of	web	
applications,	which	I	discuss	further	in	section	8.5.		
	

4.6 CONCLUSIONS
In	this	chapter,	I	presented	how	Gneiss	provides	a	novel	way	to	create	interactive,	
data-driven	applications.	Gneiss	extends	the	spreadsheet	model	to	unify	the	access	
of	GUI	elements,	treating	GUI	element	properties	as	spreadsheet	cells	that	can	use	
and	be	used	in	spreadsheet	formulas.	All	GUI	elements	have	interactive	properties	
whose	value	changes	based	on	how	the	user	interacts	with	the	element,	enabling	the	
user	to	program	interactive	behaviors	using	a	“pull	model”	that	is	consistent	with	
the	current	spreadsheet	paradigm.	Gneiss	further	supports	once-around	circular	
references	and	new	functions	such	as	TIMER	to	enable	a	variety	of	interactive	
behaviors	to	be	programmed	in	spreadsheet	languages.	Combined	with	the	
spreadsheet	model	for	using	web	services	described	in	the	previous	chapter,	Gneiss	
turns	a	spreadsheet	into	an	intermediate	platform	that	connects	a	web	application	
and	multiple	web	data	services,	and	enables	users	to	program	two-way	data	flow	
between	them	all	using	the	familiar	spreadsheet	mechanism.	As	shown	by	the	
various	examples,	Gneiss	can	be	used	to	program	a	wide	variety	of	web	applications	
using	a	wide	variety	of	web	data	sources.	
	
	
	 	

KERRY CHANG	|	Dissertation	 64

CHAPTER 5 USING STRUCTURED HIERARCHICAL
DATA7

Structured	data	formats	such	as	JSON	and	XML	are	becoming	more	and	more	
popular	online	due	to	the	emergence	of	NoSQL	databases	provided	by	Web	2.0	
companies	such	as	Amazon,	Facebook,	Google	and	Yahoo	[60].	JSON	and	XML	are	
also	the	two	dominant	data	formats	for	web	services	where	the	user	can	download	
various	kinds	of	data	such	as	music	(e.g.,	Discogs),	movies	(e.g.,	RottenTomatoes),	
social	networks	(e.g.,	Facebook,	Twitter),	and	finance	(e.g.,	Yahoo,	Bloomberg).	In	
fact,	programmableweb.com	lists	over	14,742	web	services	as	of	March,	2016,	most	
of	which	return	data	in	JSON	or	XML	formats.		
	

5.1 MOTIVATION, CHALLENGES AND CONTRIBUTIONS
Exploring	and	analyzing	structured	data	has	become	a	common	task	for	many	
professional	data	analysts	[4],	and	they	often	use	programming	languages	such	as	R	
and	Python8.	Soon,	many	end-users	may	also	have	to	work	with	JSON	or	XML	data	
instead	of	comma-separated	values	(CSV)	or	Excel	data	as	they	do	now.	My	
dissertation	extends	spreadsheets,	the	most	popular	tool	used	by	end-users	for	data	
analysis,	to	support	using	structured	JSON	data.		
	
Often,	structured	data	such	as	JSON	and	XML	contain	nested	hierarchies.	For	
example,	Error!	Reference	source	not	found.	at	1	shows	a	simple	JSON	object	that	
describes	an	NBA	team	that	has	a	list	of	players	and	for	each	player,	a	list	of	
positions.	This	creates	two	levels	of	hierarchies,	represented	by	the	nested	arrays.	
The	team	also	has	a	list	of	coaches	that	is	separated	from	the	players’	hierarchy.	
Current	spreadsheet	tools	do	not	handle	multiple	nested	hierarchical	structures	
well,	as	a	spreadsheet	by	nature	is	a	two-dimensional	table.	Flattening	a	hierarchical	
document	into	a	table	will	inevitably	create	many	repeated	values	or	empty	cells,	
making	further	analysis	of	the	data	difficult.	For	example,	Error!	Reference	source	
not	found.	at	2	shows	the	JSON	object	converted	into	a	“long	table”	format	where	
the	hierarchies	are	expanded	vertically.	In	this	format,	the	player	name	“LeBron	
James”	is	repeated	many	times	in	order	to	correspond	to	each	of	the	coaches’	name,	
the	player’s	position	and	NBA	champion	years.	If	there	is	a	list	of	teams,	it	would	be	
difficult	to	find	out	questions	such	as	which	player	won	the	most	NBA	
championships,	as	each	player’s	name	would	be	repeated	a	different	number	of	
times.	The	user	would	need	to	remove	a	lot	of	duplicated	values	before	she	could	get	
the	answer.	Error!	Reference	source	not	found.	at	3	shows	the	same	data	
converted	into	a	“wide	table”	format	where	the	hierarchies	are	expanded	

																																																								
7	The	research	in	this	chapter	was	also	described	in	our	publication	at	CHI’16	[22]	
8	See	http://www.kdnuggets.com/2015/05/r-vs-python-data-science.html		

KERRY CHANG	|	Dissertation	 65

horizontally.	This	format	does	not	make	things	easier,	as	the	players	are	now	in	
different	columns,	and	there	are	many	empty	cells	in	the	columns.	The	format	is	also	
very	difficult	to	read,	as	the	table	has	a	lot	of	columns	and	requires	the	user	to	scroll	
quite	far	horizontally	to	see	everything.	This	JSON	document	includes	each	player’s	
salary	data.	However,	there	is	no	easy	way	for	the	user	to	get	the	highest	paid	player	
in	each	team	in	either	table	format	using	spreadsheet	mechanisms.	This	is	because	
the	spreadsheet	does	not	support	selecting	and	manipulating	data	(such	as	sorting	
and	filtering)	using	the	hierarchical	structure.		
	
To	address	these	problems,	my	dissertation	introduces	a	spreadsheet	model	for	
using	structured	hierarchical	data.	This	model	makes	three	main	contributions.	
First,	it	contributes	a	new	method	to	visualize	hierarchical	data	in	a	spreadsheet	
that	lets	users	reshape	and	regroup	data	easily	through	interaction	techniques.	Data	
can	be	dynamically	visualized	into	nested	cells	(Figure	5.1)	or	reshaped	into	a	flat	
table	based	on	the	relative	hierarchical	relationship	among	spreadsheet	columns.	
This	feature	enables	the	user	to	easily	explore	different	groupings	of	data	using	any	
JSON	fields.	It	also	allows	the	user	to	calculate	various	kinds	of	summaries	of	data	
using	the	familiar	spreadsheet	functions	without	having	to	learn	new	concepts	such	
as	pivot	tables	or	SQL	queries.	
	
This	model	makes	a	second	contribution	by	extending	the	familiar	spreadsheet	
mechanisms	for	manipulating	table	data,	namely	spreadsheet	languages,	sorting,	
filtering,	and	autofilling	(select-and-drag),	to	support	hierarchical	data	as	well.	
Gneiss	generates	nested	row	labels	for	hierarchical	data	to	allow	users	to	select	data	
using	its	structure	using	the	familiar	spreadsheet	language	syntax.	The	nested	tables	
also	enable	sorting	and	filtering	of	the	data	using	the	hierarchy.	For	example,	in	
Figure	5.1,	each	team	is	a	row,	and	each	team’s	players	form	a	nested	table	within	a	

	
Figure	5.1.	(1)	A	JSON	object	describing	the	Cleveland	Cavaliers.	The	coaches	and	players	are	shown	in	
two	arrays.	(2)	Converting	this	JSON	object	into	a	“long	table”	spreadsheet	format	where	the	hierarchies	
are	expended	vertically	creates	a	lot	of	repeated	values,	whereas	(3)	converting	it	into	a	“wide	table”	
spreadsheet	format	where	the	hierarchies	are	expended	horizontally	creates	a	lot	of	columns	with	
empty	cells.		

KERRY CHANG	|	Dissertation	 66

row.	To	view	the	highest	paid	player	in	each	team,	the	user	can	sort	by	the	salary	
column	to	bring	each	team’s	highest	paid	player	to	the	top	of	its	nested	table,	and	
filter	to	see	the	first	item	only	in	each	nested	table.	The	user	can	also	insert	a	new	
column	that	has	the	same	structure	as	any	column	in	the	spreadsheet,	and	create	
new	hierarchical	data	using	spreadsheet	languages	and	autofilling.		
	
Finally,	our	tool	contributes	a	new	method	to	join	hierarchical	data	from	multiple	
sources	based	on	common	fields.	While	hierarchical	documents	could	be	turned	into	
flat	tables	and	joined	using	conventional	methods	(such	as	in	[25]),	our	method	
operates	directly	on	hierarchical	objects,	connecting	two	trees	without	flattening	
them.	This	creates	in	a	new	combined	hierarchical	object	that	can	be	reshaped,	
regrouped,	sorted	and	filtered	using	its	structure	as	regular	hierarchical	objects	in	
Gneiss.		
	
The	user	further	can	use	the	right	pane	in	Gneiss	to	make	visualizations	that	take	
hierarchical	data	such	as	a	treemap	[45]	(see	section	5.4.1),	or	show	the	data	in	a	
web	application	using	nested	lists	(see	section	4.3.1.2).		
	
In	the	rest	of	the	chapter,	I	will	explain	those	features	in	detail,	and	present	
examples	to	show	the	model’s	ability	to	let	users	explore	and	analyze	hierarchical	
JSON	data.	I	will	also	describe	a	lab	study	where	I	recruited	intermediate	
spreadsheet	users	to	use	Gneiss	or	Microsoft	Excel	to	complete	five	data	exploration	
tasks	using	two	hierarchical	JSON	documents.	I	also	recruited	a	separate	set	of	
people	who	were	professional	programmers	familiar	with	JSON	data	to	use	
JavaScript	or	Python	to	complete	the	same	tasks.	In	summary,	Gneiss	helped	
spreadsheet	users	complete	the	tasks	nearly	two	times	faster	than	using	Excel.	
Gneiss	even	helped	spreadsheet	users	complete	four	of	the	five	tasks	faster	than	
professional	programmers.	Participants	rated	our	study	tasks	highly	realistic	and	
similar	to	what	they	do	in	their	own	work	in	real	life.	Based	on	participants’	

	
Figure	5.1.	The	JSON	object	in	Figure	5.1	at	1	shown	in	Gneiss.	Gneiss	visualizes	the	hierarchies	of	data	
using	nested	cells	with	nested	row	labels	to	allow	users	to	select	data	by	its	structure.	In	this	JSON	object,	
the	team	coaches	and	players	are	in	two	different	arrays.	Therefore,	Gneiss	uses	a	thin	grey	line	between	
them	(column	B	and	C)	to	show	that	they	are	not	hierarchically	connected	(same	as	the	player’s	
positions	and	NBA	champion	years	in	column	E	and	F).		

KERRY CHANG	|	Dissertation	 67

feedback	and	our	observation	on	how	they	completed	the	tasks,	I	discuss	the	
strengths	and	limitations	of	Gneiss	in	helping	spreadsheet	users	use	hierarchical	
data,	and	some	possible	directions	for	future	work.	
	

5.2 USAGE SCENARIO
Here	I	present	another	usage	scenario	to	give	an	overview	of	the	novel	features	for	
using	and	exploring	hierarchical	data.	In	this	scenario,	Ally,	a	graduate	student,	gets	
two	JSON	documents	about	the	CHI’15	conference.	Figure	5.2	shows	an	example	
object	from	each	file.	The	first	file,	papers.json,	stores	all	accepted	papers.	Each	
paper	is	an	object	and	has	7	fields	(Figure	5.2	at	the	left):	ID,	paper_title,	abstract,	
keywords	(an	array),	type	(“long”	or	“short”	meaning	a	long	or	short	paper),	award	
(“none”,	“bp”	for	a	best	paper,	“hm”	for	a	honorable	mention	paper)	and	authors	(an	
array	with	each	author	being	an	object	and	having	a	name,	institution,	city	and	
country	field).	The	second	file,	sessions.json,	stores	all	the	paper	sessions	in	the	
conference.	Each	session	is	an	object	and	has	6	fields	(Figure	5.2	at	the	right):	
session_title,	room,	day,	time,	chair	and	submissions.	The	submissions	field	is	an	
array	that	contains	an	ordered	list	of	paper	IDs	that	are	presented	in	the	session.	
Ally	is	interested	to	know	which	institution	has	the	most	accepted	papers	and	also	
wants	to	determine	which	paper	sessions	she	should	attend	during	the	conference.	
She	uses	Gneiss	to	explore	the	data.	
	
Ally	loads	the	two	files	into	two	tabs	of	the	left	pane	using	the	“Choose	file”	button.	
She	first	tries	to	answer	the	question	of	which	institution	has	the	most	papers.	In	

	
Figure	5.2.	Two	example	JSON	objects	used	in	the	usage	scenario.	The	left	JSON	object	describes	a	
conference	paper.	The	right	JSON	object	describes	a	paper	session	in	a	conference,	with	each	paper	listed	
in	order,	using	its	ID.	

	

KERRY CHANG	|	Dissertation	 68

Gneiss,	the	user	starts	by	extracting	fields	that	she	thinks	are	relevant	to	her	task.	
Ally	extracts	the	paper	titles,	author	names	and	institutions	to	spreadsheet	columns	
A	–	C	respectively	(Figure	5.3	at	1)	using	drag-and-drop.	The	system	recognizes	that	
column	B	(author	names)	came	from	a	child	field	of	column	A	(paper	titles).	
Therefore,	it	puts	author	names	in	nested	tables	in	column	B	so	they	are	in	the	same	
row	as	their	corresponding	paper	in	column	A.	As	for	column	C	(author	institutions),	
the	system	recognizes	that	the	data	are	in	the	same	hierarchy	level	in	the	document	
as	column	B,	so	it	creates	the	same	nested	tables	as	column	B	and	puts	an	author’s	
name	and	institution	in	the	same	row.	
	
This	view	lets	Ally	easily	see	how	many	authors	and	institutions	each	paper	has,	but	
Ally	wants	to	know	which	institution	has	the	most	papers.	She	needs	to	regroup	the	
data	using	the	institution	field.	To	do	so,	she	drags	the	institution	data	from	column	
C	to	A.	In	our	tool,	data	that	are	used	for	grouping	must	be	at	the	beginning	of	the	
table.	The	system	reorganizes	the	data	accordingly	(Figure	5.3	at	2):	column	A	now	
shows	a	flattened	list	of	all	of	the	institutions	fields.	Data	in	column	B	(paper	titles)	
now	come	from	a	parent	field	of	the	data	in	column	A	(author	institutions)	and	thus	
the	system	repeats	the	parent	values	to	let	the	child	and	parent	again	be	in	the	same	
row.	Finally,	the	system	recognizes	that	data	in	column	C	(author	names)	come	from	
a	child	field	of	column	B	so	it	shows	the	data	in	nested	cells.	Column	C	is	also	

	
Figure	5.3.	Six	tables	showing	how	the	user	can	compute	summaries	of	a	JSON	file	of	conference	papers.	
(1)	The	data	initially	is	indexed	by	paper	titles.	Each	paper	has	multiple	authors.	Each	author	has	an	
institution.	The	user	regroups	the	data	by	institutions	by	dragging	the	institutions	to	the	beginning	of	
the	table	(2),	right-clicks	column	A	and	chooses	“Group	Column	B-C	by	Column	A”	(3)	to	merge	rows	that	
have	the	same	value	in	column	A	(4).	Column	B	now	has	many	repeated	values	because	a	paper	can	have	
many	authors	from	the	same	institution.	(5)	The	user	groups	the	data	again	by	column	B	to	merge	
repetitive	paper	titles	within	an	institution.	Lastly,	(6)	the	user	inserts	a	new	column	at	column	B,	enters	
=COUNT(C1)	in	B1	to	get	the	paper	count	for	the	first	institution,	and	autofills	the	value	for	the	rest	of	
the	institutions.	She	sorts	the	data	by	column	B	to	bring	the	institution	that	has	the	most	papers	to	the	
top.	

KERRY CHANG	|	Dissertation	 69

constrained	by	column	A:	only	the	author	name	in	the	same	object	with	the	author	
institution	in	the	same	row	is	shown.	
	
Ally	then	selects	column	A,	right	clicks	and	chooses	“Group	Column	B-C	by	Column	
A”	(Figure	5.3	at	3).	The	system	merges	rows	that	have	the	same	values	in	column	A,	
and	column	B	becomes	nested	(Figure	5.3	at	4).	She	can	see	that	many	papers	are	
repeated	multiple	times.	As	column	C	shows,	this	is	clearly	because	a	paper	could	
have	multiple	authors	from	the	same	institution.	To	get	rid	of	duplicate	values	in	
column	B,	Ally	groups	the	data	by	column	B	using	similar	methods.	Now	each	
spreadsheet	row	shows	an	institution,	all	papers	of	the	institution,	and	all	authors	
who	wrote	the	paper	and	are	from	the	institution	(Figure	5.3	at	5).	
	
With	this	table,	Ally	can	easily	see	the	number	of	papers	of	each	institution.	She	
inserts	a	new	column	next	to	column	A	and	names	it	“paperCount”.	Column	B	is	now	
a	blank	column	and	the	paper	titles	and	author	names	are	pushed	to	columns	C	and	
D.	Ally	enters	=COUNT(C1)	in	B1	to	count	the	number	of	papers	of	the	first	
institution,	and	uses	drag-down	autofill	to	fill	in	the	paper	count	for	the	rest	of	the	
institutions.	She	sorts	all	the	data	by	column	B	to	bring	the	institution	that	has	the	
most	papers	to	the	top	(Figure	5.3	at	6).	With	a	few	mouse	clicks	and	a	spreadsheet	
function,	Ally	gets	the	answer	she	wants	from	a	messy	JSON	file.	
	
Ally’s	next	task	is	to	come	up	with	a	schedule	that	tells	her	what	sessions	to	attend	
at	the	conference	(Figure	5.4).	She	is	interested	in	papers	about	crowdsourcing	and	
also	all	the	award	papers.	She	decides	that	for	each	time	slot,	she	wants	to	go	to	the	

	
Figure	5.4.	A	screenshot	showing	the	result	spreadsheet	of	the	second	task	in	the	usage	scenario.	The	left	
pane	is	where	the	user	loads	and	views	a	JSON	file	(through	a	URL	bar	for	online	data	or	a	“Choose	file”	
button	for	local	data).	The	spreadsheet	is	a	custom	conference	schedule	created	by	the	user.	The	
spreadsheet	shows	for	each	time	slot,	the	session	that	has	the	most	number	of	award	papers	plus	papers	
that	have	“crowdsourcing”	in	its	keywords.	The	data	is	grouped	by	day	(column	A)	and	time	(column	B).	
Column	C	shows	the	title	of	the	session	that	the	user	should	go	to.	The	number	of	award	plus	
crowdsourcing	papers	of	that	session	is	in	column	D,	with	the	details	of	the	papers	in	the	rest	of	the	
columns.	

KERRY CHANG	|	Dissertation	 70

session	that	has	the	highest	number	
of	award	papers	plus	papers	that	
have	“crowdsourcing”	as	one	of	the	
keywords.	Since	session	and	paper	
information	are	in	two	different	
files,	she	needs	to	join	the	two	
documents	together.	Ally	opens	a	
blank	spreadsheet	and	first	extracts	
the	fields	she	needs	from	the	session	
file,	which	are	the	day,	time,	title,	
and	paper	submissions	(listing	their	
IDs)	for	each	session,	from	the	left	
pane	into	spreadsheet	columns	A-D.	
She	then	switches	to	the	paper	file	
and	extracts	the	paper	ID,	title,	
award	and	keywords	fields	into	columns	E-H.	She	then	selects	column	D	and	E	that	
are	the	paper	IDs	from	the	session	
and	paper	files,	right-clicks	and	
chooses	“Join	The	Two	Tables	on	
Column	D=E”	(Figure	5.5	at	the	top).	
	
The	system	connects	the	two	tables	
by	joining	the	two	ID	columns.	It	
creates	a	combined	hierarchical	
table	containing	three	levels	of	
hierarchies	(Figure	5.5	at	the	bottom).	The	user	can	manipulate	this	table	such	as	
reshaping	it	by	moving	columns	or	sorting	and	filtering	values	the	same	way	as	if	
the	data	had	come	from	a	single	source.	Here,	Ally	wants	to	know	the	total	number	
of	award	and	crowdsourcing	papers	in	a	session.	She	inserts	a	new	column	next	to	
the	paper	title	in	column	F	(Figure	5.6),	naming	it	“isAwardOrCs”.	The	award	and	
keyword	column	are	pushed	to	column	G	and	H.	Ally	then	enters	this	formula	in	cell	
F1.1:	
	

=IF(OR(OR(G1.1=”bp”,G1.1=”hm”), COUNTIF(H1.1,“crowdsourcing”)>0),

“Yes”,“No”)

	
The	formula	returns	“Yes”	if	a	paper	has	an	award	(best	paper	(bp)	or	honorable	
mention	(hm))	or	has	at	least	one	keyword	being	“crowdsourcing”.	Ally	then	
computes	this	value	for	all	papers	using	autofill,	and	filters	the	data	to	show	only	the	
papers	that	have	“Yes”	in	this	column.	
	
Ally	inserts	a	new	column	next	to	the	session	title	column	(Figure	5.4	at	column	D),	
uses	the	COUNT	function	to	compute	the	number	of	“Yes”	papers	for	the	first	session,	

	
Figure	5.5.	The	user	joins	two	tables	by	selecting	a	
common	column	in	each	table	and	clicking	the	“Join”	
option	from	the	right-click	menu.	The	common	columns	
(here,	columns	D	and	E)	are	combined	into	one	column	
after	the	tables	are	joined.	

	

	
Figure	5.6.	The	user	can	insert	a	new	blank	column	that	
has	the	same	structure	as	a	selected	column.	

KERRY CHANG	|	Dissertation	 71

and	autofills	the	rest	of	the	sessions.	Finally,	Ally	groups	the	data	by	the	day	and	
time	to	make	it	more	readable.	Within	each	time	slot,	Ally	uses	sorting	and	filtering	
to	show	the	session	that	has	the	highest	count	number.	Now	she	gets	her	custom	
schedule!	The	final	spreadsheet	is	in	Figure	5.4.		
	

5.3 KEY FEATURES FOR USING HIERARCHICAL DATA
Here	I	describe	the	key	features	for	using	hierarchical	data	in	Gneiss.	
	

5.3.1 DISPLAYING HIERARCHICAL DATA IN SPREADSHEETS
How	hierarchical	data	are	shown	in	
Gneiss	went	through	several	design	
iterations.	In	an	early	version	[20],	
the	user	could	extract	an	entire	JSON	
object	into	a	column,	and	the	object	
was	visualized	as	nested	tables	with	
nested	column	headers.	Figure	5.7	is	
an	example	of	the	old	design	
showing	movie	data.	The	user	
extracted	the	entire	abridged_cast	
object	for	each	movie	to	column	B.	
Abridged_cast	is	an	array,	each	item	
in	the	array	is	a	JSON	object	that	has	
three	fields:	name,	id,	and	
characters.	The	characters	field	is	
another	array	where	each	item	in	the	array	is	an	object	that	has	a	field	called	
character.	To	refer	to	the	cell	“Ewan	McGregor”	in	the	nested	table,	the	user	could	
enter	B1.A2.A1,	which	is	the	cell	name	sequence	starting	from	the	root	cell	to	the	
target	cell.	As	in	a	conventional	spreadsheet,	when	typing	a	spreadsheet	formula	the	
user	could	also	click	on	a	cell	to	insert	its	name.		
	
This	design,	while	able	to	show	the	structure	of	the	data,	has	several	disadvantages.	
First,	the	nested	column	headings	would	take	a	lot	of	screen	space	if	the	object	has	
complex	structure	(even	in	the	example	in	Figure	8	where	the	data	only	have	two	
levels	of	structure,	the	nested	headings	already	take	a	lot	of	space).	Second,	counting	
the	nested	cell	names	also	becomes	difficult	when	the	nested	structure	gets	deeper.	
For	example,	in	Figure	5.7,	the	name	for	the	cell	that	has	the	value	“R2-D2”	is	
B1.A3.C1.A1.	But	after	running	a	few	informal	pilot	tests,	I	found	that	with	this	
spreadsheet	design,	users	tended	to	think	that	the	cell	name	would	start	with	A1,	
which	is	the	leaf	cell	that	directly	wraps	the	value	“R2-D2”,	as	that	was	the	cell	that	
they	first	saw.	Instead,	in	this	design,	the	user	would	have	to	trace	back	to	the	cell’s	
ancestors	to	the	root	and	go	down	again	to	compose	a	cell	name,	which	is	not	

	
Figure	5.7.	An	old	design	of	Gneiss’s	nested	table.	

KERRY CHANG	|	Dissertation	 72

intuitive	and	it	is	easy	to	get	lost.	Finally,	an	observation	I	had	was	that	often	when	
doing	data	analysis,	the	user	would	only	need	to	use	a	few	fields	from	a	JSON	
document	at	a	time.	Since	visualizing	the	entire	JSON	document	object	would	often	
generate	large	and	complex	nested	tables	that	are	difficult	to	use,	a	better	strategy	
might	be	to	focus	on	visualizing	only	the	fields	that	the	user	wants	and	to	support	
new	ways	to	use	and	manipulate	those	data.	My	observation	was	that	when	a	JSON	
object	is	properly	formatted,	it	is	quite	understandable	by	end-users,	especially	to	
users	with	the	relevant	domain	knowledge.	For	example,	in	my	user	study	where	I	
showed	JSON	data	about	conference	papers	(Figure	5.2)	to	graduate	student	
participants,	everybody	could	understand	the	meaning	of	the	properties	and	the	
data	structures	even	when	they	were	not	familiar	with	JSON	syntax.		
	
So	I	redesigned	how	users	
could	use	hierarchical	data	in	
Gneiss.	In	the	new	design,	
Gneiss’s	interface	lets	the	
user	start	using	a	document	
by	extracting	to	the	
spreadsheet	just	the	value	
fields	(fields	that	are	strings,	
numbers	or	Boolean	values)	
that	she	thinks	are	relevant	
to	her	task.	This	allows	the	
visualization	method	to	run	
on	a	smaller	set	of	data	and	
thus	generate	cleaner	tables.	The	new	nested	table	design	replaces	nested	headings	
with	nested	row	numbers	that	are	placed	right	next	to	each	cell	(see	Figure	5.8	for	a	
comparison),	so	the	user	does	not	need	to	look	for	the	parent	structure	to	get	the	
cell	name.	The	new	design	also	wastes	much	less	space	for	cell	address	letters.	
	
Having	the	user	extract	the	fields	instead	of	visualizing	the	entire	JSON	file	also	
ensures	that	the	extracted	fields	are	somewhat	related,	as	judged	by	the	user.	
Gneiss’s	visualization	method	then	focuses	on	using	the	hierarchical	relationships	
among	data	in	adjacent	spreadsheet	columns	to	support	reshaping	and	regrouping	a	
hierarchical	object	by	any	field	through	interaction	techniques.		
	

5.3.1.1 Definition of hierarchy
Gneiss	targets	JSON	data,	which	is	organized	into	objects	that	contain	named	fields,	
each	of	which	can	be	an	object,	an	array,	or	a	value	that	is	a	string,	a	number,	
true/false	or	null.	In	my	current	implementation,	I	treat	each	JSON	array	as	a	
hierarchical	tree.	Each	item	in	an	array	creates	a	branch	and	a	node	in	the	tree.	
Fields	in	the	same	array	item	are	considered	being	in	the	same	level	of	the	tree	and	

	
Figure	5.8.	The	new	design	of	Gneiss’s	nested	table,	showing	
similar	data	as	in	Figure	8.	

KERRY CHANG	|	Dissertation	 73

thus	are	siblings.	For	example,	in	the	usage	scenario,	papers.json	is	a	big	array	where	
each	item	in	the	array	describes	a	paper	(Figure	5.2	at	left).	It	can	be	seen	as	a	tree	
where	each	paper	forms	a	branch.	Fields	in	the	same	paper	item	are	considered	as	
siblings,	such	as	the	title	field	and	type	field.	If	an	array	item	has	a	field	that	is	also	
an	array,	that	field	creates	a	subtree	in	a	branch,	thus	the	tree	grows	a	new	level.	For	
example,	the	authors	field	in	a	paper	item	is	an	array,	so	Gneiss	creates	a	subtree	
under	a	paper	item	where	each	author	in	the	array	becomes	a	new	branch,	and	the	
root	tree	grows	a	new	level	(so	it	now	has	three	levels).	The	keywords	field	in	a	
paper	item	is	also	an	array,	so	it	forms	another	subtree	under	a	paper	item	where	
each	keyword	creates	a	new	branch.	The	root	tree,	however,	still	is	three	levels	deep	
since	the	keywords	tree	and	authors	tree	start	at	the	same	level	and	have	the	same	
depth.	If	a	field	A	can	reach	another	field	B	by	only	going	up	towards	the	root	
through	branches,	field	B	is	then	an	ancestor	of	field	A,	and	field	A	is	then	a	
descendent	of	field	B.	For	example,	the	paper	title	field	can	be	reached	from	the	
author	name	field	by	traveling	up	through	a	branch.	Therefore	paper	title	is	
considered	an	ancestor	of	author	name,	and	author	name	is	a	descendant	of	paper	
title.	A	keyword	item,	however,	cannot	be	reached	from	the	author	name	field	by	
going	only	up	or	down	branches.	Therefore,	there	is	no	specific	hierarchical	
relationship	between	the	two	fields.		
	
My	current	implementation	expects	each	array	item	to	have	a	similar	structure.	This	
hypothesis	is	true	for	most	of	the	database	and	web	service	data	I	have	seen	because	
the	data	usually	follows	a	predefined	schema.	If	there	is	a	missing	field	in	an	array	
item,	that	field	is	shown	as	a	blank	cell	in	the	spreadsheet.	While	different	types	of	
data	could	specify	hierarchies	differently,	I	believe	that	our	method	could	be	
extended	to	support	those	data	as	well.	I	will	discuss	this	further	in	the	limitations	
section	below.	
	

5.3.1.2 Terminology
In	the	rest	of	this	chapter,	I	use	the	term	hierarchical	table	to	refer	to	a	set	of	
adjacent	columns	that	have	fields	extracted	from	the	same	tree	in	a	source	
document.	There	can	be	multiple	hierarchical	tables	in	a	spreadsheet.	I	use	the	term	
nested	table	to	refer	to	a	set	of	inner	cells	that	have	the	same	direct	parent	cell.	Each	
inner	cell	creates	a	nested	row	in	the	columns	that	are	in	the	same	hierarchical	table	
to	its	right.	A	nested	row	can	contain	a	value	or	another	nested	table.		
	

5.3.1.3 Visualization algorithm
Gneiss	introduces	a	new	visualization	method	that	uses	the	relative	hierarchical	
relationships	between	data	in	adjacent	spreadsheet	columns	to	visualize	JSON	fields	
extracted	by	the	user	in	a	spreadsheet.	The	method	allows	the	user	to	create	
different	views	of	the	same	data,	flattening	it	or	regrouping	it,	simply	by	changing	

KERRY CHANG	|	Dissertation	 74

the	order	of	the	data	in	spreadsheet	columns	through	drag-and-drop.	Here	I	
describe	this	visualization	method.		
	
For	each	column	in	the	spreadsheet,	the	system	records	if	its	data	were	extracted	
from	a	hierarchical	document	and	if	so,	the	name	of	the	document	and	the	path	to	
the	data.	The	system	then	scans	through	the	columns	to	determine	which	columns	
form	a	hierarchical	table.	In	a	hierarchical	table,	the	leftmost	column	is	always	
shown	as	a	flat	(regular)	column.	For	example,	in	Figure	5.3	at	1,	column	A	is	a	flat	
column	where	each	cell	in	the	column	stores	a	paper	title	string.	For	each	of	the	rest	
of	the	columns	in	the	hierarchical	table,	the	system	starts	by	examining	its	
immediate	left	column.	
	
1)	If	the	column	immediately	to	the	left	comes	from	an	ancestor	field,	the	system	
puts	data	in	this	column	in	inner	cells	in	the	same	row	with	the	ancestor	value.	
Those	inner	cells	form	a	nested	table.	Each	cell	in	a	nested	table	creates	a	nested	
row	that	has	a	row	label	parentLabel.thisIndex.	For	example,	in	Figure	5.3	at	1,	a	
paper	title	field	is	an	ancestor	field	of	the	author	name	field.	Thus	when	displaying	
cell	B1,	the	system	puts	the	author	names	that	belong	to	the	paper	title	in	A1	into	
inner	cells	in	row	1.	The	author	names	thus	form	a	nested	table	inside	cell	B1.	Each	
cell	becomes	a	nested	row	and	has	a	row	label	1.1	–	1.7	as	there	are	seven	items	in	
the	first	paper’s	authors	array.	The	order	of	the	values	is	the	same	as	their	order	in	
the	array	in	the	source	document	unless	sorted	by	the	user.	
	
A	nested	row	can	further	contain	other	nested	tables.	For	example,	in	Figure	5.4,	due	
to	the	user’s	joining	and	grouping	operations,	each	paper	is	already	in	a	nested	row.	
Thus	each	paper’s	keywords	(column	I)	are	put	in	a	nested	table	inside	each	nested	
row	with	the	paper,	creating	additional	levels	of	structure.	
	
To	decide	what	values	to	put	in	a	nested	table,	the	system	will	keep	checking	until	it	
reaches	the	leftmost	column	to	see	if	there	is	a	column	whose	data	is	from	a	
descendent	field	of	the	immediate	left	column	and	is	also	in	the	same	branch	with	
the	current	column.	If	the	system	finds	one,	it	stops	looking	and	puts	only	the	values	
that	are	in	the	same	hierarchical	branch	with	that	descendant	field	into	the	nested	
table.	If	the	system	does	not	find	a	column	that	fits	the	criteria,	all	the	descendant	
values	of	the	immediate	left	column	are	put	into	the	nested	table.	Using	Figure	5.3	at	
2	as	an	example,	when	visualizing	cell	C1	(author	name),	the	system	first	looks	at	
B1’s	value,	which	is	the	title	of	the	first	paper.	The	system	knows	that	paper	title	is	
an	ancestor	of	author	names,	thus	it	generates	a	nested	table	in	C1.	To	decide	which	
author	names	from	the	first	paper	should	be	put	in	the	nested	table	in	C1,	the	
system	moves	to	the	next	left	column	and	checks	A1’s	value.	A1	is	the	institution	of	
the	first	author	of	the	first	paper.	Therefore,	C1’s	value	is	constrained	by	A1:	the	
system	puts	only	the	name	of	the	first	author	of	the	first	paper	in	C1.	If	A1	were	an	

KERRY CHANG	|	Dissertation	 75

empty	column	instead,	the	system	would	put	all	authors’	names	of	the	first	paper	
into	the	nested	table	in	C1.	
	
2)	If	the	immediate	left	column	comes	from	a	sibling	field,	the	system	copies	the	
structure	of	the	immediate	left	column	and	puts	the	values	in	the	same	row	with	its	
siblings.	For	example,	in	Figure	5.3	at	1,	column	B	(author	name)	and	column	C	
(author	institution)	are	siblings.	Therefore	the	system	copies	column	B’s	structure	
to	C,	and	puts	the	institution	that	is	in	the	same	object	in	the	source	document	with	
the	author	name	in	cell	B1.1	into	cell	C1.1,	and	so	on.	
	
3)	If	the	immediate	left	column	comes	from	a	descendant	field,	the	system	copies	
the	structure	of	the	immediate	left	column	and	for	each	row	puts	the	ancestor	value	
that	is	in	the	same	branch	in	the	hierarchical	tree	with	the	descendant.	For	example,	
in	Figure	5.3	at	2,	when	visualizing	column	B	(paper	title),	the	system	checks	column	
A	(author	name)	and	finds	that	it	comes	from	a	descendant	field.	Therefore	it	copies	
column	A’s	structure	(which	is	just	a	flat	column)	to	column	B	and	fills	in	B1	with	
the	ancestor	paper	title	of	the	author	name	in	A1,	and	so	on.	As	Figure	5.3	at	2	
shows,	an	ancestor	value	could	be	repeated	multiple	times,	as	multiple	descendants	
could	have	the	same	ancestor.	
	
4)	If	the	immediate	left	column	does	not	have	any	hierarchical	relationship	with	the	
current	column,	the	system	checks	the	next	leftmost	column	for	the	same	
relationships	as	described	above,	and	so	on.	If	a	relationship	is	found	in	a	column	
that	is	not	the	immediate	neighbor,	the	system	displays	a	thin	gray	line	between	this	
column	and	its	immediate	left	column	to	show	that	the	two	are	not	connected	
hierarchically	(such	as	column	B	and	C	in	Figure	5.1).	If	the	system	could	not	find	
any	columns	in	the	hierarchical	table	that	relate	to	this	column,	it	treats	this	column	
as	the	start	of	a	new	independent	hierarchical	table	which	is	shown	by	separating	
the	column	with	a	thick	gray	line	(such	as	column	D	and	E	in	Figure	5.5	at	the	top).	
	
Using	this	method,	the	nesting	level	of	a	hierarchical	table	always	increases	from	left	
to	right.	Every	time	when	the	user	drags	a	column	to	a	different	location,	the	system	
recomputes	the	hierarchical	tables	that	are	affected	and	updates	the	interface.	
Internally,	every	hierarchical	table	is	stored	as	a	JSON	object.	The	system	
dynamically	changes	the	structure	of	the	JSON	object	using	the	column	locations	and	
the	grouping,	sorting	and	filtering	rules.	The	implementation	is	discussed	further	in	
Chapter	7.	
	

5.3.2 MANIPULATING HIERARCHICAL DATA
An	important	goal	of	Gneiss’s	spreadsheet	model	for	using	hierarchical	data	is	not	
just	to	provide	a	way	to	display	hierarchical	data	in	a	spreadsheet,	but	also	allow	
users	to	manipulate	hierarchical	data	using	the	familiar	spreadsheet	mechanisms.	

KERRY CHANG	|	Dissertation	 76

This	makes	Gneiss	different	from	systems	that	only	visualize	hierarchical	data	(e.g.,	
[8])	and	systems	that	use	other	languages	such	as	SQL	to	support	manipulating	
hierarchical	data	(e.g.,	[25]).	Gneiss’s	spreadsheet	model	supports	very	natural	and	
easy-to-use	interactions	for	regrouping	hierarchical	objects	by	arbitrary	fields,	using	
hierarchical	data	in	formulas,	creating	new	fields	in	a	hierarchical	object,	sorting	
and	filtering	data	by	its	hierarchical	structure,	and	joining	multiple	hierarchical	
objects.	Behind	the	scenes,	those	manipulations	operate	directly	on	JSON	objects,	
changing	their	structure,	adding	new	fields	and	sometimes	even	creating	new	
objects,	as	described	in	detail	later	in	section	7.2.	My	user	study	(section	5.5)	
showed	that	these	interactions	are	usable.	The	next	sections	explain	them	in	detail.	
	

5.3.2.1 Extracting hierarchical data and reshaping them
As	described	earlier,	I	extended	the	familiar	drag-and-drop	gesture	to	support	two	
features	that	help	people	manipulate	hierarchical	data	in	Gneiss.	The	first	is	to	
extract	desired	fields	from	a	JSON	document	to	a	spreadsheet.	As	mentioned	earlier	
in	section	5.3.1,	the	decision	to	let	users	select	the	desired	fields	to	be	shown	in	a	
spreadsheet	is	based	on	the	observation	that	often	not	all	the	information	in	a	JSON	
document	returned	from	a	web	service	or	database	is	relevant	to	the	user’s	task.	
Also,	in	my	user	study,	participants	seemed	to	have	no	trouble	selecting	fields	that	
they	wanted	from	a	JSON	document	even	if	they	did	not	have	prior	experience	using	
JSON.	The	drag-and-drop	gesture	for	extracting	desired	fields	from	a	document	
replaces	the	need	to	write	textual	queries	such	as	SELECT	statements	in	SQL	or	other	
document	query	languages	such	as	XPath.		
	
Second,	the	user	can	also	use	drag-and-drop	to	change	the	order	of	the	data	in	
spreadsheet	columns	to	generate	different	views	of	the	data.	As	described	in	the	
previous	section,	putting	an	ancestor	field	before	(to	the	left)	of	a	descendent	field	
will	put	the	descendants	in	nested	tables	to	create	a	structured	view	(such	as	
column	A	and	B	in	Figure	5.3	at	1),	and	putting	a	descendant	field	before	the	
ancestor	field	will	cause	the	ancestor	to	be	repeated,	creating	a	flat	view	(such	as	
column	A	and	B	in	Figure	5.3	at	2).	This	by	itself	is	useful	as	it	allows	the	user	to	
structure	or	flatten	data	based	on	her	needs.	For	example,	in	Figure	5.1,	the	user	
puts	the	team’s	names	before	the	coach’s	names	and	creates	a	hierarchical	view	to	
see	the	coaches	for	each	team.	The	user	can	also	switch	the	order	to	drag	the	coach’s	
names	in	front	of	the	team	names.	In	that	case	it	creates	a	flat	table	with	each	
coach’s	name	and	his/her	team	in	a	row.	The	user	can	then	sort	the	coaches	to	view	
them	alphabetically.	Currently,	there	are	no	query	languages	that	allow	users	to	
restructure	hierarchical	data	like	this.	The	user	would	have	to	write	their	own	code	
to	get	the	appropriate	fields	and	reorganize	them.										
	

KERRY CHANG	|	Dissertation	 77

5.3.2.2 Regrouping the data by arbitrary fields

The	user	can	further	regroup	a	hierarchical	table	in	the	spreadsheet	using	any	fields.	
As	described	in	the	scenario	in	section	5.2,	the	user	would	first	move	the	columns	
that	hold	the	fields	by	which	she	wants	to	group	the	data	to	the	beginning	(left)	of	
the	table.	This	causes	the	table	to	be	first	flattened	by	the	selected	fields,	as	the	first	
column	of	a	table	is	always	flat	and	then	the	hierarchy	builds	up	to	the	right.	The	
user	can	then	select	the	grouping	columns,	right-clicking	and	choosing	the	“group	
by”	option	from	the	menu.	The	text	for	the	“group	by”	menu	item	is	generated	
dynamically	based	on	what	the	user	selects	(see	Figure	5.3	at	3	for	an	example).	
When	the	user	hovers	the	mouse	over	the	“group	by”	menu	item,	the	system	
highlights	the	columns	used	for	grouping	in	purple	and	the	columns	being	grouped	
by	in	green	to	help	the	user	identify	the	range	(Figure	5.3	at	3).	The	“group	by”	
operation	combines	rows	that	have	the	same	values	in	the	grouping	columns	(note	
that	it	does	not	sort	the	rows	first	–	rows	that	have	the	same	values	are	merged	
based	on	the	topmost	row	in	which	the	value	appears).	Columns	that	are	to	the	right	
of	the	grouping	columns	are	merged	into	nested	tables.	Internally,	the	grouping	
operation	merges	nodes	in	a	JSON	object	tree	through	selected	fields	(the	selected	
grouping	columns),	and	puts	the	rest	of	the	fields	in	the	nodes	in	the	next	level	of	
structure.	
	
A	column	used	for	grouping	will	have	a	green	column	label.	The	user	can	cancel	a	
grouping	anytime	by	clicking	on	an	icon	at	the	top	left	of	the	grouping	columns	
(Figure	4	at	4).	As	shown	in	the	scenario,	the	visualization	algorithm	and	the	
grouping	feature	enable	users	to	easily	experiment	with	different	ways	to	view	and	
group	data	through	simple	interaction	techniques.	In	conventional	spreadsheets,	to	
group	data,	the	user	would	need	to	use	pivot	tables	which	use	a	different	interface	
and	takes	the	user	away	from	the	data.		In	other	cases,	the	user	has	to	write	complex	
SQL	queries	using	the	GROUP BY	keyword	to	specify	grouping	criteria,	and	the	GROUP
BY	keyword	in	SQL	must	be	used	together	with	some	aggregating	functions	since	
SQL	can	only	return	flat	tables.	Instead,	Gneiss	supports	hierarchical	tables	and	
allows	users	to	group	the	data	without	using	aggregated	functions	to	flatten	them	
first.	Also,	as	I	discussed	in	the	beginning	of	this	chapter	in	section	4.1,	converting	a	
hierarchical	document	into	a	flat	table	will	often	create	many	empty	cells	or	
repetitive	data	that	require	the	user	to	do	lots	of	data	cleaning	and	filtering	before	
she	can	use	pivot	tables	or	SQL	to	process	the	data.	Gneiss	does	not	have	this	
problem.		
	

5.3.2.3 Using nested data in spreadsheet formulas
As	introduced	in	section	3.4.5,	Gneiss	introduces	an	extended	spreadsheet	language	
for	selecting	values	in	the	nested	cells.	A	nested	cell	can	be	referenced	as	a	regular	
cell	using	its	column	and	row	label.	For	example,	in	Figure	10	at	1,	B1.1	selects	the	
value	“Primary	education“	which	is	the	first	major	sector	of	the	first	country.	Our	

KERRY CHANG	|	Dissertation	 78

language	also	supports	selecting	multiple	values.	Conventional	spreadsheet’s	“:“	
operator	for	specifying	the	start	and	end	cell	of	a	range	selection	still	works	in	our	
tool.	For	example,	C1.2:C2.1	in	Figure	10	at	1	selects	4	values	(26,	16,	12,	70).	The	
user	can	also	use	the	parent	row	label	to	select	all	cells	in	a	nested	table.	For	
example,	B1	selects	all	sectors	of	the	first	country	in	Figure	10	at	1.	Finally,	our	
language	also	includes	a	wildcard	character	(*)	that	can	be	used	in	any	nested	row	
index	to	further	assist	hierarchical	selection.	For	example,	B*.1	in	Figure	10	at	1	
selects	the	first	primary	sector	of	all	the	countries.	Selections	that	return	multiple	
values	are	put	in	a	flat	array	and	thus	can	be	used	by	many	conventional	
spreadsheet	functions	that	take	a	list	of	values	as	inputs,	such	as	the	familiar	COUNT	
and	SUM	(if	not	used	with	functions	that	accept	multiple	values,	the	system	will	raise	
an	error	as	in	conventional	spreadsheets).	This	language	enables	Gneiss	to	go	
beyond	a	read-only	tool	and	allows	the	user	to	compute	new	values	using	the	
hierarchical	data,	as	shown	in	the	scenarios.	
	

5.3.2.4 Inserting new data into a hierarchical table
There	are	many	situations	where	the	user	may	want	to	add	new	data	to	a	
hierarchical	table.	For	example,	in	the	usage	scenario	in	section	5.2,	when	finding	
out	which	institution	has	the	most	papers,	Ally	adds	a	flat	column	to	compute	the	
number	of	papers	for	each	institution	using	a	spreadsheet	formula.	She	may	also	
want	to	add	a	nested	column	next	to	the	author	names	and	manually	enter	an	
author’s	email	address.	Our	tool	lets	users	insert	different	structures	of	columns	by	
first	selecting	a	column	in	the	table	that	has	the	desired	structure,	and	then	right-
clicking	and	choosing	“Insert	a	new	column	that	has	the	same	structure”	(Figure	5.6	
at	the	left).	A	new	column	will	be	inserted	to	the	right	of	the	selected	column.	If	the	
selected	column	is	a	regular	flat	column,	the	inserted	column	is	also	flat;	if	the	
selected	column	is	a	column	containing	nested	tables,	the	inserted	column	will	have	
the	same	tables	but	with	empty	cells	(Figure	5.6	at	the	right).		
	
The	newly	created	column	can	be	moved	and	used	for	grouping,	sorting,	filtering	
and	joining	just	like	any	other	column.	To	enable	this,	every	time	the	user	selects	an	
existing	column	to	insert	a	new	column	into	the	spreadsheet,	the	system	creates	
new	fields	in	the	same	hierarchical	level	with	the	data	in	the	existing	column	in	an	
internal	copy	of	the	source	JSON	document.	For	example,	in	the	first	example	
scenario,	the	user	selects	the	author	institution	column	and	inserts	a	new	column	
called	“paperCount”	for	each	author	institution	(Figure	5.3	at	6	at	column	B).	The	
system	then	creates	a	new	field	named	“paperCount“	in	each	author	object	(so	it	is	
in	the	same	hierarchical	level	with	the	author	institution),	inserts	a	new	column	at	B,	
and	uses	both	column	A	and	B	for	grouping.	So	when	the	user	edits	cell	B1,	
internally	she	changes	the	value	of	the	paperCount	fields	in	all	author	objects	where	
the	institution	field	is	“Carnegie	Mellon	University”.	Later	if	the	user	decides	to	

KERRY CHANG	|	Dissertation	 79

change	the	order	of	the	columns,	
the	system	can	reference	this	copy	
of	the	source	JSON	document	to	
decide	how	the	new	data	should	be	
visualized.		
	

5.3.2.5 Sorting and filtering data
using its hierarchical
structure

The	user	can	choose	to	sort	and	
filter	a	hierarchical	table	using	any	
column	by	clicking	on	the	arrow	
icon	at	the	top	of	the	column	to	
open	a	dialog	box	(see	Figure	5.9).	
Internally,	sorting	and	filtering	
operations	are	essentially	
reordering	and	cutting	branches	of	
a	JSON	object	tree.	Transforming	to	
the	user	interface,	sorting	and	
filtering	by	a	nested	column	are	
executed	within	each	nested	table	
in	that	column.	The	operation	will	affect	columns	that	have	the	same	or	deeper	
nested	level,	but	will	not	affect	columns	that	are	in	the	upper	levels	of	the	hierarchy.	
To	help	the	user	identify	the	nested	tables	and	the	affected	columns,	when	the	
sorting	and	filtering	dialog	box	is	open,	the	system	highlights	the	affected	columns	
in	purple	and	highlights	each	nested	table	in	the	column	using	a	blue	border.	For	
example,	in	Figure	5.9,	sorting	on	column	B	will	affect	columns	B	and	C	but	will	not	
change	the	data	in	column	A,	as	column	A	is	an	ancestor	of	column	B.	If	columns	A	
and	B	had	the	same	nesting	level,	then	they	would	both	be	sorted.	Each	nested	table	
in	column	B,	outlined	using	a	blue	rectangle,	is	sorted	internally.	The	same	rule	
applies	for	filtering.	Filtering	to	see	the	first	n	items	will	show	the	first	n	items	in	
each	nested	tables.	Duplicated	values	are	also	calculated	within	each	nested	table.		
	
Hierarchical	sorting	and	filtering	can	be	useful	in	many	situations.	For	example,	in	
the	usage	scenario	in	section	5.2,	it	was	used	to	create	a	schedule	that	for	each	time	
slot	shows	the	session	that	has	the	most	award	and	crowdsourcing	papers,	Ally	uses	
hierarchical	filtering	to	get	rid	of	papers	within	a	session	that	she	is	not	interested	
in,	and	uses	both	hierarchical	sorting	and	filtering	so	that	each	time	slot	shows	only	
the	session	that	has	the	most	award	and	crowdsourcing	papers.	In	conventional	
spreadsheets,	since	the	spreadsheet	only	accepts	flat	tables,	it	is	often	tricky	and	
sometimes	tedious	to	achieve	the	same	results.	For	example,	to	get	the	session	that	
has	the	highest	number	of	desired	papers	in	each	time	slot,	in	conventional	

	
Figure	5.9.	(1)	shows	countries	funded	by	the	World	Bank.	
Each	country	has	a	list	of	major	sectors	and	the	percentage	
of	funding	each	sector	received.	The	user	can	sort	and	filter	
the	data	by	any	column	using	a	dialog	box	(2).	When	sorting	
and	filtering	on	a	nested	column,	the	operation	is	executed	
within	each	nested	table,	marked	in	the	spreadsheet	with	
blue	borders	(3).	The	system	highlights	the	affected	columns	
using	a	purple	background	when	the	dialog	box	is	open.	

	

KERRY CHANG	|	Dissertation	 80

spreadsheets	the	user	can	first	sort	
the	table	by	the	number	of	desired	
papers	of	a	session.	This	brings	the	
sessions	that	have	the	most	desired	
papers	across	all	time	slots	to	the	
top.	The	user	can	then	sort	again	by	
time	slots.	That	will	reorganize	the	
data	to	let	the	sessions	that	are	in	
the	same	time	slot	be	put	together,	
and	within	each	time	slot	the	session	
that	has	the	most	desired	papers	will	
be	at	the	top	(because	of	the	first	sort).	But	then	the	user	cannot	use	filtering	to	keep	
only	the	top	session	in	each	time	slot.	She	has	to	manually	delete	the	unwanted	
sessions.	Or,	to	use	methods	other	than	sorting	and	filtering,	the	user	could	put	the	
data	into	a	pivot	table,	or	create	additional	data	(such	as	a	clean	list	of	unique	time	
slots)	and	use	LOOKUP	or	similar	functions	to	calculate	the	results.	Again,	my	design	
in	Gneiss	removes	the	need	to	use	pivot	tables	and	advanced	spreadsheet	functions	
such	as	LOOKUP	for	cross-referencing.	My	user	study	(section	5.5)	showed	that	the	
design	of	hierarchical	sorting	and	filtering	was	understandable	by	the	participants	
and	was	critical	in	helping	them	complete	the	tasks.		
	

5.3.2.6 Joining hierarchical data
Gneiss	supports	joining	hierarchical	tables	based	on	the	columns	with	common	
values	selected	by	the	user	in	each	table.	Like	the	operations	described	above,	the	
joining	operation	also	works	directly	on	hierarchical	objects,	connecting	two	trees	
through	common	nodes.	The	system	first	creates	a	duplicate	JSON	object	for	each	
table	that	has	the	same	hierarchical	structure	as	its	source	JSON	document	but	
contains	only	the	fields	that	are	visible	in	the	spreadsheet.	The	system	then	checks	
the	hierarchical	level	of	the	selected	joining	fields	in	the	two	duplicate	objects.	
Gneiss	preserves	the	object	that	has	the	joining	fields	in	a	deeper	level	of	the	tree,	
and	connects	the	other	object	that	has	the	joining	fields	closer	to	the	root	to	the	
preserved	object	(see	Figure	5.10	for	an	example).	Based	on	this	rule,	the	preserved	
object	is	not	necessarily	the	left	object	in	the	spreadsheet,	since	whether	an	object	is	
preserved	is	decided	by	the	hierarchical	level	of	the	join	fields	in	the	object.		
	
This	rule	is	designed	to	ensure	that	the	combined	object	remains	a	single-root	tree,	
or	in	other	words,	a	hierarchical	object	that	Gneiss	recognizes.	This	allows	the	
joined	object	to	be	used	in	Gneiss	the	same	way	as	other	regular	hierarchical	objects	
in	the	spreadsheet.	After	the	joined	object	is	created,	Gneiss’s	visualization	
algorithm	creates	the	view	of	the	joined	object	based	on	the	order	of	the	fields	in	
spreadsheet	columns.	The	joined	object	can	then	be	reshaped	through	drag-and-
drop,	regrouped	by	selected	fields,	and	sorted	and	filtered	by	its	structure.	In	

	
Figure	5.10.	An	example	of	joining	two	hierarchical	
objects.	The	two	trees	are	joined	by	the	yellow	
nodes.	(Left)	The	blue	tree	has	the	yellow	nodes	in	a	
deeper	hierarchy	level	than	the	red	tree.	(Right)	The	
join	operation	preserves	the	blue	tree’s	structure	
and	connects	the	red	tree	to	the	blue	tree	through	
the	matched	yellow	nodes	(shown	as	the	yellow	
nodes	that	have	two	rings).	

KERRY CHANG	|	Dissertation	 81

conventional	spreadsheets,	to	join	two	tables,	the	user	has	to	either	use	LOOKUP	
functions	to	connect	the	joined	columns,	or	write	SQL	queries	to	join	the	tables.	
Some	research	tools	such	as	[23]	flattens	hierarchical	objects	into	tables	and	joined	
them	using	SQL	techniques.	However,	as	mentioned	before,	both	conventional	
spreadsheet	mechanisms	and	SQL	work	on	flat	table	data	and	cannot	support	what	
Gneiss	supports	for	manipulating	hierarchical	data.	The	differences	between	
Gneiss’s	approach	for	joining	hierarchical	data	and	conventional	approaches	is	
further	discussed	in	the	related	work	chapter	in	section	2.4.		
	
Also,	as	illustrated	in	Figure	5.10,	Gneiss’s	rule	for	joining	may	discard	nodes	in	the	
non-preserved	tree	if	there	is	no	matching	node	in	the	preserved	tree	(such	as	the	
node	“2”	in	the	red	tree	in	Figure	5.10).	One	can	consider	Gneiss’s	joining	similar	to	
SQL’s	LEFT JOIN	or	RIGHT JOIN	where	one	table	is	preserved	and	the	other	table	is	
connected	to	the	preserved	table	by	the	joined	fields	(although	in	Gneiss,	the	
preserved	object	is	decided	by	the	system	for	reasons	discussed	above).	Currently,	
Gneiss’s	joining	algorithm	does	not	support	preserving	only	the	common	joined	
fields	(similar	to	SQL’s	INNER JOIN	command)	or	preserving	all	joined	fields	(similar	
to	SQL’s	FULL OUTER JOIN	command).	One	can	see	that	preserving	only	the	common	
joined	fields	to	be	an	easy	extension	to	the	current	system	(for	example,	in	Figure	
5.11,	to	just	remove	the	node	1	from	the	joined	tree).	Supporting	preserving	all	
joined	fields,	however,	is	tricky	since	the	algorithm	has	to	decide	a	node’s	parent	
when	there	is	no	matched	node	in	the	preserved	tree.	It	is	still	an	open	question	of	
how	that	can	be	implemented	when	the	joining	objects	are	trees	instead	of	tables.		
	

5.4 DEMONSTRATIVE EXAMPLE
Here	I	described	one	more	example	to	demonstrate	how	users	can	use	Gneiss	to	
create	hierarchical	visualizations	and	explore	the	data.	In	this	example,	I	use	the	
same	conference	datasets	as	in	the	usage	scenario	(papers.json	and	sessions.json).	
	

5.4.1 PAPER GEOGRAPHY VISUALIZATION
The	user	is	interested	in	finding	out	the	demographics	of	the	papers	–	where	the	
papers	come	from.	She	wants	to	explore	the	data	by	the	continents	and	countries	of	
the	institutions	of	the	papers.	She	first	extracts	the	paper	titles,	institutions	and	
countries	to	column	A,	B	and	C.	While	the	papers.json	file	does	not	have	the	
continent	information	of	a	paper,	the	user	can	compute	the	continent	of	a	paper	
using	the	country	field.	There	are	multiple	ways	to	do	this	in	Gneiss.	The	user	can	
insert	a	new	column	next	to	the	country	column	and	manually	enter	the	continent	
for	each	country.	Another	way	is	that	if	the	user	has	a	list	of	countries	and	each	
country’s	continent	available	in	the	spreadsheet	(which	can	found	very	easily	online,	
for	example,	by	googling	“countries	and	continents	json”),	she	can	use	the	LOOKUP	
function	to	find	the	continent	of	the	first	institution’s	country,	and	then	autofill	the	

KERRY CHANG	|	Dissertation	 82

rest	of	the	cells	in	the	continent	column	as	described	above.	Alternatively,	as	
described	earlier,	Gneiss	further	provides	the	ability	to	join	two	tables	together	in	a	
spreadsheet	using	interaction	techniques	without	using	spreadsheet	formulas.	So	as	
the	user	acquires	a	list	of	countries	and	their	corresponding	continents,	she	can	
directly	join	the	paper	data	with	the	acquired	list	by	the	country	field	to	fill	in	the	
continent	information	for	each	country.	After	the	user	has	in	the	continent	
information	for	each	institution’s	country,	she	drags	the	columns	to	put	the	
continents	in	column	A,	countries	in	column	B,	institution	names	in	column	C	and	
finally	the	paper	names	in	column	D.	She	then	groups	the	data	by	column	A,	B	and	C	
respectively,	and	removes	duplicate	paper	titles	in	column	D	for	each	institution	
using	filtering.		
	
The	user	gets	the	data	she	wants	(Figure	5.11	in	the	spreadsheet).	However,	it	is	still	
difficult	to	tell	the	distribution	of	the	papers	because	there	are	so	many	of	them.	To	
further	explore	the	data,	in	the	right	pane,	the	user	drags	in	a	treemap	visualization	
from	the	sidebar,	and	sets	the	“data”	property	of	the	treemap	to	=A:D.	In	Gneiss,	the	
treemap	visualization	[45]	takes	a	hierarchical	object	(such	as	the	one	in	column	A	
to	D	in	Figure	5.11)	and	shows	each	hierarchical	level’s	data	using	rectangles	whose	
value	is	the	node’s	value	and	size	is	proportional	to	the	number	of	children	the	node	
has.	The	user	can	click	on	a	rectangle	in	the	visualization	to	go	to	the	next	level	of	
hierarchy	to	view	all	children	of	a	node,	and	right	click	anywhere	in	the	map	to	go	
back	to	the	previous	level9.	With	the	treemap	visualization,	the	user	easily	can	find	
out	the	top	continents	that	have	the	most	papers,	and	the	click	on	a	continent	to	
view	the	top	countries	in	the	continent	that	have	the	most	papers	(such	as	in	Figure	
12	at	the	right),	and	so	on.	As	the	spreadsheet	can	now	clearly	represents	the	
																																																								
9	As	described	in	section	3.2,	Gneiss	uses	Google	Visualization	API	for	all	its	visualizations.	Using	left	
and	right	clicking	to	go	up	and	down	a	level	in	a	treemap	is	the	default	behavior	provided	by	the	API.			

	
Figure	5.11.	A	screenshot	of	this	demonstrative	example.	In	the	spreadsheet,	the	user	groups	the	CHI’15	
papers	by	their	continents,	countries	and	institutions.	The	user	then	visualizes	the	spreadsheet	data	
using	a	treemap	in	the	right	web	interface	builder.	Through	the	treemap,	the	user	can	view	the	
distribution	of	data	in	each	hierarchical	level.	For	example,	she	can	tell	from	the	treemap	that	in	Asia,	
Japan,	Taiwan	and	Singapore	are	the	countries	that	have	the	most	papers.	

	

KERRY CHANG	|	Dissertation	 83

hierarchy	of	data,	generating	a	hierarchical	visualization	of	the	data	becomes	
straightforward.	
	

5.5 USER STUDY
I	also	conducted	a	lab	study	to	evaluate	whether	the	various	new	features	described	
above	for	supporting	hierarchical	data	in	spreadsheets	introduced	in	Gneiss	could	
be	understood	and	used	by	spreadsheet	users,	and	whether	these	new	elements	
could	help	users	use	hierarchical	data	more	efficiently	compared	with	current	tools.	
	

5.5.1 STUDY DESIGN
We	evaluated	our	tool	by	comparing	it	to	how	end-users	and	professional	
programmers	currently	work	with	hierarchical	data.	We	designed	a	set	of	data	
exploration	tasks	for	the	study	and	measured	the	success	rate	and	the	time	
participants	spent	completing	each	task.	Our	study	uses	a	between-subject	design	
and	has	three	groups.	The	experiment	group	used	our	tool	(Gneiss).	For	the	end-
user	comparison	group,	we	picked	Microsoft	Excel,	the	most	popular	conventional	
spreadsheet	tool.	For	the	programmer	comparison	group,	we	picked	JavaScript	and	
Python,	as	our	informal	poll	showed	that	those	were	the	most	popular	languages	for	
using	JSON	data.	Participants	in	the	programmer	group	picked	either	one	of	the	
languages	to	use	in	the	study.	They	used	Sublime	Text	as	the	editor,	and	viewed	the	
program	output	in	Sublime’s	Python	console	(Python)	or	Chrome’s	developer	
console	(JavaScript).	
	

5.5.2 PARTICIPANTS
We	recruited	12	spreadsheet	users	and	6	programmers	for	the	study	(ages	21-39).	
All	but	2	participants	were	university	students	from	different	departments	including	
computer	science,	engineering,	psychology,	public	policy	and	management.	The	
other	2	participants	were	alumni.	Participants	rated	their	proficiency	with	Excel,	
programming	in	general,	and	using	JSON	data	on	a	five-point	scale	from	“none”	to	
“superior”.	Among	the	12	spreadsheet	users,	four	rated	their	Excel	proficiency	as	“3:	
Intermediate	-	know	how	to	use	basic	functions	such	as	SUM	and	IF”,	and	eight	rated	
as	“4:	Advanced	-	know	how	to	use	pivot	tables	and	advanced	function	such	as	
LOOKUP”.	None	of	the	spreadsheet	users	considered	themselves	as	programmers,	
although	some	of	them	had	prior	experience	programming	using	languages	like	R	or	
MATLAB.	Their	average	rating	on	programming	proficiency	was	2.17.	A	few	of	them	
had	used	JSON	data	(average	rating	1.42).	Thus,	we	consider	them	to	be	
intermediate	to	experienced	spreadsheet	users	who	are	not	experienced	
programmers.	The	twelve	spreadsheet	users	were	randomly	assigned	into	the	
Gneiss	or	Excel	group	(6	in	each	group).	There	were	no	significant	differences	in	the	
demographic	measures	between	the	two	groups.		

KERRY CHANG	|	Dissertation	 84

	
All	6	programmers	were	in	the	programming	group.	4	of	them	chose	to	use	
JavaScript	and	2	chose	Python.	Their	average	self-rating	for	proficiency	was	4.17	
(out	of	5)	on	programming	in	general	and	3.67	on	the	language	they	used	in	the	
study.	All	of	them	were	familiar	with	JSON	data	(average	rating	3.83).	Thus,	we	
consider	them	to	be	experienced	programmers.	
	

5.5.3 DATA
We	used	the	same	CHI’15	conference	data	described	in	the	usage	scenario	
(papers.json	and	sessions.json).	There	were	484	papers	and	119	sessions	in	the	
datasets.	Participants	in	the	Gneiss	and	programming	group	received	the	data	as	
two	JSON	files.	For	the	Excel	group,	we	converted	the	JSON	files	into	CSV	files.	To	our	
knowledge,	there	is	no	standard	on	how	to	convert	a	JSON	file	into	a	spreadsheet.	
Based	on	our	informal	interview	and	pilot	tests	with	several	expert	Excel	users,	we	
decided	to	provide	each	JSON	file	in	both	a	wide	table	and	a	long	table	spreadsheet	
out	of	fairness	as	both	formats	were	suggested	by	the	expert	users.	Thus	the	Excel	
group	was	given	four	sheets	(two	sheets	for	each	JSON	file,	put	in	the	same	Excel	
workbook	for	ease	of	use).	As	described	in	section	5.1,	the	main	difference	between	
a	wide	and	long	table	is	that	in	a	wide	table,	a	list	of	values	within	an	item	is	
expanded	horizontally	as	multiple	columns.	Each	item	(a	paper	or	a	session	in	our	
data)	is	a	row	in	the	spreadsheet.	However,	a	row	could	have	many	empty	cells	as	
the	lists	for	different	items	could	have	different	lengths	(such	as	different	papers	
may	have	different	numbers	of	authors).	In	contrast,	in	a	long	table,	a	list	of	values	is	
expanded	vertically.	While	the	long	table	has	no	empty	cells	and	fewer	columns,	it	
has	a	lot	of	duplicated	values	as	an	item	could	be	repeated	multiple	times	depending	
on	the	length	of	the	lists	in	each	item.	For	example,	a	paper	with	2	authors	and	3	
keywords	would	become	6	rows	as	each	author	and	keyword	was	paired	once.	
Participants	in	the	Excel	group	were	told	they	could	use	any	of	the	tables	to	
complete	the	tasks.	
	

5.5.4 TASKS
We	designed	5	tasks	for	the	study.	The	first	task	is	to	report	the	number	of	papers	
that	have	“social”	in	their	keywords.	This	is	the	easiest	task.	The	second	task	is	to	
find	the	top	three	institutions	that	have	the	most	papers	(same	as	the	first	task	in	
the	scenario	of	section	5.2).	For	the	first	two	tasks,	participants	only	needed	to	use	
the	papers	file.	They	had	at	most	10	minutes	to	finish	each	of	these	tasks.	The	third	
through	fifth	tasks	involve	using	both	the	papers	and	sessions	files.	The	third	task	
was	to	come	up	with	a	schedule	that	could	let	a	person	go	to	the	session	that	has	the	
most	award	papers	in	a	time	slot	(similar	to	the	second	task	in	the	scenario).	The	
fourth	task	is	to	find	all	the	papers	that	were	presented	on	Tuesday	that	are	from	
Carnegie	Mellon	University.	The	fifth	task	is	to	find	all	the	authors	who	had	multiple	

KERRY CHANG	|	Dissertation	 85

papers	scheduled	to	be	presented	in	the	same	session	(a	similar	task	to	finding	if	
anyone	has	conflicting	presentations).	For	the	third	to	fifth	tasks,	participants	had	at	
most	15	minutes	to	complete	each	task.	Participants	in	all	three	groups	received	the	
same	five	tasks	and	did	the	tasks	in	the	same	order	with	the	same	maximum	time	
per	task.	
	

5.5.5 PROCEDURE
The	study	took	about	75	minutes	per	participant.	After	signing	the	consent	form,	
participants	in	all	groups	received	tutorials	on	the	given	tool	using	a	tutorial	JSON	
document	different	from	the	study	data.	The	Gneiss	group	received	a	20-minute	
tutorial	on	all	the	features	described	above	that	they	might	need.	The	Excel	group	
received	a	short	introduction	to	relevant	parts	of	Excel’s	interface	(including	sorting,	
filtering,	the	pivot	table	and	the	remove-duplicates	widget)	and	a	tutorial	on	the	
long	and	wide	table	formats.	The	programming	group	received	a	short	introduction	
to	the	Sublime	editor	and	the	JSON	files.	Participants	in	the	Excel	and	programming	
groups	were	given	up	to	10	minutes	to	get	familiar	with	the	editor	they	used	and	to	
install	any	libraries	or	plugins	they	wanted	to	use.	Two	programmers	used	jQuery,	
one	programmer	used	D3.js	and	lodash.	None	of	the	Excel	participants	installed	any	
plugins.	
	
After	introducing	the	tool,	the	experimenter	showed	and	explained	the	study	data	to	
the	participants.	Then	they	began	to	do	the	tasks.	Participants	in	the	Excel	and	
programming	group	could	look	up	anything	online.	Participants	using	Gneiss	were	
given	an	A4	paper	with	a	list	of	the	spreadsheet	functions	supported	in	the	system.	
In	all	conditions,	when	participants	thought	they	were	done	with	a	task,	the	
experimenter	checked	the	answer	and	requested	the	participant	to	continue	if	their	
answer	was	incorrect.	This	checking	time	was	not	counted	as	part	of	the	
participants’	time.	After	doing	the	tasks,	participants	filled	out	a	short	survey	on	
their	demographics	and	feedback.	They	were	then	paid	$15.	
	

5.5.6 RESULTS
For	each	task	we	measured	the	task	completion	time.	If	the	participant	did	not	
complete	a	task	within	the	time	limit,	we	used	the	time	limit	as	the	task	completion	
time.	We	analyzed	each	task	using	a	one-way	ANOVA	and	post	hoc	analysis.	The	
results	are	reported	below	and	in	Error!	Reference	source	not	found..	All	time	
numbers	are	in	seconds.	
	
Task	1:	All	participants	completed	this	task.	There	was	a	significant	effect	of	the	
average	task	completion	time	for	the	three	groups	(F(2,	15)	=	6.339,	p	=	.010).	Post	
hoc	comparisons	showed	that	the	Gneiss	group	spent	significantly	less	time	(M	=	
142.83,	SD	=	119.84)	on	the	task	than	both	the	Excel	group	(M	=	370,	SD	=	142.23;	p	

KERRY CHANG	|	Dissertation	 86

=	.013)	and	the	programming	group	(M	=	336.17,	SD	=	36.66;	p	=	.033).	The	
difference	between	the	Excel	group	and	the	programming	group	was	not	significant.	
	
Task	2:	All	participants	using	Gneiss	completed	the	task.	Three	participants	in	the	
Excel	group	and	one	participant	in	the	programming	group	did	not	complete	the	
task	within	the	time	limit.	There	was	a	significant	effect	of	the	average	task	
completion	time	for	the	three	groups	(F(2,	15)	=	19.974,	p	<	.001).	Post	hoc	
comparisons	showed	that	the	Gneiss	group	spent	significantly	less	time	(M	=	183.5,	
SD	=	50.35)	on	the	task	than	both	the	Excel	group	(M	=	517.17,	SD	=	135.58;	p	=	
.003)	and	the	programming	group	(M	=	506.5,	SD	=	107.20;	p	=	.001).	The	difference	
between	the	Excel	group	and	the	programming	group	was	not	significant.	
	
Task	3:	All	participants	using	Gneiss	completed	the	task.	One	participant	in	the	Excel	
group	and	one	participant	in	the	programming	group	did	not	complete	the	task	
within	the	time	limit.	There	was	a	significant	effect	of	the	average	task	completion	
time	for	the	three	groups	(F(2,	15)	=	8.657,	p	=	.003).	Although	on	average	
participants	using	Gneiss	completed	the	task	almost	twice	as	fast	(M	=	332.67,	SD	=	
62.5)	as	participants	using	Excel	(M	=	566.33,	SD	=	240.26),	the	difference	is	not	
significant	in	the	post	hoc	test.	We	may	need	more	participants	to	confirm	any	
differences.	The	Gneiss	group	spent	significantly	less	time	on	this	task	than	the	
programming	group	(M=	743.33,	SD=	176.47;	p=	.003).	The	difference	between	the	
Excel	group	and	the	programming	group	was	not	significant.	
	
Task	4:	All	participants	completed	the	task.	Again,	there	was	a	significant	effect	of	
the	average	task	completion	time	for	the	three	groups	(F(2,	15)	=	10.037,	p	=	.002).	
Post	hoc	comparisons	showed	that	the	Gneiss	group	spent	significantly	less	time	(M	

	
Figure	5.12.	The	average	task	completion	time	for	the	Gneiss,	Excel	and	programming	groups.	
Shorter	bars	are	better.	

	

KERRY CHANG	|	Dissertation	 87

=	165.67,	SD	=	62.42)	on	the	task	than	both	the	Excel	(M	=	357,	SD	=	123.67;	p	=	
.025)	and	the	programming	group	(M	=	414.17,	SD	=	107.53;	p	=	.003).	The	
difference	between	the	Excel	group	and	the	programming	group	was	not	significant.	
	
Task	5:	Task	5	is	the	most	difficult	task.	Five	participants	in	the	Excel	group,	two	
participants	in	the	Gneiss	group	and	two	participants	in	the	programming	group	did	
not	complete	the	task	within	the	time	limit.	ANOVA	showed	that	there	was	no	
significant	difference	in	the	task	completion	time	among	all	three	groups.	
	
Averaging	the	five	tasks:	There	was	a	significant	effect	of	the	average	task	
completion	time	for	all	five	tasks	for	the	three	groups	(F(2,	15)	=	18.561,	p	<	.001).	
Post	hoc	comparisons	showed	that	the	Gneiss	group	spent	significantly	less	time	(M	
=	289.37,	SD	=	61.58)	on	the	tasks	than	both	the	Excel	(M	=	537.43,	SD	=	89.43;	p	<	
.001)	and	the	programming	group	(M	=	531.93,	SD	=	87.04;	p	<	.001).	The	difference	
between	the	Excel	group	and	the	programming	group	was	not	significant.	
	
In	summary,	our	results	showed	that	overall,	participants	using	Gneiss	completed	
the	tasks	almost	twice	as	fast	as	participants	using	Excel	or	programming.		
	
Subjective	Results	
I	asked	participants	in	a	post	study	survey	about	their	feedback	on	the	tasks	and	the	
tool	they	used.	Using	a	7-point	scale,	participants	rated	the	tasks	highly	realistic	
(average	rating	Gneiss	=	7,	Excel	=	6.16,	programming	=	6.5,	overall	=	6.56)	and	
close	to	what	they	do	in	real	life	(average	rating	Gneiss	=	4.67,	Excel	=	4.33,	
programming	=	5,	overall	=	4.67).	I	also	asked	the	participants	how	easy	they	
thought	the	tasks	were.	The	programming	group	rated	the	tasks	the	easiest	(average	
rating	3.25),	followed	by	the	Gneiss	group	(average	rating	3.67).	The	Excel	group	
rated	the	tasks	to	be	the	hardest	(average	rating	4.83).	This	is	interesting	since	the	
programming	group	did	not	perform	the	best	(although	the	differences	among	
groups	are	not	statistically	significant).	I	discuss	this	result	further	in	section	5.6.4.	
Gneiss	participants	rated	the	tool	easy	to	learn	(M	=	5.67)	and	could	see	themselves	
using	it	in	their	own	work	(M	=	5.83).	
	

5.6 DISCUSSION

5.6.1 LEARNING AND USING GNEISS
All	six	participants	using	Gneiss	successfully	used	its	novel	features	to	complete	the	
tasks	after	receiving	a	20-minute	tutorial.	Some	participants	took	a	longer	time	than	
others	to	understand	the	meaning	of	the	nested	tables.	Although	we	explained	that	
the	nested	tables	are	a	way	to	show	hierarchies	in	data,	some	participants	viewed	it	
more	as	a	way	to	show	one-to-many	relationships	and	were	a	little	confused	at	first	
if	they	saw	a	nested	table	having	only	one	row.	This,	however,	did	not	affect	the	

KERRY CHANG	|	Dissertation	 88

participants	in	solving	the	tasks.	We	found	that	even	when	the	participants	did	not	
fully	master	the	visualization	rules,	they	could	still	successfully	move	the	columns	
into	the	correct	places	eventually	by	trying	out	different	combinations	by	dragging	a	
column	to	different	locations.	This	low-cost	method	of	reshaping	the	data	facilitated	
opportunistic	data	explorations	in	the	Gneiss	group	and	often	led	the	participants	to	
the	correct	answer.	As	the	study	went	on,	all	participants	gradually	became	more	
familiar	with	the	visualization	rules,	and	they	seemed	to	act	more	quickly	and	
needed	fewer	trials.	
	
In	addition	to	the	features	on	using	hierarchical	data,	the	study	also	tests	the	
learnability	and	usability	of	the	source	pane.	None	of	the	Gneiss	participants	seemed	
to	have	any	trouble	using	it	to	view	and	extract	the	appropriate	JSON	data.	While	
none	of	the	Gneiss	participants	were	familiar	with	JSON	syntax,	they	were	able	to	
understand	the	study	data	very	quickly	and	use	the	drag-and-drop	gesture	to	
extract	the	desired	fields	from	the	source	pane	to	the	spreadsheet.	This	eases	some	
concerns	I	originally	had	that	end-users	may	be	intimidated	by	the	JSON	data	syntax	
and	may	not	know	how	to	get	started.	One	reason	that	participants	were	able	to	use	
the	JSON	data	in	the	study	easily	could	be	because	they	all	had	some	prior	
knowledge	about	the	data	–	all	participants	were	university	students	familiar	with	
what	attributes	a	conference	paper	may	have,	such	as	keywords	and	authors.	The	
result	suggests	that	a	JSON	document,	if	formatted	and	structured	properly,	could	be	
understood	by	end-users	with	domain	knowledge	related	to	the	data,	even	if	the	
users	are	not	familiar	with	the	JSON	syntax.		
	

5.6.2 STRENGTHS OF HAVING HIERARCHIES IN SPREADSHEETS
As	we	expected,	participants	using	Excel	were	constantly	troubled	by	the	repetitive	
data	in	the	spreadsheet	caused	by	flattening	a	hierarchical	document	into	a	table.	
The	Excel	participants	chose	to	use	the	long	table	format	in	most	tasks	as	the	wide	
table	contains	too	many	columns	and	thus	is	difficult	to	read.	The	key	to	using	a	long	
table	is	to	remove	unneeded	duplicate	values.	Many	of	our	tasks	required	the	user	to	
remove	duplicate	rows	using	multiple	columns.	For	example,	in	the	second	task,	the	
participants	had	to	get	a	list	of	unique	paper	title	and	institution	pairs	before	using	
pivot	tables	to	calculate	summaries.	We	found	that	while	removing	duplicated	
values	in	a	single	column	was	intuitive	to	the	participants,	the	concept	of	removing	
duplicates	using	multiple	columns	(or	in	other	words,	to	create	unique	keys	using	
multiple	attribute	values)	was	difficult	for	the	spreadsheet	users	to	figure	out	how	
to	do.	
	
Gneiss	successfully	avoided	this	problem	by	supporting	hierarchical	grouping	and	
filtering.	For	example,	in	Figure	4,	Gneiss	users	could	interactively	merge	data	first	
by	a	column	and	then	by	another	column	to	get	rid	of	duplicate	rows	using	multiple	
columns.	There	was	visual	feedback	at	each	step	that	led	the	users	naturally	to	the	

KERRY CHANG	|	Dissertation	 89

next	operation	(e.g.,	in	Figure	4	at	4,	it	was	intuitive	to	group	the	data	again	by	
column	B	after	seeing	the	repetitive	papers	within	an	institution).	However,	in	Excel,	
since	there	were	no	hierarchical	representations	in	the	spreadsheet,	removing	
duplicate	rows	by	multiple	columns	cannot	be	done	in	sequence.	Excel	does	provide	
a	“remove	duplicates”	widget,	but	to	remove	duplicate	rows	by	multiple	columns	
using	that	widget,	the	user	either	had	to	make	a	new	column	that	uses	values	from	
both	of	these	columns	(to	create	a	key)	and	remove	duplicates	using	that	new	
column,	or	had	to	know	to	have	multiple	columns	checked	at	the	same	time	in	the	
remove	duplicates	widget.	Neither	of	these	strategies	was	straightforward	for	the	
participants	based	on	our	observations.	
	
We	also	observed	advantages	in	using	Gneiss’	grouping	and	spreadsheet	functions	
to	compute	summaries	of	data	instead	of	using	pivot	tables.	The	biggest	advantage	is	
that	participants	with	Gneiss	could	see	the	data	while	calculating	the	summaries	and	
thus	were	more	likely	to	spot	problems	in	their	manipulation	of	the	data,	such	as	
duplicated	values.	In	contrast,	in	Excel,	as	the	pivot	table	interface	took	people	away	
from	the	original	data,	it	was	more	difficult	for	participants	to	spot	errors.	
	

5.6.3 STRENGTHS OF HAVING A VISUAL TOOL TO WORK WITH DATA
We	observed	that	all	participants	in	the	programming	group	constantly	printed	out	
data	to	the	console	to	check	if	their	code	manipulated	the	data	in	the	way	they	
wanted.	Participants	in	the	programming	group	also	gave	more	incorrect	answers	
before	having	the	right	answers	than	participants	using	Gneiss	and	Excel,	since	they	
did	not	have	a	visual	way	to	examine	the	manipulated	data	and	thus	were	more	
likely	to	miss	errors	in	their	code	like	omitting	to	deal	with	repetitive	values.	This	
result	suggests	to	us	that	even	professional	programmers	might	benefit	from	having	
a	visual	tool	(such	as	spreadsheets)	to	work	with	data,	especially	when	doing	data	
exploration	tasks.	
	

5.6.4 LACK OF COMPUTATIONAL THINKING
The	fifth	task	was	the	most	difficult	task	for	spreadsheet	users	because	solving	it	
requires	computational	thinking.	Instead	of	getting	rid	of	duplicated	values,	in	this	
task	the	user	needs	to	discover	a	way	to	keep	authors	that	have	papers	with	
duplicated	session	ids	and	get	rid	of	the	ones	that	do	not.	One	strategy	is	to	create	
another	column	that	computes	whether	there	were	duplicated	values.	In	Gneiss,	this	
can	be	done	by	checking	if	the	COUNT	and	COUNTUNIQUE	functions	return	different	
values.	This	approach,	which	may	be	obvious	to	a	programmer,	is	not	
straightforward	to	spreadsheet	users	who	do	not	have	much	programming	
background.	The	two	Gneiss	users	who	failed	this	task	both	had	organized	and	
grouped	the	data	into	the	right	form	but	could	not	think	of	a	way	to	describe	this	
relationship.	Another	interesting	observation	was	that	while	programmers	on	

KERRY CHANG	|	Dissertation	 90

average	spent	longer	solving	the	tasks	than	Gneiss	users,	they	rated	the	tasks	easier	
than	either	the	Gneiss	or	Excel	users.	While	statistically	the	differences	are	not	
significant,	this	result	makes	sense,	as	although	it	took	longer	for	programmers	to	
write	a	working	program,	the	logic	for	solving	these	tasks	was	pretty	
straightforward.	This	result	suggests	that	while	our	tool	extends	spreadsheets	to	
support	many	new	ways	to	manipulate	hierarchical	data,	whether	users	could	
successfully	use	our	tool	to	solve	a	task	in	real	life	still	may	be	limited	by	their	
programing	training.	
	

5.6.5 POSSIBLE FORMS OF OUTPUTS
We	showed	Gneiss	to	participants	from	all	groups	after	the	study	was	over.	
Participants	expressed	interest	in	using	it	in	real	life.	Besides	using	it	as	a	data	
exploration	tool,	they	also	suggested	some	possible	forms	of	outputs	that	could	be	
useful	to	them.	One	programmer	suggested	that	Gneiss	should	be	able	to	export	a	
hierarchical	table	into	a	new	JSON	file	that	he	could	then	feed	into	his	programs,	
which	would	be	trivial	to	provide,	since	Gneiss	creates	such	a	table	internally.	
Another	programmer	wanted	to	use	Gneiss	as	a	programming-by-demonstration	
tool	to	generate	data	reshaping	scripts,	such	as	a	snippet	of	JavaScript	code	for	him	
to	paste	into	his	program.	Another	programmer	wanted	Gneiss	to	become	a	
database	console	that	can	generate	queries	to	databases	using	spreadsheet	
interactions	like	sorting,	filtering,	grouping	and	joining.	Several	programmers	and	
spreadsheet	users	wanted	Gneiss	to	support	creating	hierarchical	visualizations,	
such	as	treemaps	or	sunburst	graphs.	After	the	study,	I	have	added	several	
hierarchical	visualizations	to	Gneiss’s	web	interface	builder	including	treemaps	and	
nested	lists.	The	rest	of	the	suggestions	could	be	interesting	directions	for	future	
work.	
	

5.7 LIMITATIONS
There	are	limitations	in	Gneiss’s	system	on	handling	hierarchical	data	and	of	the	
user	study.	For	the	system,	as	I	discussed	earlier	in	section	5.3.1.1,	Gneiss	currently	
supports	JSON	data	that	use	arrays	to	represent	hierarchies.	However,	different	data	
formats	may	have	different	ways	to	specify	hierarchies.	For	example,	XML	does	not	
have	arrays	and	the	hierarchies	are	specified	using	nested	tags.	While	Gneiss	
currently	does	not	support	other	hierarchical	formats,	I	believe	that	Gneiss’s	
techniques	can	be	adapted	to	handle	those	data	as	well.	Also,	as	I	mentioned	in	
section	5.3.2.6,	Gneiss’s	joining	algorithm	does	not	let	users	choose	which	object	to	
preserve,	and	nodes	in	the	non-preserved	object	are	discarded	if	the	preserved	
object	do	not	have	matching	joined	fields.	To	my	knowledge,	currently	there	is	no	
standard	on	how	to	join	hierarchical	objects.	Gneiss’s	joining	algorithm	is	designed	
to	work	together	with	the	visualization	algorithm	and	with	other	techniques	for	
manipulating	hierarchical	data.	Finally,	currently	Gneiss	does	not	allow	users	to	

KERRY CHANG	|	Dissertation	 91

create	arbitrary	data	structures	–	users	can	only	create	a	new	column	that	has	the	
same	structure	as	a	selected	column,	which	comes	from	the	source	hierarchical	
document.	Since	my	user	study	and	the	study	in	[7]	both	showed	that	people	could	
understand	nested	cells	in	spreadsheets,	future	work	could	experiment	with	using	
spreadsheets	to	create	arbitrary	hierarchical	data.	
	
As	for	the	user	study,	while	the	results	were	statistically	significant,	they	were	
collected	from	a	small	group	of	participants	that	were	mostly	university	students.	
Therefore	the	results	may	not	be	generalizable	to	users	with	different	
demographics.	The	purpose	of	the	study	was	to	evaluate	the	learnability	and	
usability	of	Gneiss	and	provide	some	insights	on	the	strengths	and	weaknesses	of	
Gneiss’s	design.		
	

5.8 CONCLUSIONS
In	this	chapter,	I	presented	a	spreadsheet	model	for	using	hierarchical	data.	The	
model	supports	reshaping,	regrouping	and	joining	hierarchical	data	in	a	
spreadsheet	using	simple	interaction	techniques.	Conventional	spreadsheet	
mechanisms	including	spreadsheet	languages,	sorting,	filtering	and	autofilling	are	
extended	to	further	support	manipulating	data	using	hierarchical	structures.	To	
evaluate	this	model,	I	presented	a	series	of	examples	to	demonstrate	the	ability	of	
the	model	to	support	different	data	analysis	tasks.	I	also	conducted	a	lab	study	
where	Gneiss	helped	spreadsheet	users	with	little	programming	experience	
complete	realistic	tasks	significantly	faster	than	Excel	and	even	outperform	
professional	programmers	writing	code,	showing	that	hierarchical	representations	
can	be	successfully	integrated	into	spreadsheet-like	tools.	
	
		 	

KERRY CHANG	|	Dissertation	 92

CHAPTER 6 USING STREAMING DATA10
Many	web	data	services	return	real-time	data	such	as	market	prices,	geo-locations	
of	people	and	vehicles,	or	social	network	feeds.	Applications	that	use	real-time	data	
sources	often	need	to	analyze	the	data	live	to	provide	feedback.	For	example,	an	
application	that	monitors	the	stock	market	might	want	to	give	the	user	a	notification	
if	the	buying	price	is	below	a	certain	number.	Another	common	usage	is	to	
periodically	stream	data	from	real-time	sources	in	order	to	analyze	the	data	over	
time.	For	example,	a	business	owner	may	want	the	data	on	the	number	of	daily	
Twitter	feeds	that	contain	a	hash	tag	of	the	company’s	name	over	the	past	month	to	
see	if	it	is	correlated	with	the	dates	of	the	company’s	sales.			
	

6.1 MOTIVATION, CHALLENGES AND CONTRIBUTIONS
Currently,	creating	custom	applications	that	use	real-time	data	sources	requires	a	
programmer	to	write	a	lot	of	code	to	collect	the	data,	manipulate	it,	and	analyze	it	
live	to	update	the	user	interface.	Often	such	applications	would	require	a	database	
to	store	the	retrieved	history	data	and	support	querying	the	data	over	time	such	as	
to	get	data	collected	within	a	certain	time	period.	This	requires	additional	
programming	efforts.	For	end-users,	there	are	tools	that	provide	built-in	real-time	
data	sources	to	let	users	view	and	analyze	live	data	using	spreadsheets	and	
visualizations	(e.g.,	[83,98,115]).	However,	adding	a	new	data	source	to	use	in	those	
tools	requires	a	programmer	to	hardwire	it	into	the	tool.	Also,	none	of	those	tools	
support	programming	GUI	applications	that	use	streaming	data	sources.		
	
In	this	chapter,	I	describe	a	spreadsheet	model	integrated	with	Gneiss	that	lets	users	
work	with	streaming	data	from	web	data	sources.	The	model	has	several	
innovations:	first,	it	provides	techniques	that	allow	users	to	stream	any	fields	from	
arbitrary	REST	JSON	web	services	without	needing	a	developer	to	preprogram	those	
sources	into	the	tool.	Second,	it	introduces	a	design	for	spreadsheet	cell	“metadata”	
which	describes	other	attributes	of	a	cell’s	value	and	can	be	used	to	manipulate	
spreadsheet	data.	In	this	work,	each	cell	automatically	records	metadata	of	its	
value’s	provenance	and	fetched	time,	allowing	users	to	view	or	manipulate	
streaming	data	in	the	spreadsheet	using	temporal	information,	such	as	getting	the	
daily	maximum	and	minimum	values.	Lastly,	it	allows	streaming	to	be	paused	and	
restarted	using	conditions	computed	live	from	spreadsheet	data	using	formulas.	
These	features	make	the	created	spreadsheet	program	very	dynamic	and	
interactive.	
	
To	show	the	generalizability	of	this	model,	I	demonstrate	how	the	same	mechanism	
that	handles	streaming	data	from	web	services	can	be	used	for	collecting	user	data	
																																																								
10	The	research	in	this	chapter	is	also	described	in	our	publication	at	CHI’15	[21]	

KERRY CHANG	|	Dissertation	 93

in	web	input	elements	such	as	textboxes	on	web	pages.	A	spreadsheet	column	can	
be	set	to	pull	data	from	a	web	UI	element	either	when	the	input	element	changes	or	
when	triggered	by	live	conditions.	The	data	will	be	saved	as	a	data	stream	in	the	
spreadsheet,	making	the	spreadsheet	work	as	a	backend	database	for	the	web	
application.	
	
Combining	all	these	features,	my	dissertation	contributes	a	novel	spreadsheet	model	
for	using	streaming	data,	where	custom	real-time	applications	need	only	a	few	
spreadsheet	formulas	that	otherwise	would	require	writing	complex	code.	
	

6.2 USAGE SCENARIO
Like	in	previous	chapters,	here	I	describe	a	usage	scenario	to	give	an	overview	on	
how	Gneiss	supports	creating	a	GUI	web	application	that	uses	real-time	data.	In	this	
scenario,	the	user	is	making	a	web	application	that	streams	the	stock	price	of	Yahoo	
every	10	minutes.	The	streaming	automatically	pauses	after	4PM	when	the	market	
closes,	and	resumes	after	9:30AM	when	the	market	opens	again.	The	web	
application	can	let	users	choose	to	view	the	data	of	today	or	the	past	three	days	
using	two	radio	buttons.	The	data	are	shown	in	a	line	chart.	Below	the	line	chart,	the	
application	shows	if	the	current	price	is	below	a	value	that	the	user	sets	previously.	
This	example	is	similar	to	the	example	described	in	[83],	where	the	user	also	creates	
a	spreadsheet	that	shows	streaming	data	of	market	prices	and	uses	spreadsheet	
formulas	to	compute	if	the	current	price	is	a	bargain.	In	my	example	here,	the	user	
can	further	define	custom	pausing	rules,	select	the	data	using	temporal	information	
and	create	a	web	application	that	uses	and	manipulates	streaming	data	in	the	
spreadsheet.	To	my	knowledge,	none	of	the	prior	spreadsheet	systems	support	
those	features,	including	[83].		

Figure	6.1.	The	user	is	creating	a	real-time	web	application	(the	right	pane)	that	streams	Yahoo’s	
stock	prices	(columns	A	and	B	in	the	spreadsheet)	every	10	minutes.	To	let	Gneiss	periodically	pull	
data	from	a	web	service,	the	user	selects	the	“Stream	this	source”	checkbox	(1)	in	the	source	pane.	
The	system	shows	the	source	pane	data’s	last	retrieved	time	in	a	blue	label.	Gneiss’s	spreadsheet	
allows	users	to	set	custom	streaming	frequency	and	pausing	rules,	and	to	sort	and	filter	the	data	by	
fetched	time	(2).	In	this	screenshot,	the	user	uses	a	line	chart	(3)	to	see	the	ups	and	downs	of	today’s	
prices.	Full	description	of	this	example	screenshot	is	in	section	6.2.	

KERRY CHANG	|	Dissertation	 94

	
To	begin,	the	user	enters	Yahoo	Finance	API	in	the	URL	bar	in	the	source	pane	to	get	
the	current	market	price	of	Yahoo.	Then	he	checks	the	“Stream	this	source	every	
[textbox]	seconds”	checkbox	(Figure	6.1	at	1),	and	uses	the	textbox	to	set	the	
streaming	frequency	to	be	600	seconds	(Figure	6.1	at	1).	The	system	starts	to	pull	
data	from	the	data	source	every	10	minutes,	and	uses	a	“flipping”	animation	in	the	
source	pane	to	show	that	data	has	been	refreshed.	To	stream	the	value	of	the	ask	
price	to	the	spreadsheet,	the	user	selects	the	“Ask”	field	in	the	return	data,	and	drag-
and-drops	it	to	spreadsheet	column	B.	By	default,	streaming	data	in	a	column	are	
sorted	descending	by	time.	So	the	system	starts	to	stack	column	B	with	the	latest	
“Ask”	value	retrieved	from	the	web	service,	with	the	newest	value	appears	at	the	
top.	For	clarity,	the	user	also	extracts	the	name	of	the	company	(“YHOO”)	to	column	
A.	Data	in	column	A	and	B	now	grow	live	as	time	goes	by,	adding	a	new	row	every	10	
minutes.		
	
The	user	drags	a	line	chart	to	the	right	pane	and	set	the	“Data”	field	of	the	chart	to	
be	=B:B	(Figure	6.1	at	3).	The	chart	now	plots	Yahoo’s	stock	price	and	updates	every	
10	minutes	with	a	new	data	point.	The	user	then	drags	two	radio	buttons	below	the	
chart	to	control	whether	to	show	the	data	of	today	or	the	past	five	days.	In	cell	G1,	
the	user	enters	the	formula	
	

=IF(RadioButton1!Checked, TODAY(), TODAY()-5)

	
TODAY	is	a	conventional	function	supported	in	spreadsheets	such	as	Excel	that	
returns	today’s	date	and	automatically	updates	every	day.	The	user	then	presses	the	
arrow	button	at	the	top	of	column	B	to	open	the	dialog	box	for	sorting	and	filtering.	
Recall	that	in	section	4.3.2,	I	had	described	that	sorting	and	filtering	rules	in	Gneiss	
can	be	computed	dynamically	from	GUI	elements	in	the	web	application.	To	do	so,	
the	user	selects	the	“Use	computed	value”	checkbox	for	sorting	or	filtering,	and	in	
the	textbox	below	enters	the	computed	value	which	is	a	string	that	has	the	sorting	
or	filtering	method	along	with	the	required	parameters	of	the	method	(see	Table	3.1	
for	reference).	Here,	the	user	wants	to	filter	the	data	to	only	show	data	retrieved	on	
and	after	the	date	that	is	shown	in	cell	C1.	To	do	so,	in	cell	C2	the	user	enters	
=“filter by time, after, ”&C1	to	compose	the	string	for	filtering.	The	user	then	
selects	“Use	computed	value”	in	the	dialog	box	for	filtering,	and	enter	=C2	in	the	
textbox	(see	the	dialog	box	at	Figure	6.1	at	2).	This	makes	the	system	only	show	data	
retrieved	on	and	after	the	date	showed	in	cell	C1,	which	is	controlled	dynamically	by	
the	radio	buttons	in	the	web	interface	builder.	Since	the	two	radio	buttons	are	in	the	
same	radio	button	group,	selecting	one	button	automatically	deselects	the	other.	
Therefore	the	IF	function	only	needs	to	check	RadioButton1.			
	
The	user	now	wants	to	let	the	system	only	stream	data	when	the	market	is	open,	
which	is	between	9:30AM	to	4PM.	To	do	so,	he	selects	the	“Pause	streaming	when”	

KERRY CHANG	|	Dissertation	 95

checkbox	in	the	dialog	box	and	enters	=OR(HOUR(NOW())<=9.5, HOUR(NOW())>=16).	
NOW	is	another	conventional	spreadsheet	function	that	returns	the	current	date	and	
time.	In	Gneiss,	the	NOW	function	updates	every	minute.	This	expression	makes	the	
spreadsheet	pause	streaming	when	the	current	time	is	before	9:30AM	or	after	4PM.	
He	clicks	“OK”	to	apply	these	custom	rules	and	close	the	dialog	box.		
	
Finally,	the	user	wants	to	compare	the	latest	market	price	with	a	predefined	price.	
He	enters	the	formula	=IF(B1>F1, “Buy”, “Wait”)	in	cell	F2.	The	formula	
compares	the	latest	value	(which	is	stored	in	B1	as	the	data	is	sorted	descending	by	
time)	with	the	“ideal	price”	in	cell	F1	(see	Figure	6.1	in	the	spreadsheet)	and	
dynamically	outputs	“Buy”	or	“Wait”.	In	the	web	interface	builder,	the	user	drags	in	
a	few	text	labels	to	show	the	values	of	F1	and	F2.		

	
The	user	now	has	finished	this	web	application!	The	user	sets	the	system	to	keep	
streaming	the	data	even	when	Gneiss	is	closed	using	a	menu	option	under	“Settings”	
in	the	top	menu	bar	(Figure	6.1	at	the	top),	and	exports	the	application.	Now	he	can	
open	this	application	in	any	device	that	has	a	web	browser.	The	chart	and	the	“buy	
or	wait”	text	in	the	application	will	both	update	live,	and	the	line	chart	data	are	
controlled	by	the	radio	buttons.		
	

6.3 KEY FEATURES FOR USING STREAMING DATA
As	described	in	this	chapter’s	usage	scenario	(section	6.2),	the	user	can	let	the	
system	periodically	pull	data	from	a	web	service	by	checking	the	“stream	this	
source”	checkbox	in	the	source	pane,	and	then	create	a	data	stream	of	a	field	in	a	
spreadsheet	column	using	the	drag-and-drop	gesture.	As	described	in	previous	
chapters,	to	sort	and	filter	data	by	a	column,	the	user	clicks	on	the	arrow	icon	at	the	
top	of	a	column	to	open	a	dialog	box.	If	the	column	holds	streaming	data,	the	dialog	
box	will	have	a	new	section	at	the	top	called	“Streaming:”	(see	Figure	6.1	at	2)	that	
shows	the	web	API	that	the	data	is	streamed	from	and	a	checkbox	for	pausing	
streaming.	The	dialog	box	also	provides	new	options	to	sort	and	filter	the	data	using	
temporal	information,	as	now	the	data	in	a	column	are	retrieved	at	different	times.		
	

6.3.1 SPREADSHEET CELL METADATA
Streaming	data	are	inherently	time-series	data,	and	so	the	ability	to	view	or	
manipulate	streaming	data	in	the	spreadsheet	by	time	is	essential.	To	enable	this,	I	
designed	each	spreadsheet	cell	to	have	metadata	that	describe	attributes	of	its	
value.	The	metadata	are	by	default	not	visible	but	can	be	exposed	through	formulas	
and	can	be	used	to	manipulate,	sort	and	filter	spreadsheet	cells	(note	that	cell	
metadata	in	Gneiss	are	different	from	user	comments	in	conventional	spreadsheets	
as	they	are	set	and	maintained	automatically	by	the	system).	In	my	spreadsheet	
model,	each	streamed	cell	stores	not	only	its	display	value	but	also	metadata	about	

KERRY CHANG	|	Dissertation	 96

its	provenance	and	fetched	time,	allowing	data	to	be	viewed	and	manipulated	using	
its	value,	source	and	temporal	information.	
	

6.3.1.1 Sorting and filtering the data by fetched time
As	described	in	the	usage	scenario,	a	data	
stream	in	a	spreadsheet	column	can	be	
sorted	and	filtered	using	fetched	time.	By	
default,	data	in	the	spreadsheet	is	sorted	
descending	by	time,	so	that	the	latest	value	
appears	in	the	first	row.	The	user	can	also	
sort	the	data	ascending	by	time	and	let	the	
latest	value	be	added	to	the	last	row.	For	
filtering,	the	user	can	filter	the	data	to	show	
values	fetched	before	and/or	after	a	certain	
time.	To	do	so,	the	user	selects	the	“Data	
fetched	before	[textbox]	after	[textbox]”	
option,	and	enters	the	before/after	time	in	
the	textboxes	(see	Figure	6.2).	I	used	Datejs,	
a	JavaScript	library	that	parses	natural	
language	into	standard	date	and	time	
format,	to	enable	more	flexible	date	entry	formats.	As	the	user	types	a	time	into	the	
textboxes,	the	system	will	show	the	parsed	time	below	the	textbox	in	small	grey	text	
(Figure	6.2).	The	user	can	check	if	the	system	interpreted	the	time	correctly,	and	if	
not	she	can	include	more	details.		
	
As	described	previously	in	sections	3.4.3	and	4.3.2.2,	sorting	and	filtering	rules	can	
also	be	dynamically	computed	from	spreadsheet	cells	and	web	GUI	elements	using	
formulas.	I	have	provided	multiple	examples	in	previous	chapters,	and	the	usage	
scenario	in	this	chapter	(section	6.2)	gave	another	example	of	how	the	user	can	
compose	a	string	whose	value	is	controlled	by	radio	buttons	on	the	web	application	
to	filter	the	data	by	time.	To	facilitate	getting	the	current	time,	Gneiss	extends	two	
conventional	spreadsheet	functions,	TODAY()	and	NOW().	Both	functions	
automatically	update	in	real-time,	with	TODAY()	updating	daily	and	NOW()	updating	
every	minute.		
	
Again,	sorting	and	filtering	on	streaming	data	are	re-evaluated	when	new	values	
arrive	or	when	the	rules	change	(if	they	are	dynamically	computed	from	
spreadsheet	cells	or	functions).	Adjacent	spreadsheet	columns	extracted	from	the	
same	streaming	source	are	sorted	and	filtered	together	(see	section	3.4.3),	and	they	
are	highlighted	in	the	same	color	when	the	dialog	box	is	open.		
	

	
Figure	6.2.	When	entering	a	time	string	to	filter	
the	data,	Gneiss	allows	flexible	formats,	parses	
the	user’s	input	and	shows	the	system	
interpreted	time	in	grey	text	below	the	textbox.		

KERRY CHANG	|	Dissertation	 97

6.3.1.2 Using cell metadata in spreadsheet functions

Gneiss	further	supports	two	new	functions	to	enable	users	to	use	cell	metadata	in	
formulas	in	the	spreadsheet.	The	function	FETCHTIME(cell)	returns	the	retrieval	
time	of	a	streamed	cell.	The	return	value	is	in	standard	ISO	8601	format	and	can	be	
used	with	conventional	spreadsheet	time	functions	such	as	HOUR	and	DATE.	The	other	
function	SELECTBYTIME(range, startTime, endTime)	returns	values	in	range	that	
are	streamed	between	startTime	and	endTime.	The	function	can	be	used	together	
with	many	conventional	spreadsheet	functions	that	process	a	list	of	values.	For	
example,	suppose	column	B	in	the	spreadsheet	holds	latest	news	streamed	from	a	
news	data	source.	The	formula:	
	

=COUNTIF(SELECTBYTIME(B:B, “2016-02-29 9:00”, “2016-02-29

10:00”),“*White House*”)

returns	the	number	of	news	articles	streamed	before	9-10am	on	February	29th,	
2016	that	contain	the	phrase	“White	House”.			
	

6.3.2 CONTROLLING STREAMING TIMING
My	spreadsheet	model	also	allows	the	user	to	set	when	and	how	fast	the	
spreadsheet	should	pull	data	from	a	data	source.	In	Gneiss,	the	user	can	set	the	
streaming	frequency	in	two	places.	First	is	from	the	source	pane	using	the	textbox	in	
the	“Stream	this	source”	checkbox	option	(Figure	6.1	at	1)	as	described	in	the	usage	
scenario	in	section	6.2.	Second	is	from	the	dialog	box	of	a	streaming	column	(Figure	
6.1	at	2).	The	frequency	data	in	these	two	places	are	synchronized	–	changing	the	
number	in	one	place	will	automatically	change	the	number	in	the	other.		
	
In	the	dialog	box,	the	user	can	also	choose	to	pause	a	stream	when	a	given	condition	
is	true.	For	example,	in	the	usage	scenario,	the	user	sets	the	system	to	only	stream	
data	between	9:30AM	and	4PM	using	a	NOW	function	that	checks	the	current	time	
every	minute.	If	the	condition	is	not	specified,	the	stream	pauses	immediately	when	
the	user	checks	the	“Pause	streaming	when”	checkbox.		
	
By	default,	all	streaming	stops	when	the	spreadsheet	or	the	created	web	application	
are	closed.	As	described	in	this	chapter’s	usage	scenario,	Gneiss	also	provides	the	
option	to	keep	streaming	when	the	spreadsheet	or	the	created	web	application	was	
closed	(although	our	server	has	a	limit	for	how	much	data	can	be	stored	in	the	
database11),	or	to	remove	all	the	streaming	data	saved	on	the	server.	When	the	user	
opens	the	spreadsheet	or	the	created	web	application,	Gneiss	fetches	the	data	stored	
on	the	server	based	on	the	sorting	and	filtering	rules	to	fill	in	the	spreadsheet	cells	
and	the	web	application,	and	restart	all	the	streaming.		
																																																								
11	We	use	MongoDB	as	the	database.	See	its	limitations	at	
http://docs.mongodb.org/manual/reference/limits/		

KERRY CHANG	|	Dissertation	 98

	

6.3.3 STREAM DATA FROM WEB INPUT ELEMENTS
I	applied	this	spreadsheet	model	for	streaming	data	from	web	services	to	streaming	
data	from	web	input	elements	in	a	Gneiss	web	application.	As	streaming	data	are	
stored	on	Gneiss’	server,	enabling	data	to	be	streamed	from	web	input	elements	
essentially	turns	a	spreadsheet	into	a	database	for	a	web	application	that	stores	user	
inputs.	To	stream	and	store	input	values	in	the	web	application	to	the	spreadsheet,	
the	user	first	enters	a	web	GUI	element	property,	such	as	=TextBox1!Value,	in	the	
first	row	of	a	column.	Then	when	she	opens	the	dialog	box	of	that	column,	the	
“Streaming:”	section	will	appear	with	the	streaming	source	textbox	being	what	was	
entered	in	the	first	cell	(see	Figure	6.3),	as	the	system	detects	that	the	first	cell	is	a	
web	GUI	element	which	can	be	a	streaming	source.	Then	the	user	can	set	the	column	
to	pull	data	from	the	web	element	by	checking	the	“Stream	data	from”	checkbox.	By	
default,	the	column	pulls	data	from	an	input	element	whenever	its	value	changes.	
The	textbox’s	value	attribute	by	default	changes	when	the	user	presses	the	enter	key	
in	the	textbox,	and	that	is	when	the	system	pulls	the	data	to	the	spreadsheet	column.	
The	user	can	further	use	the	“pause”	mechanism	described	earlier	to	start	streaming	
only	when	certain	condition	is	true.	For	example,	using	Button1!State !=
“clicked”	as	the	pause	condition	makes	the	column	pull	data	from	TextBox1	only	
when	Button1	is	clicked	(see	the	second	demonstrative	example	in	section	6.4.2	for	
a	use	case).	Like	spreadsheet	cells	storing	data	streamed	from	web	services,	cells	
storing	data	streamed	from	web	input	elements	also	have	the	same	metadata	and	
can	be	manipulated	by	their	retrieval	time.		
	

6.4 DEMONSTRATIVE EXAMPLES
As	in	previous	chapters,	here	I	describe	two	more	examples	to	demonstrate	Gneiss’	
ability	to	create	real-time	applications	that	stream	data	from	web	services	and	web	
applications	using	a	few	lines	of	spreadsheet	code.		
	

6.4.1 REAL-TIME WEATHER ALAERTS BASED ON LOCATIONS
Suppose	a	user	works	in	a	company	that	has	an	internal	web	service	tracking	
current	locations	of	company	trucks	and	wants	to	create	an	application	that	
monitors	the	weather	condition	at	a	truck’s	current	location	to	alert	the	driver	of	

	
Figure	6.3.	The	user	can	also	stream	data	from	web	input	elements	to	a	spreadsheet	column,	by	
having	the	streaming	source	to	be	a	GUI	element	property.		

KERRY CHANG	|	Dissertation	 99

issues	such	as	if	the	atmosphere	visibility	becomes	too	low.	The	user	first	sets	
column	A	to	stream	GPS	coordinates	of	the	truck	from	the	company	web	service	and	
to	sort	the	data	descending	by	time	(the	default),	thus	the	most	recent	coordinates	
are	in	cell	A1.	To	retrieve	weather	data	of	the	truck’s	current	location,	the	user	uses	
Yahoo’s	Weather	API,	replacing	the	query	value	to	refer	to	cell	A1	and	streams	the	
visibility	field	from	the	return	data	to	column	B.	Cell	B1	thus	becomes	the	
atmosphere	visibility	reading	of	the	truck’s	current	location.	The	user	can	then	use	
an	IF	formula	to	check	B1’s	value	and	see	if	it	is	below	a	certain	threshold.	
	
The	user	can	pause	a	data	stream	programmatically	using	live	data	in	the	
spreadsheet.	Suppose	the	user	stores	the	destination	for	the	truck	in	cell	C1.	She	can	
then	set	the	pause	condition	to	be	A1=C1,	so	the	streaming	stops	when	the	truck	
arrives	at	its	destination.	
	

6.4.2 ONLINE EXAM PAGE
Suppose	the	user	is	a	teacher	who	wants	to	create	a	test	for	her	students	to	take	
online.	The	test	has	three	pages.	On	the	first	page,	the	student	enters	her	student	ID	
and	clicks	a	“Next”	button	to	go	to	the	next	page.	The	second	page	shows	the	
student’s	ID	entered	in	the	previous	page,	a	list	of	exam	questions	for	which	the	
student	can	enter	answers	using	various	GUI	controls,	and	a	“Submit”	button	that	
submits	all	the	answers	and	goes	to	the	next	page.	The	third	page	tells	the	students	
that	he	has	finished	the	exam	and	shows	his	score	and	the	class	average	score	so	far.	
If	the	system	finds	a	student	already	took	the	test	in	the	first	page,	it	will	skip	the	
second	page	and	take	the	student	directly	to	the	third	page	showing	the	message	
and	the	scores.	To	create	a	custom	web	application	like	this	currently	requires	a	
person	to	set	up	a	server	and	a	database,	and	connect	the	frontend	web	pages	to	the	
server	by	writing	JavaScript,	PHP	or	other	web	programming	code.	With	Gneiss,	the	
user	can	create	this	application	using	only	spreadsheet	languages.		
	
The	user	creates	three	pages	in	the	web	interface	builder,	naming	them	index	(the	
first	page),	questions	(the	second	page)	and	results	(the	third	page).	To	the	first	
page,	the	user	drags	in	a	textbox	(whose	ID	is	TextBox1)	for	entering	the	student	ID,	
a	“Next”	button	for	going	to	the	second	page,	and	several	text	labels	to	explain	how	
to	proceed.	To	check	if	the	student	already	took	the	test,	the	user	writes	this	formula	
in	spreadsheet	cell	A1:	
	

=IF(COUNTIF(TextBox1!Value, B:B)=0, “questions”, “results”)

	
This	formula	returns	“questions”,	the	second	page’s	name,	if	the	value	in	the	ID	
textbox	does	not	exist	in	column	B,	which	is	where	the	user	plans	to	store	all	the	IDs	
of	students	who	already	took	the	test.		Otherwise	the	formula	returns	“results”	

KERRY CHANG	|	Dissertation	 100

whish	is	the	third	page’s	name.	Then	the	user	sets	the	“Link”	property	of	the	Next	
button	to	be	=A1	to	let	it	link	to	the	proper	next	page.			
	
On	the	second	page,	the	user	creates	a	bunch	of	text	labels	for	showing	the	questions	
and	GUI	controls	for	recording	the	answers.	In	the	spreadsheet,	she	opens	column	
B’s	dialog	box	and	sets	column	B	to	pull	data	from	the	student	ID	textbox	by	
entering	TextBox1!Value	as	the	streaming	source	and	Button2!State!=“pressed”	
as	the	pausing	rule	to	only	pull	the	data	to	column	B	when	the	submit	button	on	the	
second	page	(whose	ID	is	Button2)	is	pressed.	The	user	uses	other	spreadsheet	
columns	to	stream	data	from	other	GUI	elements	to	save	the	student’s	answer	when	
the	submit	button	is	hit	using	the	same	method.	Finally,	she	sets	the	“Link”	property	
of	the	Submit	button	to	be	“results”	to	go	to	the	third	page.		
	
Now	on	the	spreadsheet,	each	student’s	ID	and	answers	are	recorded	in	a	
spreadsheet	row.	The	great	thing	about	storing	everything	in	a	spreadsheet	is	that	
the	user	can	now	use	the	familiar	spreadsheet	functions	to	check	if	the	answers	are	
right	and	calculate	a	final	score	for	the	student.	Suppose	the	student’s	answers	are	
recorded	in	columns	C	to	J.	The	user	can	then	use	a	bunch	of	IF	functions	to	
calculate	a	student’s	final	score	in	cell	K1	and	then	use	autofill	to	compute	all	
students’	scores	in	column	K.	On	the	“results”	page,	the	user	drags	in	a	few	text	
labels	to	tell	the	student	that	he	has	finished	the	test,	and	uses	the	formula	
=LOOKUP(TextBox1!Value, B:B, K:K)to	find	a	student’s	final	score	given	the	ID	
(which	is	still	stored	in	TextBox1	in	the	first	page).	The	average	score	of	all	students	
can	be	easily	calculated	by	the	formula	=AVERAGE(K:K)	and	assigned	to	a	text	label	in	
the	web	application	to	show	to	the	student.	The	user	does	a	few	tests	of	her	exam	
web	application,	cleans	the	test	data	stored	in	the	database	before	finally	exporting	
the	application	and	sending	a	link	to	her	students	to	take	the	exam.	While	the	
application	is	being	deployed,	the	user	can	reopen	the	spreadsheet	in	Gneiss	
anytime	to	look	at	who	already	took	the	test,	run	more	analyses	or	create	
visualizations	using	the	collected	data.			
	

6.5 LIMITATIONS AND DISCUSSION
In	my	current	implementation,	cell	metadata	and	the	ability	to	manipulate	data	by	
fetched	time	only	work	for	cells	that	have	web	service	data	or	values	streamed	from	
web	GUI	elements.	Cells	that	have	non-streaming	or	non-web	service	data	do	not	
record	the	data’s	creation	time.	For	example,	if	the	user	types	a	number	10	in	a	cell,	
the	cell	does	not	record	when	the	number	is	entered.	Future	work	could	be	to	let	
cells	that	have	non-streaming	data	also	record	their	data’s	creation	time	and	
provenance	(if	from	external	sources)	to	enable	other	uses.	For	example,	if	all	cells	
record	their	data’s	creation	time,	the	user	may	be	able	to	filter	to	see	cells	that	
changed	most	recently.	In	this	dissertation,	cell	metadata	focuses	on	supporting	
streaming	data.	Currently,	in	Gneiss	the	only	way	to	view	the	metadata	(fetched	

KERRY CHANG	|	Dissertation	 101

time)	of	a	cell	is	through	spreadsheet	functions.	Other	future	work	can	be	providing	
other	ways	to	view	a	cell’s	metadata,	such	as	through	hovering.	
	
Some	web	services	provide	streaming	APIs	that	automatically	stream	data	to	the	
client	without	requiring	the	client	to	periodically	pull	new	data,	such	as	Twitter’s	
streaming	APIs	to	get	the	latest	Twitter	feeds.	Gneiss’s	source	pane	currently	does	
not	support	those	streaming	APIs,	primarily	because	all	of	these	APIs	require	using	
additional	authentication	protocols,	such	as	OAuth.	Besides	hard-wiring	those	APIs	
into	Gneiss,	Chapter	3	shows	how	future	work	could	include	integrating	Gneiss	with	
the	Spinel	architecture	[17]	to	enable	more	complicated	data	sources	to	be	added	to	
Gneiss	as	plugins	without	having	to	edit	Gneiss’s	source	code.	After	adding	a	
streaming	API	to	use	in	Gneiss,	I	expect	all	the	features	on	manipulating	data	by	time	
and	controlling	the	timing	of	streaming	could	be	extended	to	work	with	data	coming	
from	that	source	with	little	modification.	
	
While	currently	not	many	web	services	provide	streaming	APIs,	there	are	two	
advantages	of	using	a	streaming	API	instead	of	periodically	calling	a	regular	API	as	
Gneiss	does.	First,	some	regular	APIs	have	usage	limits	that	restrict	the	number	of	
calls	an	account	can	make	in	a	time	period.	The	user	needs	to	be	aware	of	this	
information	when	setting	the	streaming	frequency	in	Gneiss.	Second,	periodically	
pulling	data	from	a	data	source	does	not	guarantee	capturing	all	the	changes	in	the	
data.	For	example,	in	the	usage	scenario,	while	the	spreadsheet	pulls	the	market	
price	every	10	minutes,	it	cannot	capture	every	buying	time	where	the	price	is	lower	
than	the	user-defined	value	if	the	price	goes	up	again	before	the	next	time	the	
system	pulls	the	data.	Capturing	that	change	may	be	possible	if	the	web	service	
provides	a	streaming	API	that	pushes	data	to	the	client	every	time	when	the	data	
change.		
	
A	question	for	systems	that	deal	with	streaming	data	is	always	scalability.	As	
described	earlier,	in	my	current	implementation	there	is	a	limit	on	how	much	data	
can	be	stored	on	Gneiss’s	server.	Most	conventional	spreadsheet	systems	including	
Excel	also	have	a	limit	on	the	maximum	spreadsheet	size,	and	often	the	speed	of	the	
spreadsheets	depends	a	lot	on	the	machine’s	memory	and	system	resources.	Gneiss	
uses	a	client-server	architecture	(described	in	the	next	chapter)	and	only	sends	the	
necessary	data	to	the	client.	However,	it	is	still	possible	that	the	server	may	have	to	
send	a	large	amount	of	the	data	to	the	client,	such	as	when	the	user	does	not	set	any	
filtering	rules	on	the	data.	Some	spreadsheet	systems	for	streaming	data	require	the	
user	to	set	a	“window”	to	limit	the	amount	of	streaming	data	used	in	the	
spreadsheet	(e.g.,	[83]).	Similarly,	Gneiss	lets	users	filter	to	show	only	the	first	X	
values,	although	this	rule	is	not	mandatory.	Making	it	a	requirement	that	the	user	
sets	a	window	for	streaming	data	could	also	be	an	approach	to	help	solve	the	
scalability	problem.	My	dissertation	makes	contributions	on	extending	the	
spreadsheet	interface	and	interaction	techniques	to	support	analyzing	streaming	

KERRY CHANG	|	Dissertation	 102

data	and	creating	live	applications	that	use	streaming	data.	Scalability	and	
performance	are	not	my	focus	but	can	be	addressed	by	these	known	methods.		
	 	

6.6 CONCLUSIONS
This	chapter	contributes	a	model	for	using	streaming	data	in	spreadsheets.	It	
includes	techniques	to	let	users	stream	data	from	web	services	and	web	input	
elements	to	a	spreadsheet	without	writing	conventional	code,	a	design	for	
spreadsheet	cell	metadata	to	let	users	manipulate	spreadsheet	data	using	temporal	
information,	and	ways	to	dynamically	control	when	to	pull	new	data	using	the	
spreadsheet	language	and	interaction	techniques.	Based	on	this	model,	Gneiss	
provides	a	live	environment	for	analyzing	live	streaming	data	and	creating	database	
applications	that	use	streaming	data	sources.	
	
	 	

KERRY CHANG	|	Dissertation	 103

CHAPTER 7 IMPLEMENTATION
In	this	chapter,	I	describe	the	key	components	of	the	implementation	of	Gneiss.	
Gneiss	is	implemented	as	a	web	application.	It	uses	a	client-server	architecture	
where	the	client	handles	the	user’s	interaction	with	the	editor	and	the	server	deals	
with	data	sources	and	hosts	web	applications	created	in	Gneiss.	Gneiss	uses	a	
constraint	library	for	creating	the	live	programming	environment.	Finally,	Gneiss	
has	an	internal	data	model	that	allows	it	to	support	the	use	of	structured	data	in	
spreadsheets	and	web	application.		
	

7.1 CLIENT-SERVER ARCHITECTURE
Gneiss	is	implemented	as	a	web	application	and	uses	a	client-server	architecture.	
The	client	side	is	the	Gneiss	editor	described	in	the	previous	chapters	that	is	
implemented	with	HTML,	CSS	and	JavaScript.	To	create	a	live	programing	
environment,	various	components	in	the	editor	such	as	spreadsheet	cells	and	GUI	
elements	in	web	interface	builder	are	implemented	as	one-way	constraint	objects	
using	a	constraint	library	called	ConstraintJS	[70].	The	server	is	implemented	in	
JavaScript	using	Node.js	as	the	web	server	and	MongoDB	as	the	database.	The	
communications	between	the	server	and	the	clients	are	handled	using	Node.js’s	
socket.io	library.	The	server	is	in	charge	of	making	requests	to	web	services,	storing	
data	and	sending	the	necessary	data	to	the	frontend	editor.	It	also	hosts	web	
applications	created	in	Gneiss,	providing	URLs	for	people	to	access	the	web	
applications	without	opening	the	frontend	editor.		
	

7.1.1 LIVE FRONTEND EDITOR IMPLEMENTED WITH CONSTRAINTS
Gneiss	uses	a	one-way	constraint	library	called	ConstraintJS	[70]	to	maintain	the	
dependencies	among	various	UI	elements	in	the	frontend	editor.	The	ConstraintJS	
library	lets	developers	create	constraint	objects	that	can	be	functions	that	use	other	
constraint	objects	to	return	dynamic	values,	and	bind	a	constraint’s	return	value	to	a	
web	GUI	element	such	as	the	text	of	a	text	label.	When	a	constraint	changes	its	value,	
ConstraintJS	automatically	propagates	the	changes	to	other	depending	constraints	
and	updates	them	in	turn.	In	Gneiss,	I	use	different	types	of	constraints	to	
implement	the	source	pane,	the	spreadsheet	and	the	web	interface	builder,	and	to	
trigger	new	data	requests	and	handle	the	return	data:		
	

• Web	API	constraints:	A	web	API	constraint	sends	a	web	API	to	Gneiss’s	
server	and	waits	for	the	server	to	return	values.	A	web	API	constraint	is	re-
evaluated	(resending	the	web	API	to	the	server)	when	its	API	is	in	the	URL	
bar	in	the	source	pane	and	the	user	hits	the	refresh	button,	and	when	any	
spreadsheet	cells	this	API	uses	change	their	value.	The	constraint	returns	a	
special	value	“Loading…”	when	it	is	still	waiting	for	the	server,	and	the	

KERRY CHANG	|	Dissertation	 104

returned	JSON	document	when	the	server	returns.	For	streaming	data,	the	
web	API	constraint	also	sends	the	time	range	of	the	desired	data	(if	the	user	
sets	rules	to	sort	or	filter	the	data	by	time)	to	the	server	to	help	narrow	down	
the	size	of	the	return	data.		
	

• Source	pane	constraint:	The	source	pane	constraint	uses	the	web	API	
constraint	whose	API	is	currently	in	the	URL	bar.	Its	returned	value	is	bound	
to	the	returned	data	area	in	the	source	pane	(Figure	4.2	at	1).	If	the	web	API	
constraint	returns	“Loading…”,	the	source	pane	constraint	also	returns	
“Loading…”.	If	the	web	API	constraint	returns	a	JSON	document,	the	source	
pane	constraint	turns	the	document	into	a	string,	adds	HTML	tags	to	the	
string	for	styling	and	returns	the	string.			
	

• Hierarchical	table	constraints:	Recall	that	in	Gneiss,	adjacent	spreadsheet	
columns	that	use	data	from	the	same	source	(either	a	web	service	or	a	local	
file)	form	a	hierarchical	table	that	can	be	visualized	and	manipulated	using	
the	relative	hierarchical	relationships	among	the	columns	(see	Chapter	4).	To	
implement	this,	internally	each	hierarchical	table	is	a	JSON	object	that	is	
created	using	the	source	document	and	information	about	the	columns,	such	
as	a	column’s	data	path	and	sorting	and	filtering	rules.	A	hierarchical	table	
constraint	creates	this	JSON	object	for	a	hierarchical	table.	The	constraint	is	a	
function	that	takes	a	copy	of	the	source	document	and	the	column	
information	to	extract	the	required	fields,	organizes	them	into	a	new	
structure	and	returns	the	final	object.	Every	time	that	the	source	document	
changes	(such	as	when	the	user	makes	a	new	web	API	query)	or	when	the	
column	information	changes	(such	as	when	the	user	drags	a	column	to	a	
different	location,	or	sets	a	new	sorting	rule	for	a	column),	the	hierarchical	
table	constraint	re-evaluates	and	returns	a	new	JSON	object	for	this	table.	
Details	about	the	structure	of	the	internal	JSON	objects	for	hierarchical	tables	
are	described	in	section	7.2	below.			
	

• Spreadsheet	cell	data	constraints:	Each	spreadsheet	cell	in	Gneiss	has	a	cell	
data	constraint	object.	The	constraint	is	a	function	that	takes	a	string	of	
spreadsheet	code	that	is	entered	into	this	cell.	The	function	uses	a	parser	that	
I	implemented	to	translate	spreadsheet	code	into	JavaScript	code.	If	the	
spreadsheet	code	is	a	formula	(a	string	starting	with	an	equal	sign),	the	
parser	replaces	all	spreadsheet	cell	names	in	the	string	with	their	
corresponding	cell	data	constraint	names.	The	function	then	uses	a	native	
JavaScript	function	eval(exp)	to	execute	the	translated	JavaScript	code,	and	
returns	the	results.		
	
If	the	spreadsheet	cell	data	come	from	a	data	source,	either	a	web	service	or	a	
local	file,	its	input	spreadsheet	code	string	is	a	special	function	

KERRY CHANG	|	Dissertation	 105

=getHierarchicalTableData(hierarchicalTableID, cellName).	This	
function	uses	the	returned	JSON	object	of	a	hierarchical	table	constraint	and	
returns	the	data	for	the	cell	using	cellName.	The	function	is	not	exposed	to	
the	user	as	a	cell	whose	value	is	dragged	from	the	source	pane	is	not	editable	
(but	can	be	cleared	by	right-clicking	the	cell	and	selecting	“clear	content”).		
	

• Spreadsheet	cell	visualization	constraints:	Every	spreadsheet	cell	also	has	a	
cell	visualization	constraint	that	takes	the	return	value	of	its	cell	data	
constraint	and	turns	it	into	a	HTML	string	for	display.	The	return	value	of	the	
cell	visualization	constraint	is	bound	to	the	spreadsheet	cell	UI	element	in	
Gneiss’s	spreadsheet	editor.	If	the	input	is	a	plain	string	that	does	not	have	
any	structure,	the	visualization	constraint	returns	the	plain	string.	If	the	
input	is	a	JSON	object,	the	visualization	constraint	returns	a	nested	table	in	
HTML	based	on	the	structure	of	the	object.		
	

• Web	GUI	property	constraints:	As	explained	in	chapter	4,	Gneiss	has	a	web	
interface	builder	that	lets	the	user	create	web	pages	where	elements	in	the	
web	page	can	use	spreadsheet	formulas	as	their	attribute	values.	Each	
attribute	of	a	web	interface	element	created	in	Gneiss	(such	as	the	color	of	a	
text	label	or	the	value	of	a	textbox)	has	a	web	GUI	property	constraint	object.	
A	web	GUI	property	constraint	works	similarly	to	a	spreadsheet	cell	data	
constraint.	It	takes	a	string	of	spreadsheet	code	and	returns	the	execution	of	
the	code.	The	return	value	of	a	web	GUI	element	property	constraint	is	bound	
to	the	corresponding	property	of	a	web	GUI	element	in	Gneiss’s	web	interface	
builder.			
	

• Streaming	web	UI	constraints:	This	is	a	special	type	of	constraint	that	
streams	data	from	a	web	element	in	the	web	interface	builder	to	Gneiss’s	
server.	A	streaming	web	UI	constraint	is	a	function	that	takes	a	property	
value	of	a	web	element	and	a	pausing	condition.	When	the	pausing	condition	
changes	to	be	false,	the	constraint	sends	the	value	of	the	web	element	
property	to	Gneiss’s	server.	If	there	is	no	pausing	condition,	then	the	
constraint	is	re-executed	(sending	the	property	value	to	the	server)	every	
time	when	the	property	value	changes.	The	constraint	returns	the	data	
returned	from	the	server.	When	waiting	for	the	server’s	response,	the	
constraint	returns	“Loading…”	same	as	the	web	API	constraint	does.		
	

These	constraint	objects	link	different	parts	of	the	client	Gneiss	editor	together	and	
also	handle	the	communications	between	the	client	editor	and	Gneiss’s	server.	
	

KERRY CHANG	|	Dissertation	 106

7.1.2 INTERACTING WITH WEB SERVICES AT THE SERVER
As	described	earlier,	the	web	API	constraints	in	the	client-side	editor	send	API	
requests	to	Gneiss’s	server,	and	the	server	further	sends	them	on	to	the	web	
services.	When	a	non-streaming	API	request	returns,	the	server	adds	a	timestamp	to	
the	returned	data	and	sends	the	returned	data	back	to	the	client	spreadsheet.	This	
timestamp	is	the	source	of	cell	metadata	that	represents	the	fetched	time	of	a	cell	
whose	value	comes	from	a	web	service.	Currently,	data	returned	from	non-
streaming	API	requests	are	not	stored	in	the	server’s	database,	since	I	assume	that	
for	non-streaming	requests,	the	data	values	are	not	time-sensitive	and	therefore	
when	the	user	needs	the	data,	she	can	just	retrieve	it	again.	Whereas	for	streaming	
data,	since	the	data	are	often	live	values	and	the	user	may	want	to	analyze	historical	
data,	they	are	stored	in	the	database.		
	
For	streaming	data,	the	server	periodically	sends	the	web	API	request	based	on	the	
streaming	frequency	set	by	the	user	in	the	frontend	editor,	and	stores	the	returned	
data	with	a	timestamp	and	the	ID	of	the	client	spreadsheet	to	the	database.	If	the	
streaming	data	source	is	not	a	web	service	but	a	web	element	property	value,	the	
server	directly	stores	that	value	in	the	database	together	with	the	web	element’s	ID	
and	property	name,	a	timestamp	and	the	spreadsheet’s	ID.	The	server	then	retrieves	
all	data	from	this	streaming	source	in	the	database	that	have	the	same	spreadsheet	
ID	as	the	client	and	have	been	fetched	within	the	time	range	the	user	has	specified	in	
the	frontend	editor,	and	sends	only	those	data	to	the	client.	This	allows	the	client	
machine	to	work	on	a	smaller	set	of	data	and	thus	to	have	better	performance.	
Currently,	the	server	only	sorts	and	filters	the	data	by	their	timestamps	and	leaves	
other	sorting	and	filtering	operations	to	the	client.	Future	work	could	be	to	move	all	
the	sorting	and	filtering	work	to	the	server	to	further	decrease	the	amount	of	data	
sent	back	to	the	client.	
	

7.1.3 SAVING AND REOPENING A SPREADSHEET
As	mentioned	previously,	Gneiss	lets	the	user	save	a	spreadsheet	and	reopen	it.	
When	the	user	saves	a	spreadsheet,	the	system	outputs	a	JSON	file	about	the	
spreadsheet	for	the	user	to	download	that	records	the	spreadsheet’s	ID,	all	the	data	
sources	used	(web	services	and	local	documents),	all	the	web	elements	created	in	
the	web	interface	builder,	all	the	input	values	in	spreadsheet	cells	and	web	GUI	
element	properties,	and	all	the	sorting	and	filtering	rules.	Currently,	the	spreadsheet	
cannot	be	stored	on	the	server.	That	is	a	future	work.	To	reopen	a	spreadsheet,	the	
user	loads	that	JSON	file	into	the	Gneiss	editor.	Gneiss	uses	the	file	to	recreate	the	
constraint	objects,	rebuild	the	web	pages	created	in	the	web	interface	builder,	and	
retrieve	the	required	data	from	web	services	(for	non-streaming	data)	and	Gneiss’s	
database	(for	streaming	data).	
	

KERRY CHANG	|	Dissertation	 107

7.1.4 EXPORTING A WEB APPLICATION
Exporting	a	web	application	in	Gneiss	works	similarly	to	saving	and	reopening	a	
spreadsheet.	When	the	user	chooses	to	export	a	web	application	in	Gneiss,	the	
system	collects	the	same	information	as	saving	the	spreadsheet	and	stores	that	JSON	
object	in	the	server’s	database.	When	the	web	application	is	launched,	the	system	
retrieves	the	spreadsheet	JSON	object	from	the	database	to	recreate	the	application.		
On	the	web	server,	the	system	will	create	a	new	folder	for	the	created	application	
(which	provides	a	URL	to	the	application).	In	my	current	implementation,	in	that	
folder,	the	system	generates	a	HTML	file	that	has	all	the	pages	created	in	the	web	
application.	Each	page	is	a	big	DIV	element	that	includes	all	the	web	elements	
created	in	the	page	and	has	an	ID	that	is	the	page	name.	Only	the	“index”	page	DIV	
element	is	visible	when	the	application	is	first	opened.	Going	to	different	pages	in	
the	web	application	is	implemented	as	showing	the	DIV	element	of	the	specific	page	
and	hiding	the	rest	of	them.		
	
A	web	application	can	be	opened	and	used	at	multiple	places	at	the	same	time.	Each	
copy	of	the	web	application	has	its	own	copy	of	the	client	spreadsheet.	Therefore,	in	
most	situations	the	same	application	opened	at	different	places	will	not	affect	each	
other.	For	example,	in	the	usage	scenario	in	Chapter	4,	what	one	user	searches	and	
sees	in	the	application	on	one	device	does	not	affect	what	another	user	searches	and	
sees	in	the	application	on	another	device.	The	only	case	where	a	user’s	interaction	in	
an	application	may	change	how	other	users	see	this	application	later	is	when	the	
user	adds	or	removes	streaming	data	on	the	server’s	database	(as	mentioned	
previously,	streaming	data	in	Gneiss	are	stored	in	the	database	and	retrieved	to	the	
client	using	the	spreadsheet	ID).		
	
In	my	current	implementation,	an	exported	web	application	has	the	same	ID	as	its	
spreadsheet.	Therefore,	multiple	copies	of	a	web	application	will	share	the	same	
database	account.	Sometimes	this	design	creates	the	desired	behavior.	For	example,	
in	the	web	exam	application	described	in	the	second	demonstrative	example	in	
Chapter	6,	every	time	when	a	new	student	completes	a	test,	the	answers	are	sent	to	
the	server	and	stored	in	the	same	database.	Later	when	another	student	opens	the	
web	application,	he	will	see	an	updated	class	average	score	that	includes	the	data	of	
the	previous	student,	as	the	previous	student’s	data	has	been	added	to	the	database.	
Note	that	if	an	application	only	lets	users	retrieve	different	sets	of	data	from	the	
database	to	the	frontend	but	does	not	let	users	change	data	in	the	database,	its	
copies	will	not	affect	each	other.	For	example,	the	market	price	monitor	described	in	
the	usage	scenario	lets	users	choose	to	visualize	the	data	of	today	or	the	past	five	
days.	When	the	user	changes	the	selection,	the	server	retrieves	different	sets	of	data	
from	the	database	and	sends	to	the	client,	but	does	not	add	or	delete	any	data	in	the	
database.	Therefore,	the	client-side	copies	do	not	affect	each	other	in	this	situation.		
	

KERRY CHANG	|	Dissertation	 108

Data	from	non-streaming	APIs	are	returned	directly	to	the	client	and	not	stored	in	
the	database.	Therefore	different	copies	of	an	application	that	does	not	stream	data	
from	external	sources	(such	as	the	search	application	in	the	usage	scenario	in	
Chapter	4)	will	never	affect	each	other.		
	

7.2 INTERNAL JSON DATA MODELS
As	described	earlier	in	
Chapter	5,	in	Gneiss,	adjacent	
spreadsheet	columns	whose	
data	come	from	the	same	
hierarchical	document	forms	
a	hierarchical	table.	For	
example,	in	Figure	7.1,	
columns	B	–	E	form	a	
hierarchical	table	as	the	data	
in	these	columns	are	from	the	
same	document	returned	
from	the	same	web	service.	A	
hierarchical	table	can	be	
referenced,	sorted	and	filtered	using	its	structure.	To	enable	this,	for	each	
hierarchical	table	in	the	spreadsheet,	there	is	a	corresponding	JSON	object	that	is	
built	using	the	relative	hierarchical	relationship	of	the	data	among	the	spreadsheet	
columns.	Internally,	there	is	a	system	function	that	maintains	the	“profiles”	of	all	
hierarchical	tables	in	the	spreadsheet.	The	profile	of	a	hierarchical	table	includes	the	
columns	that	form	this	table,	and	for	each	of	the	columns,	the	column	path	to	its	
data	in	the	original	document	(for	example,	for	column	B	in	Figure	7.1,	its	column	
path	is	$[*][“name”]	as	it	stores	all	restaurant	names),	and	any	sorting,	filtering	
and	grouping	rules	the	user	has	set	on	this	column.	This	function	will	check	every	
time	when	the	user	drags	a	column	to	a	different	location	or	sets	a	new	sorting,	
filtering	and	grouping	rule,	to	see	if	any	part	of	the	hierarchical	table’s	profile	needs	
to	be	updated	or	if	a	new	hierarchical	table	needs	to	be	created.	If	so,	the	function	
will	trigger	the	reconstruction	of	that	table’s	JSON	object.	As	described	earlier,	a	
hierarchical	table	is	maintained	by	a	constraint	object.	The	constraint	is	a	function	
that	constructs	a	JSON	object	using	the	following	steps:	
	

• The	function	first	creates	an	empty	JSON	object	with	one	array	field	whose	
name	is	the	name	of	the	leftmost	column.	It	then	collects	all	values	of	this	
column	from	the	original	document	using	the	column’s	path,	and	creates	the	
same	number	of	items	to	put	in	the	array.	Each	array	item	has	two	fields:	a	
value	field	that	stores	the	value,	and	a	cell_path	field	that	stores	the	path	to	
this	value.	The	function	also	stores	the	name	of	this	column	in	a	temporary	
variable	called	root_array.		

	
Figure	7.1.	A	hierarchical	table	visualized	in	nested	cells	
in	Gneiss.	

KERRY CHANG	|	Dissertation	 109

	
For	example,	in	Figure	1,	column	B	is	the	start	of	a	hierarchical	table.	The	
system	creates	a	JSON	object	like	this:		
	
{“B”:[{“value”: ”The Dor-Stop Restaurant”,

 “cell_path”: “$[0][‘name’]”},

 {“value”; “Waffolonia”,

 “cell_path”: “$[1][‘name’]”},

 …

]}

	
root_array		is	now	“B”.		
	

• Then	for	the	rest	of	the	columns,	the	system	compares	a	column’s	path	to	its	
immediate	left	column’s	path.		
	

o If	this	column’s	path	is	at	the	same	array	level	as	the	immediate	left	
column’s	path,	such	as	in	Figure	1	where	column	C’s	column	path	
($[*][“rating”])	is	in	the	same	array	level	as	column	B’s	column	
path	($[*][“name”]),	the	system	creates	a	new	object	whose	name	is	
the	name	of	this	column	inside	each	item	in	root_array.	The	new	
object	also	has	a	value	and	a	cell_path	field.	The	system	uses	the	
cell_path	field	in	the	root_array	to	construct	the	cell_path	for	the	
new	object	and	to	get	the	new	value,	making	sure	that	data	in	the	
same	item	in	root_array	come	from	the	tree	branch	in	the	source	
document.	To	do	so,	the	system	first	finds	the	common	path	of	the	two	
paths	and	then	constructs	a	new	path	by	replacing	the	common	path	
in	the	new	column	with	the	array	index	of	the	element	in	the	root	
array.		
	
For	example,	in	Figure	1,	the	common	path	of	column	C’s	column	path	
($[*][‘rating’])	and	the	root_array	(column	B)’s	column	path	
($[*][‘name’])	is	$[*].	When	creating	a	new	object	in	the	first	item	
in	the	root	array	B,	the	system	replaces	$[*] in	its	column	path	with	
$[0] that	is	the	array	index	of	the	common	path	in	the	cell_path	in	
the	root	array	object	($[0][‘name’])	to	form	the	cell_path	for	the	
object	C	($[0][‘rating’])	and	retrieve	the	value	4.5	from	the	source	
document.	The	JSON	object	after	processing	column	C	becomes:		
	
{“B”:[{“value”: ”The Dor-Stop…”

 “cell_path”: “$[0][‘name’]”

 “C”:{“value”: 4.5,

 “cell_path”: “$[0][‘rating’]”

KERRY CHANG	|	Dissertation	 110

 }

 },

 …

]}	
	
cell_path	in	the	first	item	in	root_array	(B)	starts	at	array	index	0.	
So	the	cell_path	for	the	new	object	C	in	the	first	item	also	starts	at	
array	index	0.		
		

o If	this	column’s	path	is	at	a	deeper	array	level	than	the	immediate	left	
column’s	path,	the	system	creates	a	new	array	whose	name	is	the	
name	of	this	column	inside	each	item	in	root_array.	Each	item	in	the	
new	array	also	has	a	value	and	a	cell_path	field.	Again,	the	system	
uses	the	cell_path	field	in	items	in	the	root_array	item	to	construct	
the	cell_path	for	each	item	in	the	new	array.	After	the	system	
updates	the	JSON	object,	root_array	become	the	current	column.	
	
Continuing	the	previous	example,	in	Figure	1,	column	E’s	column	path	
($[*][‘reviews’][*][‘text_expert’])	is	in	a	deeper	array	level	
than	column	D’s	column	path	($[*][‘address’]).		The	common	path	
of	the	two	paths	is	again	$[*],	and	the	cell_path	in	the	first	item	in	
root_array	(B)	starts	at	array	index	0.	Therefore,	the	array	D	in	the	
first	item	in	B	has	the	path	$[0][‘reviews’][*][‘text_expert’].	
The	JSON	object	after	processing	column	E	becomes:		
	
{“B”:[{“value”: ”The Dor-Stop…”

 “cell_path”: “$[0][‘name’]”

 “C”:{“value”: 4.5,

 “cell_path”: “$[0][‘rating’]”

 },

 “D”:{“value”: “1430 Potomac Ave”,

 “cell_path”: “$[0][‘address’]”

 },

 “E”:[{“value”:”Went here thanks…”,

 “cell_path”:”$[0][‘reviews’]

 [0][‘text_expert’]”},

 {“value”:”I was excited to…”,

 “cell_path”:”$[0][‘reviews’]

 [1][‘text_expert’]”},

 …

]

 },

 …

KERRY CHANG	|	Dissertation	 111

]}

	
root_array	is	now	“D”.	
	

o Finally,	if	this	column’s	path	is	at	an	upper	array	level	than	its	
immediate	left	column’s	path,	the	system	creates	a	new	object	whose	
name	is	the	name	of	this	column	inside	each	item	in	root_array.	
Similarly,	each	new	item	has	a	value	and	a	cell_path	field.	Again,	the	
system	uses	the	cell_path	field	in	items	in	the	root_array	to	
construct	the	cell_path	for	each	item	in	the	new	object	and	get	the	
new	value.	
	
Continuing	the	previous	example,	in	Figure	1,	suppose	the	user	drags	
the	country	field	of	the	restaurants	to	column	F.	Column	F’s	path	now	
becomes	$[*][‘country’],	which	is	in	the	upper	level	array	
compared	to	column	E	($[*][‘reviews’][*][‘text_expert’]).	So	
the	system	creates	an	object	name	“F”	in	each	item	in	array	E.	For	the	
first	item	in	array	E	in	the	first	item	in	array	B,	its	cell_path	starts	at	
index	0	($[0][‘reviews’][0][‘text_expert’]).	Therefore,	the	
cell_path	in	the	new	object	F	in	the	first	item	in	array	E	in	the	first	
item	in	array	B	becomes	$[0][‘country’].	Now	when	we	look	at	the	
second	item	in	array	E	in	the	first	item	in	array	B,	its	cell_path	also	
starts	at	index	0	($[0][‘reviews’][1][‘text_expert’]).	So	the	
cell_path	new	object	F	in	the	second	item	in	array	E	in	the	first	item	
in	array	B	is	still	$[0][‘country’],	creating	a	duplicate	value.	The	
JSON	object	after	processing	column	F	becomes:		
	
{“B”:[{“value”: ”The Dor-Stop…”

 “cell_path”: “$[0][‘name’]”

 “C”:{“value”: 4.5,

 “cell_path”: “$[0][‘rating’]”

 },

 “D”:{“value”: “1430 Potomac Ave”,

 “cell_path”: “$[0][‘address’]”

 },

 “E”:[{“value”:”Went here thanks…”,

 “cell_path”:”$[0][‘reviews’]

 [0][‘text_expert’]”,

 “F”:{“value”:”USA”

 “cell_path”:”$[0][‘country’]”}

 },

 …

]

KERRY CHANG	|	Dissertation	 112

 },

 …

]}

	
Once	the	system	finishes	building	this	JSON	object,	sorting,	filtering	and	grouping	
using	the	object	become	straightforward.	Sorting	by	a	column	affects	only	data	that	
is	at	or	below	the	current	array	level.	For	example,	sorting	by	column	E	(review	
text)	will	change	the	item	order	in	every	array	E	using	the	value	field	in	each	item.	
As	object	F	is	in	an	item	in	array	E,	it	is	being	moved	as	the	items	are	moved	in	array	
E,	causing	data	in	column	F	in	the	spreadsheet	to	also	change.	But	this	does	not	
affect	the	item	order	in	array	B,	which	is	the	parent	array	of	array	E.	Sorting	by	
column	C	(ratings),	however,	will	change	the	item	order	of	array	B,	as	object	C	is	
directly	in	array	B.		
	
Filtering	by	a	column	will	cause	the	array	item	that	the	column	object	is	in	to	be	
deleted	if	the	value	field	does	not	match	the	filtering	criteria.	For	example,	if	the	
user	filters	the	data	by	column	C	(ratings)	and	sets	the	criteria	to	be	<4,	the	first	
array	item	in	array	B	will	be	removed	as	the	value	field	of	object	C	is	4.5.	If	a	column	
is	selected	for	grouping,	its	next	(right)	column	will	be	become	an	array	(if	not	one	
already)	to	store	the	merged	values.	Every	time	an	internal	JSON	object	changes,	all	
spreadsheet	cells	linked	to	this	object	will	refresh	and	show	the	latest	data.		
	

7.3 CONCLUSIONS
Gneiss	is	implemented	as	a	web	application	and	uses	a	client-server	architecture.	
The	client	editor	uses	various	constraint	objects	to	provide	a	live	programming	
environment	and	connect	the	created	web	application	to	the	spreadsheet	editor	and	
the	external	data	sources.	To	visualize	hierarchical	data	in	the	spreadsheet	and	
allow	the	data	to	be	manipulated	by	its	structure,	the	client	editor	dynamically	
constructs	JSON	objects	from	the	source	document	that	represent	the	hierarchical	
relationships	among	data	in	spreadsheet	columns.	Gneiss’s	server	is	in	charge	of	
communicating	with	web	services,	storing	streaming	data	and	hosting	the	exported	
web	applications.	Gneiss	is	open-source	and	available	at	
http://www.cs.cmu.edu/~shihpinc/gneiss.html.	
	 	

KERRY CHANG	|	Dissertation	 113

CHAPTER 8 FUTURE WORK
I	have	presented	how	Gneiss	extends	conventional	spreadsheets	to	enable	using	
more	types	of	online	data	and	creating	interactive,	data-driven	web	applications.	In	
this	chapter,	I	discuss	future	work.		
	

8.1 GNEISS EDITOR FEATURES
Gneiss	is	a	research	prototype	that	focuses	on	experimenting	with	new	research	
ideas.	As	described	in	section	3.2,	I	implemented	my	own	spreadsheet	and	web	
interface	builder	to	give	myself	the	most	freedom	to	try	out	what	I	wanted.	But	as	a	
result,	the	current	Gneiss	editor	lacks	many	features	that	are	common	in	
conventional	spreadsheets	or	web	editors.	I	have	mentioned	much	future	work	in	
previous	chapters	that	could	make	Gneiss	closer	to	a	product-level	type	of	tool.	
Here,	I	summarize	those	features	again.		
	

8.1.1 GENERAL USABILITY FEATURES
Gneiss	lacks	some	common	usability	features,	such	as	redo/undo,	formatting	cells	in	
the	spreadsheet,	copying	and	pasting	multiple	cells	in	the	spreadsheet,	options	to	
paste	data	by	values	or	with	formatting,	highlighting	cells	when	entering	their	
names	in	a	spreadsheet	formula,	copying	and	pasting	GUI	elements	in	the	web	
interface	builder,	resizing	or	changing	the	locations	of	the	three	panes	in	Gneiss,	etc.	
Therefore,	obvious	future	work	includes	improving	the	usability	of	Gneiss	by	adding	
those	features	and	letting	people	access	them	in	the	same	was	as	in	conventional	
editors,	such	as	using	a	“ribbon”	design	like	in	Excel	to	display	all	the	
widgets/buttons	for	text	formatting.	Also,	as	mentioned	in	section	3.2,	Gneiss’s	
spreadsheet	currently	shows	the	top	50	rows	of	data	and	lets	users	view	the	entire	
data	in	a	read-only	spreadsheet.	Future	work	can	be	implementing	a	“Next	Page”	
button	like	Google	Fusion	Tables	to	let	users	view	the	next	set	of	data	to	enable	a	
more	fluid	browsing	experience.		
	

8.1.2 SPREADSHEET FUNCTIONS
Gneiss	currently	supports	a	limited	set	of	spreadsheet	functions	(see	Appendix	A).	
Adding	more	spreadsheet	functions	to	Gneiss	is	future	work.	Gneiss	introduces	
several	new	spreadsheet	functions	(such	as	TIMER	and	ANIMATION)	as	well	as	extends	
some	conventional	functions	(such	as	having	NOW	automatically	update	every	
minute).	The	usability	of	those	new	or	extended	functions	could	still	be	improved,	
such	as	allowing	the	user	to	customize	the	updating	frequency	of	the	NOW	function	
through	a	parameter.	Also,	as	mentioned	in	section	3.4.5,	while	Gneiss	introduces	
nested	cell	representation,	when	multiple	cells	are	selected	to	use	in	a	spreadsheet	
function,	their	structure	is	flattened	and	the	cells	are	put	into	a	flat	array	to	allow	

KERRY CHANG	|	Dissertation	 114

them	to	be	used	in	many	conventional	functions.	Future	work	can	be	to	design	
spreadsheet	functions	that	can	make	use	of	the	nested	structures	in	data	to	provide	
new	computational	abilities.		
	

8.1.3 SPREADSHEET SORTING AND FILTERING
Sorting	and	filtering	data	by	a	column	in	Gneiss	is	done	using	a	dialog	box	opened	by	
clicking	on	an	arrow	icon	at	the	top	of	the	column.	I	designed	this	based	on	Google	
Spreadsheet’s	design	that	when	hovering	on	the	top	label	of	a	column,	an	arrow	icon	
appears	and	clicking	on	the	icon	will	bring	up	a	menu	that	has	options	for	sorting	
and	other	operations.	Other	design	can	be	used	to	make	the	sorting	and	filtering	
options	more	visible	to	the	users.	For	example,	Excel	uses	a	toolbar	at	the	top	of	the	
window	to	show	icons	for	sorting	and	filtering.	Gneiss	could	use	this	design.	
Currently	in	Gneiss,	data	retrieved	from	the	same	source	are	sorted	and	filtered	
together.	Future	work	can	be	to	let	users	customize	the	range	for	sorting	and	
filtering.	There	are	known	ways	in	conventional	spreadsheets	to	do	that,	which	
Gneiss	can	adopt.		
	
In	addition,	currently	the	options	for	streaming	(setting	streaming	frequency	and	
pausing	conditions)	are	put	together	with	the	sorting	and	filtering	options	in	the	
dialog	box	(Figure	6.1	at	2).	If	Gneiss	uses	a	UI	similar	to	Excel	that	has	a	top	tool	bar	
and	ribbons,	the	streaming	options	could	become	icons	in	the	toolbar	like	sorting	
and	filtering	to	be	more	visible	to	the	users.		
	

8.1.4 SPREADSHEET AUTOFILLING
As	mentioned	in	section	3.2,	Gneiss’s	autofilling	is	not	as	intelligent	as	Excel’s	when	
inferring	new	values	based	on	example	values.	Also,	Gneiss	introduces	nested	row	
labels	for	referencing	nested	cells.	Autofilling	nested	rows	could	introduce	new	
challenges.	For	example,	suppose	spreadsheet	column	A	is	a	flat	column,	B	is	a	first	
level	nested	column,	C	is	a	second	level	and	D	is	a	third	level.	If	the	user	enters	
=A1+B1.1+C1.1.1	in	D1.1.1.1,	then	selects	D1.1.1.1	and	drags	down	to	D1.1.1.2,	
what	should	happen?	Currently,	Gneiss	uses	a	simple	heuristic:	it	changes	the	row	
index	that	is	in	the	same	level	as	the	autofilled	cell.	In	this	example,	since	the	
autofilled	cell	has	three	nested	levels	and	all	cells	used	in	the	formula	have	less	than	
three	nested	levels,	Gneiss	will	fill	in	the	same	formula	=A1+B1.1+C1.1.1	for	
D1.1.1.2.	But	maybe	the	user	wants	something	different	and	needs	to	provide	more	
examples.	The	$	operator	in	conventional	spreadsheets	to	have	a	column	or	row	
fixed	when	autofilling	currently	does	not	work	in	Gneiss.	Improving	Gneiss’s	current	
autofilling	algorithm	(such	as	adopting	more	of	Excel’s	algorithm)	and	further	
extending	it	to	better	support	inferring	nested	row	indexes	could	be	interesting	
future	work.		
	

KERRY CHANG	|	Dissertation	 115

8.1.5 WEB INTERFACE BUILDER FEATURES
As	mentioned	in	section	3.2,	Gneiss’s	web	interface	builder	supports	a	limited	
number	of	GUI	elements	and	properties	(Appendix	B).	Adding	more	kinds	of	GUI	
elements,	visualizations	and	properties	is	future	work.	Currently,	GUI	element	IDs	in	
Gneiss	are	assigned	by	the	system	and	are	not	editable	by	the	users.	Allowing	users	
to	customize	the	ID	of	an	element	is	also	future	work.	Many	conventional	web	
interface	builders	(such	as	Adobe	Dreamweaver)	provides	a	“code	view”	that	let	
users	switch	from	editing	the	rendered	web	page	to	directly	editing	its	source	code	
to	give	skilled	users	more	control	over	the	look	of	the	page.	Gneiss’s	web	interface	
builder	could	be	extended	to	support	a	“code	view”.	If	so,	how	the	spreadsheet	
statements	written	by	the	users	should	be	displayed	inline	with	HTML	and	CSS	code	
of	a	web	page	can	be	an	interesting	future	work.	Benson	et	al.’s	Quilt	[10]	puts	the	
user’s	spreadsheet	statements	in	HTML	attributes,	but	there	could	also	be	other	
designs.	Another	approach	is	to	let	people	import	HTML	and	CSS	files	written	
elsewhere	into	Gneiss’s	web	interface	builder	to	program	data	bindings	and	
interactive	behaviors	in	spreadsheet	languages.		
	

8.1.6 ACCEPTING MORE TYPES OF DATA SOURCES
As	mentioned	multiple	times	in	previous	chapters,	Gneiss’s	source	pane	currently	
supports	REST	web	services	that	return	JSON	data	and	local	JSON	files.	Future	work	
can	be	extending	the	source	pane	to	support	more	data	types.	For	example,	to	let	
users	import	CSV	files	or	Excel	spreadsheets	to	use	in	Gneiss’s	spreadsheet,	to	
extend	the	definition	of	hierarchies	to	support	hierarchical	XML	files,	or	to	further	
support	extracting	data	from	HTML	pages	as	in	prior	work	such	as	[28,87].	As	I	
described	in	section	3.6,	I	expect	most	of	the	novel	techniques	presented	in	this	
dissertation	can	still	work	for	these	new	data	sources	with	little	modification.		
	

8.2 SERVER-SIDE EXTENSIONS
As	described	in	the	previous	chapter,	Gneiss	uses	a	client-server	architecture.	The	
client	is	the	editor	interface,	and	the	server	handles	the	communication	with	web	
services	and	does	data	storage.		
	

8.2.1 MOVING CLIENT-SIDE COMPUTATIONS TO THE SERVER
Currently,	all	the	hierarchical	data	reshaping,	restructuring,	sorting,	filtering	and	
grouping	described	in	section	7.2	happen	in	the	client-side	Gneiss	editor.	Depending	
on	the	size	of	the	data	and	the	resources	of	the	client	machine,	this	manipulation	
process	could	take	a	couple	of	seconds,	causing	a	noticeable	delay	in	the	interface.	A	
possible	way	to	improve	Gneiss’s	performance	is	to	move	this	data	manipulation	
process	to	the	server.	While	this	approach	decreases	the	computation	load	of	the	
client,	it	will	increase	the	network	transmission	load	and	add	the	network	
transmission	time,	as	the	data	will	be	passed	more	often	between	the	server	and	the	

KERRY CHANG	|	Dissertation	 116

client.	One	solution	is	to	let	the	user	be	able	to	choose	whether	to	run	the	data	
manipulation	on	her	own	machine	or	to	upload	the	data	to	Gneiss’s	server	and	run	
there.	This	could	depend	on	the	size	of	the	data,	the	user’s	machine	and	the	network	
condition.	If	the	data	manipulation	is	set	to	run	on	the	server,	many	known	
techniques	can	be	used	on	the	server	to	speed	up	the	computation,	such	as	using	
map-reduce	and	parallel	computing	to	improve	performance.		
	

8.2.2 SHARING VS. INDEPENDENT WEB APPLICATION DATA
As	described	in	section	7.1.4,	currently	different	copies	of	a	web	application	that	
uses	streaming	data	may	affect	each	other	if	one	copy	adds	or	removes	data	in	the	
database	on	Gneiss’s	server.	Different	copies	of	a	web	application	that	do	not	use	
streaming	data	are	independent.	Currently,	this	behavior	is	not	explained	in	the	
interface	to	the	user,	and	the	user	has	no	control	over	that.	Exposing	this	behavior	to	
users	and	allowing	them	to	choose	how	the	data	are	shared	among	applications	is	
future	work.		
	

8.3 IMPROVING THE PROGRAMMING OF INTERACTIVE BEHAVIORS
As	discussed	in	section	4.5,	the	way	that	Gneiss	currently	supports	programming	
interactive	behaviors	in	web	applications	using	once-around	constraints	and	
interactive	properties	has	several	limitations.	For	example,	the	user	cannot	
programmatically	set	the	input	value	of	a	GUI	control	(such	as	a	value	of	a	textbox	or	
a	checkbox),	as	the	input	value	is	bound	to	an	interactive	property	whose	value	only	
changes	based	on	how	people	interact	with	it	on	the	web	page.	The	use	of	once-
around	circular	constraints	enables	programming	more	complicated	behaviors	such	
as	detecting	the	last-clicked	button	(such	as	in	the	usage	scenario	in	section	4.2)	or	
incrementally	increasing	a	cell’s	value	using	self-referencing	(such	as	in	the	
demonstrative	example	in	section	4.4.1).	However,	they	are	a	little	tricky	to	
program.	Since	once-around	constraints	are	not	common	in	conventional	
spreadsheet	systems	(for	example,	Excel	by	default	does	not	support	once-around	
constraints),	it	is	doubtful	that	spreadsheet	users	(especially	those	who	do	not	have	
much	web	programming	experience)	would	know	how	to	use	(or	even	ever	think	of	
using)	once-around	constraints	to	program	these	behaviors.	Prior	spreadsheet	
systems	such	as	Forms/3	[11]	and	InterState	[71]	have	used	different	approaches	to	
support	programming	interactive	behaviors	in	graphical	user	interfaces,	but	their	
approaches	are	not	designed	for	non-programmers.		
	
Therefore,	a	direction	for	future	work	can	be	to	improve	Gneiss	to	support	
programming	different	types	of	web	interactive	behaviors	in	a	way	that	is	more	
intuitive	to	spreadsheet	users.	An	immediate	improvement	I	can	think	of	is	to	
provide	higher-level	spreadsheet	functions	for	programming	some	common	
interactive	behaviors.	For	example,	a	LASTCLICKED(GUIIDs)	function	might	take	a	
list	of	GUI	element	IDs	and	return	the	ID	that	was	last	clicked.	An	advantage	of	

KERRY CHANG	|	Dissertation	 117

spreadsheet	programming	for	end-users	is	the	higher	level	functions	that	support	
common	data-manipulation	behaviors	to	avoid	many	lower	level	programming	
details,	such	as	using	a	SUM	function	to	sum	a	list	of	values	instead	of	writing	a	for-
loop	and	adding	the	values	one	by	one	[69].	So	future	work	can	be	studying	the	most	
common	interactive	behaviors	in	data-driven	applications	and	designing	higher-
level	spreadsheet	functions	with	naming	and	input	parameters	easily	
understandable	to	spreadsheet	users	to	support	programming	those	behaviors.	The	
once-around	constraint	evaluation	method	can	co-exist	with	the	higher-level	
interactive	behavior	functions	to	support	programming	custom	behaviors	that	more	
advanced	users	might	want.			
	

8.4 SPREADSHEETS AS DATABASE CONSOLES
As	described	in	Chapter	6,	Gneiss	contributes	a	way	to	select	the	desired	data	from	a	
document,	group	data,	join	data	and	calculate	summaries	of	data	in	a	spreadsheet	
using	only	interaction	techniques	and	spreadsheet	functions	without	requiring	the	
user	to	learn	other	programming	concepts	such	as	pivot	tables	or	SQL.	These	
behaviors	together	with	the	familiar	sorting	and	filtering	ability	of	spreadsheets	are	
also	popular	database	commands.	In	Gneiss,	many	database	commands	are	replaced	
by	interaction	techniques	in	the	spreadsheet.	For	example,	the	
SELECT…FROM…WHERE…ORDER BY…	database	statements	can	be	done	by	drag-and-
dropping	fields	to	the	spreadsheet	and	refining	through	sorting	and	filtering	(as	in	
the	scenario	in	section	3.4);	and	the	SELECT…FROM…WHERE…GROUP BY… statements	can	
be	done	by	rearranging	the	columns,	grouping	them	and	using	spreadsheet	
functions	to	compute	aggregate	values	(as	in	the	scenario	in	section	6.2).	Therefore,	
a	direction	for	future	work	can	be	using	Gneiss	as	a	database	console	to	generate	
queries	to	a	database	using	spreadsheet	mechanisms.	This	is	essentially	creating	a	
map	between	various	interaction	techniques	supported	in	Gneiss	and	the	database	
commands.	While	there	are	conventional	query	builders	that	let	users	build	SQL	
queries	using	GUI	widgets	and	block	diagrams	(such	as	Microsoft	Access’s	Query	
Design	[103]	and	Active	Query	Builder	[117]),	Gneiss	provides	an	opportunity	to	
construct	those	queries	in	a	familiar	spreadsheet	environment	using	only	
spreadsheet	mechanisms.	Unlike	in	traditional	query	builders	where	the	user	
constructs	a	long	query	using	widgets	and	hits	run	to	see	the	data,	if	using	Gneiss,	
the	user	would	build	a	query	in	much	smaller	steps	and	for	each	step	the	user	could	
see	the	resulted	data	thus	providing	incremental	visual	feedback,	which	could	be	
useful	for	novice	and	even	expert	users	who	find	it	difficult	to	write	a	long	query	at	
once.	Prior	research	on	incrementally	querying	of	a	database	to	provide	interactive	
visual	feedback	(e.g.,	[33])	could	be	a	way	to	allow	the	system	to	have	reasonable	
performance	when	querying	over	a	large	amount	of	data.	Another	research	
direction	is	to	provide	all	SQL	operations	using	the	Gneiss-style	mechanisms.	
	

KERRY CHANG	|	Dissertation	 118

8.5 DATA-DRIVEN MOBILE APPLICATIONS
Gneiss	introduces	a	way	to	use	spreadsheet	languages	to	program	data	bindings	
between	web	GUI	elements	and	local	or	online	data	sources,	and	interactive	
behaviors	that	let	people	query,	sort	and	filter	to	see	the	information	they	want.	An	
interesting	direction	is	to	extend	Gneiss’s	programming	paradigm	to	support	
creating	native	mobile	applications	that	let	people	use	and	interact	with	online	data.	
Prior	research	has	shown	that	being	able	to	receive	information	while	on	the	go	is	
one	of	the	main	reasons	why	people	use	mobile	devices,	and	people	have	all	kinds	of	
information	needs	but	many	of	them	are	not	addressed	by	existing	applications	[79].	
Using	familiar	spreadsheet	programming	could	be	one	way	to	facilitate	the	creation	
of	mobile	information	applications.	While	Gneiss	currently	supports	creating	web	
applications	that	can	be	opened	on	any	devices	that	have	a	browser,	mobile	
applications	are	in	general	more	powerful	and	usable	than	web	applications	when	
running	on	mobile	devices.	Programming	a	mobile	application	introduces	new	
programming	challenges.	For	example,	conventional	mobile	devices	provide	many	
sensors	that	are	often	used	in	mobile	applications	to	provide	feedback	related	to	the	
context	of	the	environment,	such	as	sorting	a	list	of	places	by	their	distances.	Mobile	
applications	can	also	make	use	of	operating	system	features	such	as	popping	up	
notifications	on	the	home	page.		
	
I	can	see	some	of	Gneiss’s	features	being	extended	to	support	programming	these	
new	activities	for	mobile	applications.	For	example,	the	way	Gneiss	supports	
streaming	data	from	web	services	could	be	used	to	support	streaming	sensor	
readings	on	mobile	devices,	since	sensor	values	are	also	real-time.	The	
spreadsheet’s	live	programming	could	be	useful	for	generating	notifications	that	tell	
the	user	that	something	just	changed.	Spreadsheets	have	a	known	way	to	create	
data	visualizations	and	can	be	useful	to	create	dashboards	that	are	popular	on	
mobile	devices	for	viewing	data.	Some	problems	are	more	difficult	to	address.	For	
example,	a	big	advantage	of	a	live	programming	environment	is	to	allow	
programmers	to	quickly	switch	between	programming	and	testing.	Unlike	web	
applications,	mobile	applications	need	to	be	compiled	and	deployed	onto	a	mobile	
device	for	testing.	Further,	Gneiss’s	design	makes	use	of	multiple	panels	that	might	
be	hard	to	use	on	a	small	smartphone	screen.	How	to	extend	Gneiss’s	live	
programming	and	programming-with-example	style	to	support	programming	
mobile	applications	on	the	mobile	devices	could	be	an	interesting	future	research	
topic.		
	

8.6 INCOPERATING GNEISS INTO CURRENT PROGRAMMING PRACTICES
Gneiss	introduces	a	new	way	to	program	data-driven	applications	using	
spreadsheets	in	a	visual	programming	environment.	This	is	different	from	the	
conventional	way	that	programmers	write	textual	code	in	a	text	editor.	I	

KERRY CHANG	|	Dissertation	 119

experimented	with	many	new	ideas	in	Gneiss	to	support	different	programming	
tasks.	It	is	very	likely	that	a	person	may	find	that	some	of	Gneiss’s	new	features	are	
very	useful	for	her,	while	others	are	not	really	relevant,	and	some	of	her	tasks	are	
not	supported	by	Gneiss	at	all.	Therefore,	I	think	one	way	to	generalize	the	results	of	
this	dissertation	work	would	be	to	look	at	how	different	parts	of	the	innovations	
introduced	in	Gneiss	could	be	incorporated	into	people’s	current	programming	
practices.	
	
For	example,	Gneiss	allows	people	to	use	the	spreadsheet	as	a	database	for	a	web	
application	and	program	two-way	data	flows	among	web	GUI	elements,	
spreadsheets	and	web	services	using	the	familiar	spreadsheet	languages.	Research	
has	found	that	while	many	people	know	how	to	program	static	web	pages	using	
HTML	and	CSS,	programming	web	pages	that	use	backend	data	and	present	dynamic	
content	requires	writing	other	languages	such	as	JavaScript	and	is	much	more	
difficult	[75].	Therefore,	a	possible	way	to	bring	Gneiss’s	technology	to	more	people	
could	be	to	allow	people	to	import	HTML	and	CSS	files	into	Gneiss’s	right	pane	to	
program	data	bindings,	communications	with	web	services,	and	data-related	
interactive	behaviors	using	Gneiss,	and	leave	the	styling	part	to	writing	HTML	and	
CSS	code	that	may	give	users	more	control	compared	with	using	an	interface	
builder.			
	
Another	topic	comes	from	the	way	that	Gneiss	provides	a	visual	environment	to	
work	with	JSON	data.	It	introduces	a	new	way	to	visualize	JSON	data	in	spreadsheets	
that	lets	users	regroup	and	reshape	the	data	easily	using	interaction	techniques	and	
calculates	summaries	of	data	using	spreadsheet	formulas.	Our	user	study	showed	
that	Gneiss	helped	spreadsheet	users	outperform	programmers	writing	code	in	
doing	data	exploration	tasks	that	involve	restructuring	a	JSON	object	and	joining	
multiple	objects.	However,	in	real	life,	many	tasks	that	involve	using	JSON	data	are	
beyond	the	capability	of	a	spreadsheet.	For	example,	the	programmer	participants	
of	my	user	study	used	JSON	data	to	run	statistical	analysis	and	create	mathematical	
models.	All	of	them	mentioned	that	there	were	a	lot	of	data	restructuring	when	
using	JSON	data,	sometimes	by	feeding	the	data	into	another	function,	sometime	
designed	to	help	them	understand	the	data	(such	as	calculating	summaries	like	
mean	values).	A	way	to	incorporate	Gneiss’s	technology	into	programmers’	current	
workflow	could	involve	letting	the	programmer	manipulate	a	JSON	object	in	Gneiss	
and	output	the	corresponding	code	to	do	these	operations	in	another	language	such	
as	JavaScript	or	Python,	so	the	programmer	can	use	the	code	in	his	other	programs.			
	

8.7 UNDERSTANDING END-USER PROGRAMMERS IN THE REAL WORLD
THROUGH GNEISS

I	have	conducted	an	initial	user	study	that	evaluated	Gneiss	in	a	lab	setting.	The	user	
study	showed	that	users	could	understand	and	use	the	nested	table	visualizations	

KERRY CHANG	|	Dissertation	 120

for	hierarchical	data,	the	new	spreadsheet	language	syntax	for	referencing	data	
using	its	structure,	and	the	interaction	techniques	for	reshaping,	regrouping	and	
joining	data.	The	study	also	showed	that	those	features	together	helped	users	
manipulate	hierarchical	data	more	efficiently	compared	with	conventional	methods.	
The	user	study	also	tested	the	usability	of	some	other	features	in	Gneiss	including	
the	design	of	the	source	pane,	the	drag-and-drop	gesture	for	extracting	data	to	
spreadsheets,	and	using	the	dialog	box	for	sorting	and	filtering,	showing	that	these	
features	were	in	general	learnable	and	usable.		
	
But	there	are	some	other	features	in	Gneiss	that	have	not	been	evaluated	yet	by	any	
lab	study.	Some	untested	features	are	extensions	of	current	mechanisms	and	
therefore	it	may	be	safe	to	assume	that	users	can	learn	how	to	use	them.	For	
example,	Gneiss’s	right	pane	is	similar	to	a	conventional	web	interface	builder,	and	
it	uses	conventional	spreadsheet	language	syntax	for	selecting	a	cell	in	a	
spreadsheet	(SpreadsheetName!CellName)	to	support	selecting	a	property	of	a	GUI	
element	(GUIElementID!PropertyName).	Another	example	is	that	Gneiss	provides	a	
cell’s	fetched	time	as	its	metadata	that	is	hidden	and	thus	does	not	add	additional	
complexity	to	the	editor’s	interface,	but	allows	the	metadata	to	be	used	in	
conventional	ways	such	as	in	functions,	sorting	and	filtering	to	enable	manipulating	
the	data	by	time.	However,	other	features	may	require	further	testing.	For	example,	
as	discussed	in	the	section	8.1,	Gneiss	allows	once-around	circular	constraints	in	
spreadsheets	and	introduces	new	TIMER	and	ANIMATION	functions	to	support	
programming	interactive	behaviors	in	web	applications.	To	what	extend	those	
features	can	be	utilized	by	spreadsheet	users	who	have	never	programmed	a	web	
application	before	still	needs	to	be	evaluated.	Running	a	few	more	lab	studies	to	
fully	examine	the	new	features	of	this	dissertation	is	a	future	work	that	can	help	
researchers	further	understand	the	strengths	and	limitations	in	Gneiss’s	design	and	
improve	the	usability	of	the	features.		
	
A	more	interesting	type	of	study	is	to	deploy	Gneiss	in	the	real	world,	and	see	what	
real	users	create	with	Gneiss	and	how.	As	discussed	in	Chapter	2,	Gneiss	is	
motivated	by	prior	literature	which	showed	that	end-users	have	the	need	to	create	
custom	database	or	data-driven	web	applications	[9,75].	While	many	prior	systems	
allowed	end-users	to	publish	their	own	datasets	on	the	web,	none	of	them	
supported	creating	completely	custom	interfaces	and	interactive	behaviors	for	
showing	and	using	data	as	Gneiss	does.	Gneiss	uses	the	familiar	spreadsheet	model,	
which	could	potentially	attract	more	users	compared	with	prior	systems	that	use	
other	programming	models.	Deploying	Gneiss	in	the	wild	and	studying	its	users	and	
the	artifacts	created	can	provide	more	insights	about	end-user	programmers	and	
their	needs	for	data-related	tools.	Currently,	I	have	published	Gneiss	as	an	open-
source	tool	where	people	interested	in	the	technology	of	Gneiss	can	download	its	
source	code,	run	it	and	make	modifications	on	their	own.	But	there	is	still	much	
work	required	to	harden	Gneiss	to	make	it	a	product-level	tool	that	end-users	could	

KERRY CHANG	|	Dissertation	 121

use	for	their	everyday	tasks,	and	there	can	be	new	contributions	in	the	system	
architecture	to	make	Gneiss	available	to	a	large	amount	of	users.	Real-world	studies	
usually	take	much	longer	time	to	collect	results	than	lab	studies	(for	example,	the	
Exhibit	system	was	first	published	at	2007	[43]	and	its	first	real-world	study	after	
the	deployment	was	published	in	2014	[9]),	but	such	studies	also	contribute	
valuable	knowledge	on	end-users	and	their	needs	that	lab	studies	cannot	provide.		
	

8.8 CONCLUSIONS
Gneiss	raises	some	unanswered	questions	and	opens	up	some	interesting	future	
research	topics.	Those	topics	range	from	further	extending	Gneiss	to	support	more	
types	of	programming	activities,	to	figuring	out	a	way	to	connect	Gneiss’s	
technology	with	current	programming	practices,	to	deploying	Gneiss	in	the	real	
world	as	a	platform	to	study	end-user	programmers.		
	 	

KERRY CHANG	|	Dissertation	 122

CHAPTER 9 CONCLUSIONS
This	dissertation	contributes	four	main	extensions	to	the	spreadsheet	model:	(1)	
supporting	constructing	two-way	data	flow	with	REST	web	services;	(2)	
programming	interactive	web	applications	that	can	dynamically	use	and	modify	
spreadsheet	data;	(3)	using	structural	hierarchical	data	such	as	JSON;	and	(4)	using	
live	streaming	data.	Multiple	innovations	in	spreadsheet	interfaces,	spreadsheet	
languages	and	interaction	techniques	are	introduced	in	this	new	model	to	support	
these	activities.	Taken	together,	this	dissertation	extends	the	use	of	spreadsheets	to	
provide	holistic	support	for	using	online	data,	from	collecting	data	from	web	
services,	manipulating	and	analyzing	the	collected	data,	to	publishing	the	data	and	
the	computations	as	an	interactive	web	application.		
	
This	dissertation	also	contributes	a	tool	called	Gneiss	that	implements	this	new	
spreadsheet	model.	Throughout	the	dissertation,	I	have	used	Gneiss	to	provide	a	
series	of	examples	to	demonstrate	that	with	this	new	model,	people	can	use	the	
familiar	spreadsheet	languages	and	interaction	techniques	to	program	a	variety	of	
data-driven	or	data	analysis	applications	that	otherwise	would	require	writing	lots	
of	code.	I	also	presented	evidence	collected	from	a	lab	study	that	showed	
spreadsheet	users	who	were	not	experienced	programmers	could	use	Gneiss	to	
analyze	hierarchical	data	significantly	faster	than	spreadsheet	users	using	Excel	and	
programmers	writing	JavaScript	or	Python.		
	
As	I	discussed	the	introduction,	the	Internet	has	made	all	kinds	of	public	and	
personal	data	available	to	people.	Those	data	have	already	been	used	by	many	
professional	programmers	to	gain	insights	or	to	create	new	applications	to	facilitate	
people’s	lives.	I	hope	that	by	leveraging	the	familiar	spreadsheet	programming,	this	
research	could	also	empower	end	users	to	use	online	data	in	creative	ways	as	they	
do	right	now	with	local	data	using	spreadsheets.	The	success	of	spreadsheets	has	
shown	not	only	that	end	users	have	the	need	to	make	custom	use	of	data,	but	also	
that	end	users	can	and	will	learn	programming	to	do	things	themselves	if	they	have	
the	right	tools.	Gneiss	shows	that	spreadsheets	can	be	extended	in	interesting	ways	
without	needing	to	abandon	the	basic	spreadsheet	model	and	the	interface	that	
people	are	already	familiar	with	and	without	needing	to	learn	other	concepts	such	
as	pivot	tables,	Visual	Basic,	JavaScript	or	SQL.	Future	research	could	build	on	
Gneiss’s	contributions	to	let	end	user	programmers	be	able	to	leverage	what	they	
know,	rather	than	a	hitting	a	“wall”	[66]	and	having	to	learn	entirely	new	things.	
	
My	ultimate	hope	is	that	the	technologies	presented	in	this	dissertation	could	one	
day	go	beyond	Gneiss	to	become	a	part	of	a	real	product	that	people	use	in	real	life,	
and	bring	us	one	step	closer	to	the	goal	of	empowering	end	users	to	freely	use	data,	

KERRY CHANG	|	Dissertation	 123

analyze	data	and	publish	their	creative	solutions	just	as	professional	programmers	
can.		 	

KERRY CHANG	|	Dissertation	 124

REFERENCES
1.	 Robin	Abraham	and	Martin	Erwig.	2006.	Inferring	Templates	from	

Spreadsheets.	Proceedings	of	the	28th	International	Conference	on	Software	
Engineering,	ACM,	182–191.	http://doi.org/10.1145/1134285.1134312	

2.	 Sam	S	Adams.	1988.	MetaMethods:	The	MVC	Paradigm.	HOOPLA,	July.	
3.	 Mohamed	Ali,	Badrish	Chandramouli,	Jonathan	Goldstein,	and	Roman	

Schindlauer.	2011.	The	Extensibility	Framework	in	Microsoft	StreamInsight.	
Proceedings	of	the	2011	IEEE	27th	International	Conference	on	Data	
Engineering,	IEEE	Computer	Society,	1242–1253.	
http://doi.org/10.1109/ICDE.2011.5767878	

4.	 Bryce	Allen,	John	Bresnahan,	Lisa	Childers,	et	al.	2012.	Software	As	a	Service	
for	Data	Scientists.	Commun.	ACM	55,	2:	81–88.	
http://doi.org/10.1145/2076450.2076468	

5.	 Pierpaolo	Baglietto,	Fabrizio	Cosso,	Martino	Fornasa,	et	al.	2010.	Always-on	
Distributed	Spreadsheet	Mashups.	Proceedings	of	the	3rd	and	4th	
International	Workshop	on	Web	APIs	and	Services	Mashups,	ACM,	8:1–8:8.	
http://doi.org/10.1145/1944999.1945007	

6.	 John	Baker	and	Stephen	J	Sugden.	2007.	Spreadsheets	in	education–The	first	
25	years.	Spreadsheets	in	Education	(eJSiE)	1,	1:	2.	

7.	 Eirik	Bakke,	David	Karger,	and	Rob	Miller.	2011.	A	Spreadsheet-based	User	
Interface	for	Managing	Plural	Relationships	in	Structured	Data.	Proceedings	of	
the	SIGCHI	Conference	on	Human	Factors	in	Computing	Systems,	ACM,	2541–
2550.	http://doi.org/10.1145/1978942.1979313	

8.	 Eirik	Bakke,	David	R	Karger,	and	Robert	C	Miller.	2013.	Automatic	Layout	of	
Structured	Hierarchical	Reports.	IEEE	Transactions	on	Visualization	and	
Computer	Graphics	19,	12:	2586–2595.	
http://doi.org/10.1109/TVCG.2013.137	

9.	 Edward	Benson	and	David	R	Karger.	2014.	End-users	Publishing	Structured	
Information	on	the	Web:	An	Observational	Study	of	What,	Why,	and	How.	
Proceedings	of	the	32Nd	Annual	ACM	Conference	on	Human	Factors	in	
Computing	Systems,	ACM,	1265–1274.	
http://doi.org/10.1145/2556288.2557036	

10.	 Edward	Benson,	Amy	Zhang,	and	David	R	Karger.	2014.	Spreadsheet-Driven	
Web	Applications.	ACM	symposium	on	User	interface	software	and	technology,	
ACM,	To	appear.	

11.	 Margaret	Burnett,	John	Atwood,	Rebecca	Walpole	Djang,	James	Reichwein,	
Herkimer	Gottfried,	and	Sherry	Yang.	2001.	Forms/3:	A	First-order	Visual	
Language	to	Explore	the	Boundaries	of	the	Spreadsheet	Paradigm.	J.	Funct.	
Program.	11,	2:	155–206.	Retrieved	from	
http://dl.acm.org/citation.cfm?id=968486.968487	

KERRY CHANG	|	Dissertation	 125

12.	 Margaret	Burnett,	Sudheer	Kumar	Chekka,	and	Rajeev	Pandey.	2001.	FAR:	an	
end-user	language	to	support	cottage	e-services.	Human-Centric	Computing	
Languages	and	Environments,	2001.	Proceedings	IEEE	Symposia	on,	195–202.	
http://doi.org/10.1109/HCC.2001.995259	

13.	 Margaret	M	Burnett,	John	W	Atwood	Jr.,	and	Zachary	T	Welch.	1998.	
Implementing	level	4	liveness	in	declarative	visual	programming	languages.	
Visual	Languages,	1998.	Proceedings.	1998	IEEE	Symposium	on,	126–133.	
http://doi.org/10.1109/VL.1998.706155	

14.	 Chris	Chambers	and	Chris	Scaffidi.	2010.	Struggling	to	Excel:	A	Field	Study	of	
Challenges	Faced	by	Spreadsheet	Users.	Visual	Languages	and	Human-Centric	
Computing	(VL/HCC),	2010	IEEE	Symposium	on,	187–194.	
http://doi.org/10.1109/VLHCC.2010.33	

15.	 Bryan	Chan,	Leslie	Wu,	Justin	Talbot,	Mike	Cammarano,	and	Pat	Hanrahan.	
2008.	Vispedia:	Interactive	Visual	Exploration	of	Wikipedia	Data	via	Search-
Based	Integration.	IEEE	Transactions	on	Visualization	and	Computer	Graphics	
14,	6:	1213–1220.	http://doi.org/10.1109/TVCG.2008.178	

16.	 Kerry	Shih-Ping	Chang,	Brad	A	Myers,	Gene	M	Cahill,	Soumya	Simanta,	Edwin	
Morris,	and	Grace	Lewis.	2013.	Improving	Structured	Data	Entry	on	Mobile	
Devices.	ACM	symposium	on	User	interface	software	and	technology,	to	appear.	

17.	 Kerry	Shih-Ping	Chang,	Brad	A	Myers,	Gene	Cahill,	Soumya	Simanta,	Edwin	
Morris,	and	Grace	Lewis.	2013.	A	Plug-in	Architecture	for	Connecting	to	New	
Data	Sources	on	Mobile	Devices.	IEEE	Symposium	on	Visual	Languages	and	
Human-Centric	Computing,	51–58.	

18.	 Kerry	Shih-Ping	Chang	and	Brad	A	Myers.	2012.	WebCrystal:	Understanding	
and	Reusing	Examples	in	Web	Authoring.	Proceedings	of	the	SIGCHI	
Conference	on	Human	Factors	in	Computing	Systems,	ACM,	3205–3214.	
http://doi.org/10.1145/2207676.2208740	

19.	 Kerry	Shih-Ping	Chang	and	Brad	A	Myers.	2014.	Creating	Interactive	Web	
Data	Applications	with	Spreadsheets.	Proceedings	of	the	27th	Annual	ACM	
Symposium	on	User	Interface	Software	and	Technology,	ACM,	87–96.	
http://doi.org/10.1145/2642918.2647371	

20.	 Kerry	Shih-Ping	Chang	and	Brad	A	Myers.	2014.	A	spreadsheet	model	for	
using	web	service	data.	Visual	Languages	and	Human-Centric	Computing	
(VL/HCC),	2014	IEEE	Symposium	on,	169–176.	
http://doi.org/10.1109/VLHCC.2014.6883042	

21.	 Kerry	Shih-Ping	Chang	and	Brad	A	Myers.	2015.	A	Spreadsheet	Model	for	
Handling	Streaming	Data.	Proceedings	of	the	33rd	Annual	ACM	Conference	on	
Human	Factors	in	Computing	Systems,	ACM,	3399–3402.	
http://doi.org/10.1145/2702123.2702587	

22.	 Kerry	Shih-Ping	Chang	and	Brad	A	Myers.	2016.	Using	and	Exploring	
Hierarchical	Data	in	Spreadsheets.	ACM	CHI.	

KERRY CHANG	|	Dissertation	 126

23.	 Zhe	Chen,	Michael	Cafarella,	Jun	Chen,	Daniel	Prevo,	and	Junfeng	Zhuang.	
2013.	Senbazuru:	A	Prototype	Spreadsheet	Database	Management	System.	
Proc.	VLDB	Endow.	6,	12:	1202–1205.	
http://doi.org/10.14778/2536274.2536276	

24.	 Zhe	Chen	and	Michael	Cafarella.	2013.	Automatic	Web	Spreadsheet	Data	
Extraction.	Proceedings	of	the	3rd	International	Workshop	on	Semantic	Search	
Over	the	Web,	ACM,	1:1–1:8.	http://doi.org/10.1145/2509908.2509909	

25.	 Zhe	Chen	and	Michael	Cafarella.	2014.	Integrating	Spreadsheet	Data	via	
Accurate	and	Low-effort	Extraction.	Proceedings	of	the	20th	ACM	SIGKDD	
International	Conference	on	Knowledge	Discovery	and	Data	Mining,	ACM,	
1126–1135.	http://doi.org/10.1145/2623330.2623617	

26.	 Petr	Chmelar,	Radim	Hernych,	and	Daniel	Kubicek.	2008.	Interactive	
visualization	of	data-oriented	XML	documents.	In	Advances	in	Computer	and	
Information	Sciences	and	Engineering.	Springer,	390–393.	

27.	 Eun	Kyoung	Choe,	Nicole	B	Lee,	Bongshin	Lee,	Wanda	Pratt,	and	Julie	A	
Kientz.	2014.	Understanding	Quantified-selfers’	Practices	in	Collecting	and	
Exploring	Personal	Data.	Proceedings	of	the	SIGCHI	Conference	on	Human	
Factors	in	Computing	Systems,	ACM,	1143–1152.	
http://doi.org/10.1145/2556288.2557372	

28.	 Mira	Dontcheva,	Steven	M	Drucker,	David	Salesin,	and	Michael	F	Cohen.	2007.	
Relations,	Cards,	and	Search	Templates:	User-guided	Web	Data	Integration	
and	Layout.	Proceedings	of	the	20th	Annual	ACM	Symposium	on	User	Interface	
Software	and	Technology,	ACM,	61–70.	
http://doi.org/10.1145/1294211.1294224	

29.	 Mira	Dontcheva,	Steven	M	Drucker,	Geraldine	Wade,	David	Salesin,	and	
Michael	F	Cohen.	2006.	Summarizing	Personal	Web	Browsing	Sessions.	
Proceedings	of	the	19th	Annual	ACM	Symposium	on	User	Interface	Software	and	
Technology,	ACM,	115–124.	http://doi.org/10.1145/1166253.1166273	

30.	 Robert	J	Ennals	and	Minos	N	Garofalakis.	2007.	MashMaker:	Mashups	for	the	
Masses.	Proceedings	of	the	2007	ACM	SIGMOD	International	Conference	on	
Management	of	Data,	ACM,	1116–1118.	
http://doi.org/10.1145/1247480.1247626	

31.	 Gordon	Filby.	2013.	Spreadsheets	in	science	and	engineering.	Springer	Science	
&	Business	Media.	

32.	 Danyel	Fisher,	Badrish	Chandramouli,	Robert	DeLine,	et	al.	2014.	Tempe:	An	
Interactive	Data	Science	Environment	for	Exploration	of	Temporal	and	
Streaming	Data.	Microsoft	Research.	Retrieved	from	
http://research.microsoft.com/apps/pubs/default.aspx?id=232385	

33.	 Danyel	Fisher,	Igor	Popov,	Steven	Drucker,	and	M.c.	Schraefel.	2012.	Trust	Me,	
I’M	Partially	Right:	Incremental	Visualization	Lets	Analysts	Explore	Large	
Datasets	Faster.	Proceedings	of	the	SIGCHI	Conference	on	Human	Factors	in	

KERRY CHANG	|	Dissertation	 127

Computing	Systems,	ACM,	1673–1682.	
http://doi.org/10.1145/2207676.2208294	

34.	 Jun	Fujima,	Aran	Lunzer,	Kasper	Hornbæk,	and	Yuzuru	Tanaka.	2004.	Clip,	
Connect,	Clone:	Combining	Application	Elements	to	Build	Custom	Interfaces	
for	Information	Access.	Proceedings	of	the	17th	Annual	ACM	Symposium	on	
User	Interface	Software	and	Technology,	ACM,	175–184.	
http://doi.org/10.1145/1029632.1029664	

35.	 Michael	I	Gordon,	William	Thies,	and	Saman	Amarasinghe.	2006.	Exploiting	
Coarse-grained	Task,	Data,	and	Pipeline	Parallelism	in	Stream	Programs.	
SIGARCH	Comput.	Archit.	News	34,	5:	151–162.	
http://doi.org/10.1145/1168919.1168877	

36.	 Sumit	Gulwani.	2011.	Automating	String	Processing	in	Spreadsheets	Using	
Input-output	Examples.	Proceedings	of	the	38th	Annual	ACM	SIGPLAN-SIGACT	
Symposium	on	Principles	of	Programming	Languages,	ACM,	317–330.	
http://doi.org/10.1145/1926385.1926423	

37.	 William	R	Harris	and	Sumit	Gulwani.	2011.	Spreadsheet	Table	
Transformations	from	Examples.	Proceedings	of	the	32Nd	ACM	SIGPLAN	
Conference	on	Programming	Language	Design	and	Implementation,	ACM,	317–
328.	http://doi.org/10.1145/1993498.1993536	

38.	 Björn	Hartmann,	Leslie	Wu,	Kevin	Collins,	and	Scott	R	Klemmer.	2007.	
Programming	by	a	sample:	rapidly	creating	web	applications	with	d.mix.	
Proceedings	of	the	20th	annual	ACM	symposium	on	User	interface	software	and	
technology,	ACM,	241–250.	http://doi.org/10.1145/1294211.1294254	

39.	 Felienne	Hermans,	Martin	Pinzger,	and	Arie	van	Deursen.	2010.	Automatically	
Extracting	Class	Diagrams	from	Spreadsheets.	Proceedings	of	the	24th	
European	Conference	on	Object-oriented	Programming,	Springer-Verlag,	52–
75.	Retrieved	from	http://dl.acm.org/citation.cfm?id=1883978.1883984	

40.	 Felienne	Hermans,	Martin	Pinzger,	and	Arie	van	Deursen.	2011.	Supporting	
Professional	Spreadsheet	Users	by	Generating	Leveled	Dataflow	Diagrams.	
Proceedings	of	the	33rd	International	Conference	on	Software	Engineering,	
ACM,	451–460.	http://doi.org/10.1145/1985793.1985855	

41.	 Scott	E	Hudson.	1994.	User	Interface	Specification	Using	an	Enhanced	
Spreadsheet	Model.	ACM	Trans.	Graph.	13,	3:	209–239.	
http://doi.org/10.1145/195784.195787	

42.	 Edwin	L	Hutchins,	James	D	Hollan,	and	Donald	A	Norman.	1985.	Direct	
Manipulation	Interfaces.	Hum.-Comput.	Interact.	1,	4:	311–338.	
http://doi.org/10.1207/s15327051hci0104_2	

43.	 David	F	Huynh,	David	R	Karger,	and	Robert	C	Miller.	2007.	Exhibit:	
Lightweight	Structured	Data	Publishing.	Proceedings	of	the	16th	International	
Conference	on	World	Wide	Web,	ACM,	737–746.	
http://doi.org/10.1145/1242572.1242672	

KERRY CHANG	|	Dissertation	 128

44.	 David	F	Huynh,	Robert	C	Miller,	and	David	R	Karger.	2006.	Enabling	Web	
Browsers	to	Augment	Web	Sites’	Filtering	and	Sorting	Functionalities.	
Proceedings	of	the	19th	Annual	ACM	Symposium	on	User	Interface	Software	and	
Technology,	ACM,	125–134.	http://doi.org/10.1145/1166253.1166274	

45.	 Brain	Johnson	and	Ben	Shneiderman.	1991.	Tree-maps:	a	space-filling	
approach	to	the	visualization	of	hierarchical	information	structures.	
Visualization,	1991.	Visualization	’91,	Proceedings.,	IEEE	Conference	on,	284–
291.	http://doi.org/10.1109/VISUAL.1991.175815	

46.	 Simon	Peyton	Jones,	Alan	Blackwell,	and	Margaret	Burnett.	2003.	A	User-
centred	Approach	to	Functions	in	Excel.	Proceedings	of	the	Eighth	ACM	
SIGPLAN	International	Conference	on	Functional	Programming,	ACM,	165–176.	
http://doi.org/10.1145/944705.944721	

47.	 Sean	Kandel,	Andreas	Paepcke,	Joseph	Hellerstein,	and	Jeffrey	Heer.	2011.	
Wrangler:	Interactive	Visual	Specification	of	Data	Transformation	Scripts.	
Proceedings	of	the	SIGCHI	Conference	on	Human	Factors	in	Computing	Systems,	
ACM,	3363–3372.	http://doi.org/10.1145/1978942.1979444	

48.	 Eser	Kandogan,	Eben	Haber,	Rob	Barrett,	Allen	Cypher,	Paul	Maglio,	and	
Haixia	Zhao.	2005.	A1:	End-user	Programming	for	Web-based	System	
Administration.	Proceedings	of	the	18th	Annual	ACM	Symposium	on	User	
Interface	Software	and	Technology,	ACM,	211–220.	
http://doi.org/10.1145/1095034.1095070	

49.	 Max	Van	Kleek,	Daniel	A	Smith,	Heather	S	Packer,	Jim	Skinner,	and	Nigel	R	
Shadbolt.	2013.	Carpé	Data:	Supporting	Serendipitous	Data	Integration	
in	Personal	Information	Management.	Proceedings	of	the	SIGCHI	Conference	on	
Human	Factors	in	Computing	Systems,	ACM,	2339–2348.	
http://doi.org/10.1145/2470654.2481324	

50.	 Andrew	J	Ko,	Robin	Abraham,	Laura	Beckwith,	et	al.	2011.	The	State	of	the	Art	
in	End-user	Software	Engineering.	ACM	Comput.	Surv.	43,	3:	21:1–21:44.	
http://doi.org/10.1145/1922649.1922658	

51.	 Woralak	Kongdenfha,	Boualem	Benatallah,	Julien	Vayssière,	Régis	Saint-Paul,	
and	Fabio	Casati.	2009.	Rapid	Development	of	Spreadsheet-based	Web	
Mashups.	Proceedings	of	the	18th	International	Conference	on	World	Wide	
Web,	ACM,	851–860.	http://doi.org/10.1145/1526709.1526824	

52.	 Jan-Peter	Kramer,	Joachim	Kurz,	Thorsten	Karrer,	and	Jan	Borchers.	2014.	
How	live	coding	affects	developers’	coding	behavior.	Visual	Languages	and	
Human-Centric	Computing	(VL/HCC),	2014	IEEE	Symposium	on,	5–8.	
http://doi.org/10.1109/VLHCC.2014.6883013	

53.	 Ranjitha	Kumar,	Jerry	O	Talton,	Salman	Ahmad,	and	Scott	R	Klemmer.	2011.	
Bricolage:	Example-based	Retargeting	for	Web	Design.	Proceedings	of	the	
SIGCHI	Conference	on	Human	Factors	in	Computing	Systems,	ACM,	2197–2206.	
http://doi.org/10.1145/1978942.1979262	

KERRY CHANG	|	Dissertation	 129

54.	 Barry	R	Lawson,	Kenneth	R	Baker,	Stephen	G	Powell,	and	Lynn	Foster-
Johnson.	2009.	A	comparison	of	spreadsheet	users	with	different	levels	of	
experience.	Omega	37,	3:	579–590.	
http://doi.org/http://dx.doi.org/10.1016/j.omega.2007.12.004	

55.	 Avraham	Leff	and	James	T	Rayfield.	2001.	Web-Application	Development	
Using	the	Model/View/Controller	Design	Pattern.	Proceedings	of	the	5th	IEEE	
International	Conference	on	Enterprise	Distributed	Object	Computing,	IEEE	
Computer	Society,	118–127.	Retrieved	from	
http://dl.acm.org/citation.cfm?id=645344.650161	

56.	 Mark	Levene	and	George	Loizou.	1994.	30th	IEEE	Conference	on	Foundations	
of	Computer	Science	The	nested	universal	relation	data	model.	Journal	of	
Computer	and	System	Sciences	49,	3:	683–717.	
http://doi.org/http://dx.doi.org/10.1016/S0022-0000(05)80076-5	

57.	 Henry	Lieberman,	Fabio	Paternò,	Markus	Klann,	and	Volker	Wulf.	2006.	End-
User	Development:	An	Emerging	Paradigm.	In	End	User	Development	SE	-	1,	
Henry	Lieberman,	Fabio	Paternò	and	Volker	Wulf	(eds.).	Springer	
Netherlands,	1–8.	http://doi.org/10.1007/1-4020-5386-X_1	

58.	 James	Lin,	Jeffrey	Wong,	Jeffrey	Nichols,	Allen	Cypher,	and	Tessa	A	Lau.	2009.	
End-user	programming	of	mashups	with	vegemite.	Proceedings	of	the	14th	
international	conference	on	Intelligent	user	interfaces,	ACM,	97–106.	
http://doi.org/10.1145/1502650.1502667	

59.	 Alex	MacCaw.	2011.	JavaScript	Web	Applications.	“	O’Reilly	Media,	Inc.”	

60.	 C	Mohan.	2013.	History	Repeats	Itself:	Sensible	and	NonsenSQL	Aspects	of	the	
NoSQL	Hoopla.	Proceedings	of	the	16th	International	Conference	on	Extending	
Database	Technology,	ACM,	11–16.	
http://doi.org/10.1145/2452376.2452378	

61.	 Brad	A	Myers,	Margaret	M	Burnett,	Andrew	J	Ko,	Mary	Beth	Rosson,	
Christopher	Scaffidi,	and	Susan	Wiedenbeck.	2010.	End	User	Software	
Engineering:	CHI	2010	Special	Interest	Group	Meeting.	CHI	’10	Extended	
Abstracts	on	Human	Factors	in	Computing	Systems,	ACM,	3189–3192.	
http://doi.org/10.1145/1753846.1753953	

62.	 Brad	A	Myers,	Dario	A	Giuse,	Roger	B	Dannenberg,	et	al.	1990.	Garnet:	
Comprehensive	Support	for	Graphical,	Highly	Interactive	User	Interfaces.	
Computer	23,	11:	71–85.	http://doi.org/10.1109/2.60882	

63.	 Brad	A	Myers,	Richard	G	McDaniel,	Robert	C	Miller,	et	al.	1997.	The	Amulet	
Environment:	New	Models	for	Effective	User	Interface	Software	Development.	
IEEE	Trans.	Softw.	Eng.	23,	6:	347–365.	http://doi.org/10.1109/32.601073	

64.	 Brad	A	Myers.	1986.	Visual	Programming,	Programming	by	Example,	and	
Program	Visualization:	A	Taxonomy.	Proceedings	of	the	SIGCHI	Conference	on	
Human	Factors	in	Computing	Systems,	ACM,	59–66.	
http://doi.org/10.1145/22627.22349	

KERRY CHANG	|	Dissertation	 130

65.	 Brad	A	Myers.	1991.	Graphical	Techniques	in	a	Spreadsheet	for	Specifying	
User	Interfaces.	Proceedings	of	the	SIGCHI	Conference	on	Human	Factors	in	
Computing	Systems,	ACM,	243–249.	http://doi.org/10.1145/108844.108903	

66.	 Brad	Myers,	Scott	E	Hudson,	and	Randy	Pausch.	2000.	Past,	Present,	and	
Future	of	User	Interface	Software	Tools.	ACM	Trans.	Comput.-Hum.	Interact.	7,	
1:	3–28.	http://doi.org/10.1145/344949.344959	

67.	 Bonnie	A	Nardi,	James	R	Miller,	and	David	J	Wright.	1998.	Collaborative,	
programmable	intelligent	agents.	Commun.	ACM	41,	3:	96–104.	
http://doi.org/10.1145/272287.272331	

68.	 Bonnie	A	Nardi	and	James	R	Miller.	1990.	An	Ethnographic	Study	of	
Distributed	Problem	Solving	in	Spreadsheet	Development.	Proceedings	of	the	
1990	ACM	Conference	on	Computer-supported	Cooperative	Work,	ACM,	197–
208.	http://doi.org/10.1145/99332.99355	

69.	 Bonnie	A	Nardi.	1993.	A	Small	Matter	of	Programming:	Perspectives	on	End	
User	Computing.	MIT	Press,	Cambridge,	MA,	USA.	

70.	 Stephen	Oney,	Brad	Myers,	and	Joel	Brandt.	2012.	ConstraintJS:	Programming	
Interactive	Behaviors	for	the	Web	by	Integrating	Constraints	and	States.	
Proceedings	of	the	25th	Annual	ACM	Symposium	on	User	Interface	Software	and	
Technology,	ACM,	229–238.	http://doi.org/10.1145/2380116.2380146	

71.	 Stephen	Oney,	Brad	Myers,	and	Joel	Brandt.	2014.	InterState:	A	Language	and	
Environment	for	Expressing	Interface	Behavior.	Proceedings	of	the	27th	
Annual	ACM	Symposium	on	User	Interface	Software	and	Technology,	ACM,	263–
272.	http://doi.org/10.1145/2642918.2647358	

72.	 Stephen	Oney	and	Brad	Myers.	2009.	FireCrystal:	Understanding	Interactive	
Behaviors	in	Dynamic	Web	Pages.	Proceedings	of	the	2009	IEEE	Symposium	on	
Visual	Languages	and	Human-Centric	Computing	(VL/HCC),	IEEE	Computer	
Society,	105–108.	http://doi.org/10.1109/VLHCC.2009.5295287	

73.	 Vijayshankar	Raman	and	Joseph	M	Hellerstein.	2001.	Potter’s	Wheel:	An	
Interactive	Data	Cleaning	System.	Proceedings	of	the	27th	International	
Conference	on	Very	Large	Data	Bases,	Morgan	Kaufmann	Publishers	Inc.,	381–
390.	Retrieved	from	http://dl.acm.org/citation.cfm?id=645927.672045	

74.	 Jochen	Rode,	Yogita	Bhardwaj,	ManuelA.	Pérez-Quiñones,	MaryBeth	Rosson,	
and	Jonathan	Howarth.	2005.	As	Easy	as	“Click”:	End-User	Web	Engineering.	
In	Web	Engineering	SE	-	61,	David	Lowe	and	Martin	Gaedke	(eds.).	Springer	
Berlin	Heidelberg,	478–488.	http://doi.org/10.1007/11531371_61	

75.	 Mary	Beth	Rosson,	Julie	Ballin,	and	Jochen	Rode.	2005.	Who,	what,	and	how:	a	
survey	of	informal	and	professional	Web	developers.	Visual	Languages	and	
Human-Centric	Computing,	2005	IEEE	Symposium	on,	199–206.	
http://doi.org/10.1109/VLHCC.2005.73	

76.	 Mike	Samuel,	Prateek	Saxena,	and	Dawn	Song.	2011.	Context-sensitive	Auto-
sanitization	in	Web	Templating	Languages	Using	Type	Qualifiers.	Proceedings	

KERRY CHANG	|	Dissertation	 131

of	the	18th	ACM	Conference	on	Computer	and	Communications	Security,	ACM,	
587–600.	http://doi.org/10.1145/2046707.2046775	

77.	 Christopher	Scaffidi,	Mary	Shaw,	and	Brad	Myers.	2005.	Estimating	the	
numbers	of	end	users	and	end	user	programmers.	Visual	Languages	and	
Human-Centric	Computing,	2005	IEEE	Symposium	on,	207–214.	
http://doi.org/10.1109/VLHCC.2005.34	

78.	 Ben	Shneiderman.	1983.	Direct	Manipulation:	A	Step	Beyond	Programming	
Languages.	Computer	16,	8:	57–69.	
http://doi.org/10.1109/MC.1983.1654471	

79.	 Timothy	Sohn,	Kevin	A	Li,	William	G	Griswold,	and	James	D	Hollan.	2008.	A	
Diary	Study	of	Mobile	Information	Needs.	Proceedings	of	the	SIGCHI	
Conference	on	Human	Factors	in	Computing	Systems,	ACM,	433–442.	
http://doi.org/10.1145/1357054.1357125	

80.	 Tableau	Software.	2014.	Tableau.	Retrieved	from	
http://www.tableausoftware.com/	

81.	 Steven	L	Tanimoto.	2013.	A	perspective	on	the	evolution	of	live	programming.	
Live	Programming	(LIVE),	2013	1st	International	Workshop	on,	31–34.	
http://doi.org/10.1109/LIVE.2013.6617346	

82.	 Rattapoom	Tuchinda,	Pedro	Szekely,	and	Craig	A	Knoblock.	2008.	Building	
Mashups	by	example.	Proceedings	of	the	13th	international	conference	on	
Intelligent	user	interfaces,	ACM,	139–148.	
http://doi.org/10.1145/1378773.1378792	

83.	 Mandana	Vaziri,	Olivier	Tardieu,	Rodric	Rabbah,	Philippe	Suter,	and	Martin	
Hirzel.	2014.	Stream	Processing	with	a	Spreadsheet.	In	ECOOP	2014	–	Object-
Oriented	Programming	SE	-	15,	Richard	Jones	(ed.).	Springer	Berlin	
Heidelberg,	360–384.	http://doi.org/10.1007/978-3-662-44202-9_15	

84.	 Fernanda	B	Viegas,	Martin	Wattenberg,	Frank	van	Ham,	Jesse	Kriss,	and	Matt	
McKeon.	2007.	ManyEyes:	a	Site	for	Visualization	at	Internet	Scale.	
Visualization	and	Computer	Graphics,	IEEE	Transactions	on	13,	6:	1121–1128.	
http://doi.org/10.1109/TVCG.2007.70577	

85.	 Amy	Voida,	Ellie	Harmon,	and	Ban	Al-Ani.	2011.	Homebrew	Databases:	
Complexities	of	Everyday	Information	Management	in	Nonprofit	
Organizations.	Proceedings	of	the	SIGCHI	Conference	on	Human	Factors	in	
Computing	Systems,	ACM,	915–924.	
http://doi.org/10.1145/1978942.1979078	

86.	 Miriam	Walker,	Leila	Takayama,	and	James	A	Landay.	2002.	High-fidelity	or	
low-fidelity,	paper	or	computer?	Choosing	attributes	when	testing	web	
prototypes.	Proceedings	of	the	Human	Factors	and	Ergonomics	Society	Annual	
Meeting,	661–665.	

87.	 Guiling	Wang,	Shaohua	Yang,	and	Yanbo	Han.	2009.	Mashroom:	End-user	
Mashup	Programming	Using	Nested	Tables.	Proceedings	of	the	18th	

KERRY CHANG	|	Dissertation	 132

International	Conference	on	World	Wide	Web,	ACM,	861–870.	
http://doi.org/10.1145/1526709.1526825	

88.	 Lutz	Wegner,	Sven	Thelemann,	Jens	Thamm,	Dagmar	Wilke,	and	Stephan	
Wilke.	1997.	Navigational	Exploration	and	Declarative	Queries	in	a	Prototype	
for	Visual	Information	Systems.	In	Clement	Leung	(ed.).	Springer	Berlin	
Heidelberg,	Berlin,	Heidelberg,	199–218.	http://doi.org/10.1007/3-540-
63636-6_12	

89.	 Nicholas	Wilde	and	Clayton	Lewis.	1990.	Spreadsheet-based	Interactive	
Graphics:	From	Prototype	to	Tool.	Proceedings	of	the	SIGCHI	Conference	on	
Human	Factors	in	Computing	Systems,	ACM,	153–160.	
http://doi.org/10.1145/97243.97268	

90.	 David	Wolber,	Yingfeng	Su,	and	Yih	Tsung	Chiang.	2002.	Designing	Dynamic	
Web	Pages	and	Persistence	in	the	WYSIWYG	Interface.	Proceedings	of	the	7th	
International	Conference	on	Intelligent	User	Interfaces,	ACM,	228–229.	
http://doi.org/10.1145/502716.502770	

91.	 Jeffrey	Wong	and	Jason	I	Hong.	2007.	Making	mashups	with	marmite:	towards	
end-user	programming	for	the	web.	Proceedings	of	the	SIGCHI	Conference	on	
Human	Factors	in	Computing	Systems,	ACM,	1435–1444.	
http://doi.org/10.1145/1240624.1240842	

92.	 Jeffrey	Wong	and	Jason	Hong.	2008.	What	do	we	“mashup”	when	we	make	
mashups?	Proceedings	of	the	4th	international	workshop	on	End-user	software	
engineering,	ACM,	35–39.	http://doi.org/10.1145/1370847.1370855	

93.	 Alec	Woo,	Siddharth	Seth,	Tim	Olson,	Jie	Liu,	and	Feng	Zhao.	2006.	A	
spreadsheet	approach	to	programming	and	managing	sensor	networks.	
Information	Processing	in	Sensor	Networks,	2006.	IPSN	2006.	The	Fifth	
International	Conference	on,	424–431.	
http://doi.org/10.1109/IPSN.2006.243910	

94.	 Matei	Zaharia,	Tathagata	Das,	Haoyuan	Li,	Timothy	Hunter,	Scott	Shenker,	and	
Ion	Stoica.	2013.	Discretized	Streams:	Fault-tolerant	Streaming	Computation	
at	Scale.	Proceedings	of	the	Twenty-Fourth	ACM	Symposium	on	Operating	
Systems	Principles,	ACM,	423–438.	http://doi.org/10.1145/2517349.2522737	

95.	 Nan	Zang	and	M	B	Rosson.	2008.	What’s	in	a	mashup?	And	why?	
Studying	the	perceptions	of	web-active	end	users.	Visual	Languages	and	
Human-Centric	Computing,	2008.	VL/HCC	2008.	IEEE	Symposium	on,	31–38.	
http://doi.org/10.1109/VLHCC.2008.4639055	

96.	 Nan	Zang,	Mary	Beth	Rosson,	and	Vincent	Nasser.	2008.	Mashups:	who?	what?	
why?	CHI	’08	Extended	Abstracts	on	Human	Factors	in	Computing	Systems,	
ACM,	3171–3176.	http://doi.org/10.1145/1358628.1358826	

97.	 Kibana.	Retrieved	from	https://www.elastic.co/products/kibana	

98.	 StreamBase.	Retrieved	from	http://www.streambase.com/	

KERRY CHANG	|	Dissertation	 133

99.	 Introduction	to	queries	-	Access	-	Office	Support.	Retrieved	from	
https://support.office.com/en-us/article/Introduction-to-queries-d85e4893-
0ed7-4118-8297-785a01357516	

100.	 SQLyog.	Retrieved	from	https://www.webyog.com/#Slides_SQLyog	
101.	 SQLeo	Visual	Query	Builder.	Retrieved	from	

https://sourceforge.net/projects/sqleo/	

102.	 Yahoo	Pipes.	Retrieved	from	http://pipes.yahoo.com/	
103.	 Introduction	to	Microsoft	Power	Query	for	Excel.	Retrieved	from	

https://support.office.com/en-us/article/Introduction-to-Microsoft-Power-
Query-for-Excel-6e92e2f4-2079-4e1f-bad5-89f6269cd605	

104.	 AngularJS.	Retrieved	from	https://angularjs.org/	

105.	 Handlebar.js.	Retrieved	from	http://handlebarsjs.com/	
106.	 Mustache.js.	Retrieved	from	https://github.com/janl/mustache.js/	

107.	 Underscore.js.	Retrieved	from	http://underscorejs.org/	

108.	 React.	Retrieved	from	https://facebook.github.io/react/	
109.	 JSON.simple.	Retrieved	from	https://github.com/fangyidong/json-simple	

110.	 GSON.	Retrieved	from	https://github.com/google/gson	

111.	 FasterXML/Jackson.	Retrieved	from	https://github.com/FasterXML/jackson	
112.	 Jansson.	Retrieved	from	http://www.digip.org/jansson/	

113.	 jsonQ.	Retrieved	from	https://github.com/s-yadav/jsonQ	
114.	 View	and	Analyze	Live	Streaming	Data	in	Excel.	Retrieved	from	

https://developer.ibm.com/bluemix/2015/08/10/view-analyze-live-
streaming-data-excel/	

115.	 Use	Stream	Analytics	to	feed	Power	BI	from	Application	Insights.	Retrieved	
from	https://azure.microsoft.com/en-us/documentation/articles/app-
insights-export-power-bi/	

116.	 PipelineDB.	Retrieved	from	https://www.pipelinedb.com/	

117.	 Active	Query	Builder.	Retrieved	from	http://www.activequerybuilder.com/	
118.	 2010.	Scraper.	Retrieved	from	http://mnmldave.github.io/scraper/	

119.	 2014.	ScraperWiki.	Retrieved	from	https://scraperwiki.com/	

	

	

	
	
	 	

KERRY CHANG	|	Dissertation	 134

APPENDIX A. A LIST OF SUPPORTED
SPREADSHEET FUNCTIONS IN GNEISS
	
As	described	in	Section	5.5,	for	the	user	study	that	evaluates	Gneiss’s	features	for	
using	hierarchical	data,	I	gave	Gneiss	participants	a	list	of	spreadsheet	functions	that	
they	could	use	in	the	study.	The	list	I	gave	the	participants	has	the	first	12	functions	
in	the	“Conventional	spreadsheet	function”	table	(from	SUM	to	LOOKUP),	and	the	first	
function	(IF)	in	the	“Extended	conventional	spreadsheet	function”	table.	I	did	not	
show	participants	the	other	functions	as	they	are	for	using	streaming	data	or	
programming	interactive	behaviors	in	web	applications	and	are	clearly	not	relevant	
to	the	study	tasks.		
	
Conventional	spreadsheet	function	
SUM(number1, [number2], …) The	function	returns	the	sum	of	the	numbers	
AVERAGE(number1, [number2], …) The	function	returns	the	average	of	the	

numbers	
MAX(number1, [number2], …) The	function	returns	the	largest	number	of	

the	numbers	
CONCATENATE(string1, [string2],
…)

The	function	returns	the	concatenated	string	
of	all	input	strings.		

ISBLANK(cell) The	function	returns	true	if	cell	is	blank,	
false	otherwise.	

AND(condition1, [condition2],
…)

The	function	returns	true	if	all	conditions	are	
true,	and	false	otherwise	

OR(condition1, [condition2], …) The	function	returns	true	if	any	of	the	
conditions	is	true,	and	false	otherwise	

INDEX(array, index) The	function	returns	the	value	in	array	at	
index	index.		

COUNT(value1, [value2], …) The	function	returns	the	number	of	values		
COUNTUNIQUE(value1, [value2],…) The	function	returns	the	number	of	unique	

values	
COUNTIF(range, criteria) The	function	returns	the	number	of	cells	in	

range	that	match	criteria.	
LOOKUP(lookup_value,
lookup_array, result_array)

The	function	finds	the	first	index	of	the	value	
lookup_value	appears	in	lookup_array,	and	
returns	the	item	in	that	index	in	the	
result_array.	If	the	function	can’t	find	
lookup_value	in	lookup_array,	it	returns	an	
empty	string.		

DAY(time_value) The	function	returns	the	day	number	(1-31)	
of	time_value	

HOUR(time_value) The	function	returns	the	hour	number	(0-23)	
of	time_value	

KERRY CHANG	|	Dissertation	 135

IMAGE(url) The	function	displays	the	image	in	url	in	the	
spreadsheet	cell	

Extended	conventional	spreadsheet	functions	(with	the	extended	features	in	italic)		
IF(condition, value1, [value2]) If	condition	is	true,	the	function	returns	

value1.	Otherwise,	the	function	returns	
value2	if	value2	is	specified,	or	the	cell’s	
current	value	if	value2	is	omitted.		

NOW() The	function	returns	the	current	date	and	
time	and	updates	every	minute.	

TODAY() The	function	returns	the	current	data	and	
updates	daily.		

New	Gneiss	spreadsheet	functions	
TIMER(exp, ms) The	function	returns	the	result	of	exp	and	

updates	every	ms	milliseconds.	
ANIMATE(start_value, end_value,
ms)

The	function’s	return	value	gradually	
increases	from	start_value	to	end_value	in	
ms	milliseconds.	It	uses	jQuery’s	animation	
algorithm	to	animate	the	value.		

REFRESH(exp) The	function	returns	the	value	of	exp	and	
invalidates	all	dependent	cells/constraints,	
forcing	them	to	be	recomputed.		

FETCHTIME(cell) If	cell	has	data	retrieved	from	a	web	service,	
the	function	returns	the	data’s	retrieved	
time.	Otherwise,	the	function	returns	a	blank	
string.	

SELECTBYTIME(range, start_time,
end_time)

The	function	returns	an	array	of	values	that	
are	in	range	and	retrieved	between	
start_time	and	end_time.		

	
	
	
		
	 	

KERRY CHANG	|	Dissertation	 136

APPENDIX B. A LIST OF SUPPORTED WEB GUI
ELEMENTS IN GNEISS
	
*Interactive	properties	whose	values	are	not	editable	but	change	based	on	how	
users	interact	with	the	web	application	are	shown	in	blue	color	and	italic.	As	
described	in	Chapter	4,	most	GUI	elements	have	a	State	interactive	property	that	
shows	how	the	mouse	cursor	interacts	with	the	element.	Possible	values	for	State	
are	“idle”,	“hover”,	“pressed”,	and	“clicked”.		
	
Element	Name	 Properties	
Text	and	Image	
Text	 Value,	Color,	FontSize,	FontStyle,	FontWeight,	TextDecoration,	Link	

(page	name	or	URL	to	make	the	element	become	a	hyperlink),	State		
Heading	 Value,	Color,	FontSize,	Link,	State	
Image	 Source	(URL	that	is	the	source	of	the	image),	AltText,	Width,	Height,	

Border,	Link,	State	
Input	
Text	box	 Value,	PlaceHolder	(grey	text	shown	in	the	textbox	when	the	

textbox	is	empty),	Width,	Height,	Live	(if	“true”,	Value	changes	
every	time	the	user	presses	a	key.	If	“false”,	Value	changes	when	
the	user	presses	the	enter	key.	Default	is	“false”),	State	

Slider	 Value,	Max,	Min,	Step,	Width,	Live	(if	“true”,	Value	changes	as	the	
user	drags	the	slider.	If	“false”,	Value	changes	when	the	user	
releases	the	mouse.	Default	is	“false”),	State	

Radio	Button		 Checked	(“true”	or	“false”),	Group	(the	radio	button	group	the	
button	is	in.	When	multiple	radio	buttons	have	the	same	Group	
value,	checking	one	button	will	uncheck	all	other	buttons.	Default	is	
“Group1”.),	Label	(radio	button	text),	State	

Checkbox	 Checked	(“true”	or	“false”),	Label	(checkbox	text),	State	
Button	 Width,	Height,	Value	(button	text),	Link,	State	
List	
Vertical	List	 BulletStyle,	Populate,	NumberOfItems		
Grid	List	 ItemWidth,	ItemHeight,	Populate,	NumberOfItems	
Visualization	(Implemented	using	Google	Visualization	API)	
Map	 Addresses,	Latitudes,	Longitudes,	TooltipText,	Width,	Height,	

Border,	State		
Line	Chart	 Title,	Data,	AxisLabels,	HAxisTitle,	VAxisTitle,	Width,	Height,	

Border,	State	
Bar	Chart	 Title,	Data,	AxisLabels,	HAxisTitle,	VAxisTitle,	TooltipText,	Width,	

Height,	Border,	State	
Scatter	Chart	 Title,	DataX,	DataY,	HAxisTitle,	VAxisTitle,	TooltipText,	Width,	

Height,	Border,	State	
Treemap	 Title,	Data,	Width,	Height,	Border,	State	

KERRY CHANG	|	Dissertation	 137

	

