
A Spreadsheet Model for Handling Streaming Data
 Kerry Shih-Ping Chang and Brad A. Myers

Human-Computer Interaction Institute
Carnegie Mellon University
Pittsburgh, PA 15213 USA

{kerrychang, bam}@cs.cmu.edu

ABSTRACT
We present a spreadsheet model for working with streaming
data. Our prototype tool presents techniques to let the user
stream data from web services and web input elements to a
spreadsheet without preprogramming those sources into the
tool. Spreadsheet cells record metadata about where and
when the data came from, allowing the user to view and
manipulate streaming data using temporal information.
Starting and pausing a data stream in the spreadsheet can be
controlled programmatically using values computed by
spreadsheet cells, making the spreadsheet program highly
dynamic and interactive. We demonstrate the range of our
design with a series of examples highlighting its ability to
create different kinds of applications that process real-time
data from the web using simple spreadsheet formulas.

Author Keywords
Spreadsheets; streaming data; web services; end-user pro-
gramming; live programming

ACM Classification Keywords
H.4.1. Information Systems Applications – Spreadsheets

INTRODUCTION
Much data analysis work nowadays uses real-time data such
as market prices, geo-locations of people and vehicles, or
social network feeds. Tools that allow easy, ad-hoc use of
streaming data sources could be very useful for people such
as data analysts, emergency first responders, or even casual
users who want to explore real-time web data. For example,
one might want to monitor weather alerts from National
Weather Service along with real-time searches for Twitter
feeds in the alert areas for emergency events, or to monitor
item auction prices on eBay to see the trends and guess the
right time and price to bid. Currently, using real-time web
data requires programmers to writing complex code that
streams the data from the providers and dynamically ma-
nipulates the collected data. Commercial data analysis or

visualization software can let users play with built-in data
sources but often lacks customizability in terms of adding
new data sources and using them in an ad-hoc manner.

This work extends our system called Gneiss1 [3] (see the
next section for an overview) that lets users create web ap-
plications by linking web UI elements to spreadsheet cells.
In this paper, we describe a spreadsheet model that lets us-
ers work with streaming data from web data sources. Our
spreadsheet model has several innovations: first, it presents
techniques that allow users to stream any fields from arbi-
trary REST JSON web services without needing a develop-
er to preprogram those sources into the tool (which is often
a requirement in prior end-user mashup or spreadsheet tools
such as [5,6]). Second, it introduces a design for spread-
sheet cell “metadata” which describe other attributes of a
cell’s value and can be used to manipulate spreadsheet data.
In this work, each cell automatically records metadata of its
value’s provenance and fetched time, allowing users to
view or manipulate streaming data in the spreadsheet using
temporal information, such as getting the daily maximum
and minimum values. Lastly, Gneiss allows streaming to be
paused and restarted using conditions computed live from
spreadsheet data using formulas. These features make the
created spreadsheet program very dynamic and interactive.

To show the generalizability of our model, we demonstrate
how the same mechanism that handles streaming data from
web services can be used for collecting user data in web
input elements such as textboxes on web pages. A spread-
sheet column can be set to pull data from a web UI element
either when the input element changes or when triggered by
live conditions. The data will be saved as a data stream in
the spreadsheet, making the spreadsheet work as a backend
database for the web application.

Combining all these features, this paper contributes a novel
spreadsheet model for using streaming data, where custom
real-time applications require only a few spreadsheet for-
mulas that otherwise would require writing complex code.

BACKGROUND
Our prior system called Gneiss [3] introduced a spreadsheet
environment for using web service data and creating inter-

1 Gneiss (pronounced the same as “nice”) is a kind of rock.
Here it stands for Gathering Novel End-user Internet
Services using Spreadsheets.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for com-
ponents of this work owned by others than ACM must be honored. Ab-
stracting with credit is permitted. To copy otherwise, or republish, to post
on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.

CHI 2015, April 18 - 23 2015, Seoul, Republic of Korea
Copyright is held by the owner/author(s). Publication rights licensed to
ACM.
ACM 978-1-4503-3145-6/15/04�$15.00
http://dx.doi.org/10.1145/2702123.2702587

active web applications. Gneiss contains three panes (see
Figure 1): at the left (1) is a “source pane” that let users
load data from arbitrary REST web services returning
JSON data; at the center (2) is a spreadsheet that holds the
data to be shown in a web application, and supports arbi-
trary computations using that data and sorting and filtering
rules; at the right (3) is a web interface builder where web
pages can be created interactively. Data flow is two-way
between the spreadsheet and a web service as a spreadsheet
cell value can be referenced in a web API (entered in the
URL textbox at the top of the source pane) using the syntax
{{cellName}} which will invoke the web service when-
ever the cell’s value changes. In the web interface builder
on the right (3), the user can create UI elements and visuali-
zations through drag-and-drop, and assign properties of UI
elements to be computed from spreadsheet cells. UI ele-
ment properties can be referenced in the spreadsheet using
the syntax UIID!PropertyName. This enables two-way
data flow between the spreadsheet and the web interface
builder, thus allowing the creation of web applications that
can interactively retrieve and present backend data.

Our work here extends Gneiss by providing a spreadsheet
model for working with streaming data. The previous
Gneiss system did not handle data streams nor did it support
cell metadata that allow spreadsheet data to be manipulated
based on the time fetched.

RELATED WORK
Some conventional spreadsheet tools have pre-programmed
formulas or widgets that pull real-time data from external
sources, such as the GoogleFinance formula in Google
Spreadsheets or Microsoft Excel’s web query. These tools
by default do not support creating data streams – they up-
date individual cells with latest values from the sources but
do not preserve past sequences of data. Woo et al. [6] ex-
tend Excel to collect and process sensor data. Sensor values
are stored on a server and streamed to a spreadsheet to use
in formulas or visualizations. ActiveSheets [5] is another
Excel extension for streaming data. It provides more con-
trols of how and what data should be streamed, such as let-

ting users create new streams using formulas or pause a
stream using a button. However, neither system supports
manipulating streaming data using temporal information of
when the data are retrieved. They also require data sources
to be preprogrammed into the server. Forms/3 [2] is a
spreadsheet programming tool for creating graphical inter-
faces. It has a time model for storing and retrieving GUI I/O
events, but it does not deal with data sources. There are
other languages that support using streaming data, such as
Microsoft’s StreamInsight [1] for creating streaming appli-
cations in C#. In contrast, our work extends the spreadsheet
metaphor, because it is already familiar to many end-users.

KEY FEATURES
Here we describe the key novel features in our tool for han-
dling streaming data.

Create a Data Stream in the Spreadsheet
Figure 1 shows a screenshot of our tool’s interface. Our tool
supports REST web services returning JSON data. The user
can enter a web API at the top URL bar in the source pane
and view the return data below. In our tool, arbitrary web
services can be turn into a streaming source if the checkbox
“Stream this source” is checked. The system then starts to
send the web service request every 3 seconds (configurable)
and updates the source pane with the latest return data. We
use a roll-up text animation when replacing old values in
the return data to show that they have been refreshed. Un-
checking the checkbox stops the streaming. The last updat-
ed time of the data is shown in a blue label next to the
streaming checkbox.

To create a data stream in the spreadsheet, the user selects a
desired field in the return data and drags it to the top cell of
a spreadsheet column. The system then starts to stack the
column with the latest values of the field pulled from the
web service. By default the values are sorted descending by
time, so the newest value appears at the top of the column.
Using this mechanism, the user can easily stream multiple
fields from one or multiple web services in a spreadsheet.

Figure 1: A screenshot of our tool. Here the user creates a real-time application that streams the name and price of a product on
eBay to the spreadsheet (column A and B) every 60 seconds. Each streamed cell records when its data is retrieved (E1) and this

temporal information can be used in sorting and filtering, or in spreadsheet formulas (F1) to select cells.

Manipulate Streaming Data using Temporal Information
Streaming data are inherently time-series data, and so the
ability to view or manipulate streaming data in the spread-
sheet by time is essential. To enable this, we designed each
spreadsheet cell to have metadata that describe attributes of
its value. The metadata are by default not visible but can be
exposed through formulas and be used to manipulate, sort
and filter spreadsheet cells (note that cell metadata in our
tool are different from user comments in conventional
spreadsheets as they are set and maintained automatically
by the system). In our spreadsheet model, each streamed
cell stores not only its display value but also metadata about
its provenance and fetched time, allowing data to be viewed
and manipulated using its value, source and temporal in-
formation. For example, a streamed column can be filtered
to show only the data retrieved today, sort them descending
by value and filtered to show only the top 5 rows, to view
only the 5 highest values of the day. Our tool applies sort-
ing and filtering rules dynamically in the spreadsheet – they
are re-evaluated every time when new data are retrieved. So
in the above example, the column will update continually to
display the 5 highest values. Sorting and filtering rules of a
column are controlled by a dialog box (Figure 1 at 2) that is
brought up by clicking on the arrow button at the top of the
column. By default, columns extracted from the same
streaming source are sorted and filtered together and are
highlighted in the same color when the dialog box is open.

As mentioned earlier, cell metadata can also be accessed
through spreadsheet formulas. We provide a new formula
FETCHTIME(cellName) that returns the retrieval time of a
streamed cell. The return value is in standard ISO 8601
format and can be used with conventional spreadsheet time
functions. We provide another formula SELECTBYTIME(
startTime, endTime, range) that returns an array of
values in range that are streamed between startTime and
endTime. The SELECTBYTIME formula can be easily used
together with many conventional spreadsheet formulas that
process a set of values. For example, suppose column B in
the spreadsheet holds latest news streamed from a news
data source. The formula:

=COUNTIF(SELECTBYTIME(“2014-09-21 9:00”,
“2014-09-21 10:00”, B:B),“*White House*”)

returns the number of news articles fetched between 9-
10am on September 21st, 2014 that contain the phrase
“White House”.

Control Streaming Timing
Our model also allows the user to set when it should pull
data from a streaming source. To do so, the user opens the
column setting dialog box of a streaming column. There she
can set the tool to pull data periodically every x seconds
(for example, “60 seconds” in Figure 1 at 2). She can also
choose to pause a stream when a given condition is true (if
the condition is not specified, the stream pauses immediate-
ly). For example, in Figure 1, the user selects the “Pause

streaming when” checkbox and enters “E1=’Pausing
streaming’” as the condition, then our tool will pause
streaming from the source if cell E1 becomes “Pause
streaming”, and restarts streaming when E1 becomes other
values. This feature also allows the user to create applica-
tions that dynamically stream data from different sources.

Stream Data from Web Input Elements
Our spreadsheet model can also be applied to stream data
from web input elements such as textboxes or forms. The
user can set a column to pull data from a web input element
by checking on the “Stream data from” checkbox in the
column setting dialog box, and setting the input element to
be the streaming source. For example, entering Text-
Box1!Value as the streaming source sets the column to
stream the value of TextBox1. By default, the column pulls
data from an input element whenever its value changes. The
user can further use the “pause” mechanism described earli-
er to start streaming only when certain condition is true. For
example, using Button!State!=“clicked” as the pause
condition makes the column stream data from TextBox1
only when Button is clicked. Like spreadsheet cells storing
data streamed from web services, cells storing data
streamed from web input elements also have the same
metadata and can be manipulated by retrieval time. This
feature also enables our spreadsheet to be used as a form of
database for a web application, as it stores input values as
streams in the spreadsheet.

Save and Close a Spreadsheet
The user can save her spreadsheet on the server and decide
whether to save the streaming data after she closes the
spreadsheet. By default, the streamed data are stored on the
server’s database, and all streaming stops when the spread-
sheet is closed. All streaming restarts when a spreadsheet is
opened. The user can also choose to remove all streaming
data on the server when closing the spreadsheet, or to keep
streaming even when the spreadsheet is closed (although
our server has a limit for how much data can be stored in
the database2). As described in [6], the web pages created in
the web interface builder can also be exported as a web
application running on the server.

IMPLEMENTATION
Our tool is implemented as a web application that contains
a client-side spreadsheet tool and a backend server. All
streaming data are stored in the backend server for better
performance. Based on the data selection rules that the user
sets in the spreadsheet (such as filtering), when a new data
value arrives, the server selects the appropriate data and
returns them to the frontend. We use node.js and MongoDB
in the backend, and ConstraintJS [4] in the frontend.

2 We use MongoDB as the database. See its limitations at
http://docs.mongodb.org/manual/reference/limits/

DEMONSTRATIVE EXAMPLES
Here we use two examples to demonstrate our tool’s ability
to create real-time applications that use live streaming data
requiring only a few simple lines of spreadsheet code.

Auction Price Tracker
Online auction marketplaces such as eBay let customers bid
on an item. The price of an item could change as bids are
added or if the seller adjusts the base price. Using our tool,
the user can create a real-time price tracker. Suppose the
user wants to monitor the price of a product, see its highest
and lowest value daily, and get notified when the price is
below a threshold (Figure 1 shows a screenshot of a similar
example).

The user first uses eBay’s FindAPI to get information about
the desired product. In the source pane she sets the tool to
stream data from eBay and extracts the name and price field
from the return data to spreadsheet columns A and B using
drag-and-drop. The tool starts to stack data streamed from
eBay to columns A and B, with the latest data in the top
row. To get the highest price value of today, she enters

=MAX(SELECTBYTIME(“2014-09-21 00:00:00”,
“2014-09-21 23:59:59”, B:B))

in cell D1 (as September 21st is the date of today). She then
enters the same formula with dates replaced with September
22nd in D2, selects both D1 and D2, and drags the selection
down to D7 to fill in D1 to D7 with the highest value each
day in the week of September 21st, using the familiar “auto-
fill” mechanism in spreadsheets. She similarly fills in E1 to
E7 with the daily lowest price. Finally, she enters a price
threshold in cell F1 and enters =IF(B1<F1, “Bid!”,
“Wait”) in cell F2 to remind herself when to make a bid.
In the web interface builder, she creates a web page that has
two graphs: one visualizing column B (the price trend,
shown in Figure 1 at 3), and another graph showing col-
umns D and E (the daily high and low values) in real-time,
along with a text label showing the current price (B1) and
another text label showing if she should make a bid (F2).

Real-time Weather Alerts based on Locations
Suppose a user works in a company that has an internal web
service tracking current locations of company trucks and
wants to create an application that monitors the weather
condition at a truck’s current location to alert the driver of
issues such as if the atmosphere visibility becomes too low.
The user first sets column A to stream GPS coordinates of a
truck from the company web service and sort the data de-
scending by time, thus the most recent coordinates are in
cell A1. To retrieve weather data of the truck’s current loca-
tion, the user uses Yahoo’s Weather API, replaces the query
value to refer to cell A1 and streams the visibility field from
the return data to column B. Cell B1 thus becomes the at-
mosphere visibility reading of the truck’s current location.
The user can then use an IF formula to check B1’s value
and see if it is below a certain threshold.

As mentioned earlier, our tool also allows the user to pause
a data stream programmatically. Suppose the user stores the
location of the truck’s destination in cell C1. She can then
set the pause condition to be A1=C1, so the streaming stops
when the truck arrives at its destination.

CONCLUSIONS AND FUTURE WORK
This work contributes a model for using streaming data in
spreadsheets. It includes techniques to let users stream data
from web sources to a spreadsheet without writing conven-
tional code, a design for spreadsheet cell metadata to let
users manipulate spreadsheet data using temporal infor-
mation, and ways to dynamically control when to pull new
data using the spreadsheet language and interaction tech-
niques. Based on this model, our prototype tool provides a
live environment for dealing with live streaming data. For
future work, we would like to support more types of
streaming data sources, such as streaming web APIs (like
Twitter’s) and mobile sensors. We are interested in explor-
ing more usage of cell metadata, such as to assist people in
integrating data from multiple sources or editing a collabo-
rative spreadsheet. We will also run a formal user study
evaluating the full Gneiss system.

ACKNOWLEDGEMENT
This research was funded by the NSF under grant IIS-
1314356. Any opinions, findings and conclusions or rec-
ommendations expressed in this material are those of the
authors and do not necessarily reflect those of the NSF.

REFERENCES
1. Ali, M., Chandramouli, B., Goldstein, J., and

Schindlauer, R. The Extensibility Framework in
Microsoft StreamInsight. Proc. ICDE, IEEE (2011),
1242–1253.

2. Burnett, M., Atwood, J., Walpole Djang, R., Reichwein,
J., Gottfried, H., and Yang, S. Forms/3: A First-order
Visual Language to Explore the Boundaries of the
Spreadsheet Paradigm. J. Funct. Program. 11, 2,
Cambridge University Press (2001), 155–206.

3. Chang, K.S.-P. and Myers, B.A. Creating Interactive
Web Data Applications with Spreadsheets. Proc. UIST,
ACM (2014), 87–96.

4. Oney, S., Myers, B., and Brandt, J. ConstraintJS:
Programming Interactive Behaviors for the Web by
Integrating Constraints and States. Proc. UIST, ACM
(2012), 229–238.

5. Vaziri, M., Tardieu, O., Rabbah, R., Suter, P., and Hirzel,
M. Stream Processing with a Spreadsheet. In R. Jones,
ed., ECOOP 2014 – Object-Oriented Programming SE -
15. Springer Berlin Heidelberg (2014), 360–384.

6. Woo, A., Seth, S., Olson, T., Liu, J., and Zhao, F. A
spreadsheet approach to programming and managing
sensor networks. Proc. ISPN, ACM (2006), 424–431.

