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Abstract

The leaderboard of Large Language Models (LLMs) in math-
ematical tasks has been continuously updated. However, the
majority of evaluations focus solely on the final results, ne-
glecting the quality of the intermediate steps. This oversight
can mask underlying problems, such as logical errors or unnec-
essary steps in the reasoning process. To measure reasoning
beyond final-answer accuracy, we introduce REASONEVAL, a
new methodology for evaluating the quality of reasoning steps.
REASONEVAL employs validity and redundancy to charac-
terize the reasoning quality, as well as accompanying LLMs
to assess them automatically. We explore different design
options for the LLM-based evaluators and empirically demon-
strate that REASONEVAL, when instantiated with base models
possessing strong mathematical knowledge and trained with
high-quality labeled data, consistently outperforms baseline
methods in the meta-evaluation datasets. We also highlight
the strong generalization capabilities of REASONEVAL. By
utilizing REASONEVAL to evaluate LLMs specialized in math,
we find that an increase in final-answer accuracy does not nec-
essarily guarantee an improvement in the overall quality of the
reasoning steps for challenging mathematical problems. Addi-
tionally, we observe that REASONEVAL can play a significant
role in data selection. We open-source the best-performing
model, meta-evaluation script, and all evaluation results to
facilitate future research.

Code — https://github.com/GAIR-NLP/ReasonEval

1 Introduction
Mathematical reasoning, a core cognitive skill, is crucial
for resolving complex problems and making informed de-
cisions (Hendrycks et al. 2021; Lewkowycz et al. 2022),
playing a significant role in large language models (LLMs)
research (Azerbayev et al. 2023; Lu et al. 2023). Given its
significance, reliably evaluating mathematical reasoning in
LLMs becomes crucial. Current methodologies to evaluate
mathematical reasoning in LLMs focus primarily on the final
result (Luo et al. 2023; Chern et al. 2023; Yu et al. 2023),
neglecting the intricacies of the reasoning process. For exam-
ple, the OpenLLM leaderboard, a relatively well-recognized
benchmark for LLMs, uses overall accuracy to assess models’
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mathematical reasoning. Despite being effective to some de-
gree, such evaluation practice could mask underlying issues
such as logical errors or unnecessary steps that compromise
accuracy and efficiency of reasoning steps. In this work, we
argue that a desirable evaluation criterion for mathematical
reasoning encompasses not only the accuracy of the final
answer but also the correctness and efficiency of each step
in the reasoning process. Moreover, it is imperative that the
evaluation metrics be open-source and replicable to ensure
transparency and reliability.

Our design philosophy stems from the fact that a correct
final answer does not guarantee a flawless reasoning pro-
cess (Lewkowycz et al. 2022; Uesato et al. 2022), and exces-
sive or irrelevant reasoning steps can lead to potential errors
as well as increased computational costs (Zhang et al. 2023).
Once these issues go unnoticed, they can cause problems in
many application scenarios. For example, in K12 mathemat-
ics education, incorrect or redundant solution steps provided
by LLMs could mislead students. There have been some
recent works related to the above evaluation principle. Specif-
ically, Uesato et al. (2022); Lightman et al. (2023); Wang
et al. (2023) present process reward models for mathematical
reasoning, which focus on their utility as verifiers (Cobbe
et al. 2021) to boost the accuracy (i.e., by generating many
candidate solutions and selecting the one ranked highest by
the verifier), leaving its underlying potential to identify rea-
soning errors and redundancy. Clinciu, Eshghi, and Hastie
(2021); Golovneva et al. (2022) rely on embedding-based
methods to measure the quality of general reasoning expla-
nation, which has limitations in handling diverse reasoning
steps from various models.

In response to these challenges, we propose REA-
SONEVAL, a suite comprising a new evaluation methodology
with defined metrics for assessing mathematical reasoning
quality and corresponding LLM-based evaluators for auto-
mated calculation. As illustrated in Figure 1, REASONEVAL
emphasizes the validity (i.e., the step contains no mistakes
in calculation and logic) of each reasoning step, and eval-
uates the redundancy (i.e., the step lacks utility in solving
the problem but is still valid) of steps to ensure efficiency.
We explore different design options for the LLM-based eval-
uators and show training such a high-quality evaluator for
mathematical reasoning is not a straightforward task, which
requires an LLM with strong mathematical knowledge as
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Figure 1: Given a solution to a math problem, REASONEVAL scores each step and identifies the potential error location, serving
as an extension to verify the final answer only.

well as high-quality training data. We empirically demon-
strate that REASONEVAL using the optimal design can con-
sistently outperform baseline methods by a large margin in
the meta-evaluation datasets (§4.2). Moreover, we highlight
the strong generalization ability of REASONEVAL (§4.3).

Furthermore, we show the utility of REASONEVAL through
the lens of two preliminary applications, as detailed in §5: (1)
evaluating different LLMs trained for mathematical reason-
ing; and (2) selecting high-quality data to train such LLMs.
We have the following main findings: (1) We find that an
improvement in the result accuracy is not sufficient to en-
sure an enhancement in the overall quality of reasoning steps
in challenging mathematical problems; (2) We find that the
model scale, the base model, and the training methods have
significantly influenced the quality of reasoning steps; (3)
We find that REASONEVAL can select high-quality training
data to improve the efficiency of solving problems and the
quality of solutions. These findings pave the way for future
work to design methods that take into account the process of
problem-solving.

Overall, our main contributions are as follows:
(1) We recognize the potential gap between what we are

evaluating and what we are desiring in mathematical reason-
ing, prioritize validity and redundancy aspect to address the
misalignments and inefficiencies that can arise in mathemati-
cal reasoning processes (§3). (2) We design a meta-evaluation
testbed to assess the reliability (§4) and utility (§5) of men-

tioned metrics, guiding us to a superior metric design, solidi-
fying the foundation for future exploration and significantly
lowering trial and error costs. (3) We open-source our best-
performing metric, meta-evaluation script and all evaluation
results to facilitate future research.

2 Preliminaries
2.1 Problem Formulation
Given a mathematical problem q, solution steps ĥ =

{ĥ1, ..., ĥN} and an answer â generated by LLMs, the goal
is to evaluate how well the generated solution and answer are.
Usually, the ground truth answer a is available but the refer-
ence solution step h = {h1, ..., hM} is not always provided.

2.2 Existing Evaluation Methodology
Answer-based Matching Most of the existing works (Luo
et al. 2023; Chern et al. 2023; Yu et al. 2023) measure the
mathematical reasoning quality by directly comparing the fi-
nal answer (i.e., â and a) and calculating the overall accuracy
on a given dataset.

Reference-based Scoring Instead of only using the final
result as a scoring criterion, some works (Sawada et al. 2023)
try to measure the reasoning quality by comparing the simi-
larity between generated and reference solution steps (i.e., ĥ
and h). Although datasets like MATH (Hendrycks et al. 2021)
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and GSM8K (Cobbe et al. 2021) provide the ground truth solu-
tions, the existence of diverse reasoning paths leading to the
same answer a renders reliance on any single one of them as
a reference unreliable.

Prompting-based Method This method directly asks
LLMs with a well-defined prompt to generate a judgment for
a given generated solution and answer (Hao et al. 2024). This
approach usually requires a very powerful LLM, often GPT-4,
which may not be practical for iterative model development
due to cost and transparency concerns.

The aforementioned methods either focus solely on the
final results (e.g., a) or are limited by the use of reference
solutions and proprietary LLMs, and most of them only con-
centrate on evaluating “correctness”, neglecting other aspects
such as the redundancy of solution steps. This has inspired us
to propose a set of evaluation criteria that better aligns with
the reasoning models in the era of LLMs.

3 REASONEVAL: Metrics and
Implementations

3.1 Design Principle
We argue that for tasks involving multi-step reasoning, mea-
suring the quality of reasoning should not solely depend on
the correctness of the final result. It should also consider (1)
the accuracy of each reasoning step; (2) the efficiency of
the reasoning process. To this end, we design evaluators that
assess reasoning steps regarding validity and redundancy in
a step-by-step format, checking whether each step advances
well towards solving the problem. Precisely, validity denotes
the step contains no mistakes in calculation and logic, and
redundancy describes the step lacks utility in solving the
problem but is still valid.

3.2 Scoring Scheme
Following this principle, we formulate such a metric design
process as a classification task. We classify each step into
three classes: positive, neutral, and negative. The positive
label indicates that the step is correct and contributes to solv-
ing the question, the neutral label represents that the step
is correct but does not make any progress, and the negative
label signifies an incorrect step. Given a question q and the
solution steps ĥ = {ĥ1, ..., ĥN}, each step will be assigned
the probability of the three classes as follows:

{p1, ..., pN} = REASONEVAL(q, ĥ1, ..., ĥN ) (1)

pi = (pipositive, p
i
neutral, p

i
negative) (2)

The validity score, concerning only the correctness of the
reasoning steps, is defined as:

Si
validity = pipositive + pineutral (3)

The redundancy score, concerning the utility of the steps
given that they are valid, is defined as:

Si
redundancy = pineutral (4)

We can aggregate the step-level scores to get the solution-
level scores. We use the ‘min’ and ‘max’ operations:

Sall
validity = min(S1

validity, ..., S
N
validity) (5)

Sall
redundancy = max(S1

redundancy, ..., S
N
redundancy) (6)

We describe the detailed justification of our scoring
scheme in Appendix A.

3.3 Model Architecture
LLM Backbone Our defined evaluation method (Eq.1) can
be implemented by directly prompting existing LLMs or
fine-tuning LLMs using supervised dataset. To make a com-
prehensive study, in this work we instantiate REASONEVAL
by different types of LLMs, which vary in base model types
(e.g., Llama2 (Touvron et al. 2023) and Mistral (Jiang et al.
2023)), model sizes (e.g., 7B, 34B), and post-training strate-
gies (e.g., continued pretraining (Azerbayev et al. 2023) and
fine-tuning).

Task-specific Layer Our evaluator’s architecture is iden-
tical to the base model, except that the linear layer for next-
token prediction is replaced with a linear layer for outputting
the possibilities of each class. After normalization with the
softmax layer, we get the possibility for each class.

3.4 Fine-tuning
The above task formulation allows us to utilize the existing
dataset, PRM800K (Lightman et al. 2023), as training data in
REASONEVAL. PRM800K contains about 800,000 step-level
labels over 75,000 solutions. It is collected by employing
humans to label the step-by-step solutions generated by GPT-
4 to MATH problems. The label categories for the reasoning
steps are identical to those mentioned in §3.2. In the training
phase, the loss function only includes the last token of each
step, as it contains the full information about the step. We
also take the last token of each step for prediction at test time.
We provide the details on training and splitting solutions in
Appendix B.

4 Meta Evaluation
4.1 Meta-evaluation Setup
Meta-evaluation1 Datasets Inspired by Zeng et al. (2024),
which propose a benchmark named Meta-Reasoning-GSM8K
(MR-GSM8K), we construct a meta-evaluation dataset MR-MATH
to better assess how well different evaluators can detect er-
rors in reasoning steps. It is constructed as follows: (1) To
collect the first type of errors affecting the correctness of
steps, we recruit undergraduates who have a solid mathemati-
cal background to label solutions generated by Abel (Chern
et al. 2023) and WizardMath (Luo et al. 2023). We collect 83
samples with incorrect steps and 76 without, pinpointing the
first error location in the former. All the solutions reach the
correct final answers, meaning the evaluators need to judge
correctness based on the process rather than the outcome. Ad-
ditionally, since the style of solutions differs from the training

1Meta-evaluation refers to evaluating the performance of evalua-
tors themselves.
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MR-MATH-invalid MR-MATH-redundant

Solution-level Step-level Solution-level Step-level

F1 Score AUC F1 Score AUC F1 Score AUC F1 Score AUC
Embedding-based Methods
ROSCOE-SA 48.2 57.5 - - 50.7 53.9 - -
ROSCOE-SS 51.6 49.6 - - 52.0 52.7 - -

Prompting-based Methods
GPT-3.5-turbo 59.7 - 53.2 - 53.0 - 51.5 -
GPT-4 73.2 - 61.0 - 57.1 - 54.2 -

Step-level Evaluators
Math-shepherd-Mistral-7b 70.1 77.3 60.0 77.2 50.4 54.5 42.7 53.0
REASONEVALLlama2-7B 66.7 79.5 60.8 80.0 60.4 62.8 59.0 68.6
REASONEVALWizardMath-7B-V1.0 72.8 81.9 67.7 83.9 60.5 65.6 59.0 68.3
REASONEVALMistral-7B 78.0 85.1 68.6 85.7 60.7 63.4 59.7 70.9
REASONEVALLlemma-7B 74.7 84.3 76.6 90.5 59.6 63.0 58.6 68.3
REASONEVALAbel-7B-002 77.3 86.2 70.4 90.5 58.6 63.6 59.5 71.8
REASONEVALWizardMath-7B-V1.1 78.6 87.5 73.9 89.5 61.6 64.8 59.7 72.2
REASONEVALLlemma-34B 79.6 90.8 77.5 92.8 58.3 62.7 57.5 67.3

Table 1: Comparison of methods for automatic evaluation of reasoning steps in MR-MATH. For any methods that require setting a
threshold, we report the Area Under the Curve (AUC) metric.

set of PRM800K (See examples of solutions in Appendix C,
it tests the generalization of REASONEVAL to some degree.
(2) For the second type of errors affecting the efficiency of
problem solving process, as they are more rarer than the first
one, we sample solutions from the test set of PRM800K di-
rectly, containing 150 samples with redundant steps and 150
samples without.

Evaluators We compare three methods to evaluate rea-
soning steps automatically: embedding-based methods,
prompting-based methods and step-level evaluators. For the
embedding-based methods, we choose ROSCOE (Golovneva
et al. 2022), a SOTA method among them. Specifically, we
select the semantic alignment metrics (ROSCOE-SA) and
the semantic similarity metrics (ROSCOE-SS), which do not
require references solution steps. For the prompting-based
methods, we select GPT-3.5-turbo and GPT-4, two main-
stream generation models. We use the prompt suggested
by Zeng et al. (2024) for the invalid errors and the modified
version for the redundant errors. For the step-level evalu-
ators, we select 7 base models for REASONEVAL: Llama-
2-7B, Mistral-7B, Llemma-7B, Llemma-34B, WizardMath-
7B-V1.0 (Luo et al. 2023), WizardMath-7B-V1.1, Abel-7B-
002 (Chern et al. 2023). The llemma series is continuing
pertaining on math-based corpus. The Abel and WizardMath
series are fine-tuning for solving mathematical problems.
We also select the open-source SOTA process reward model
Math-shepherd-Mistral-7B (Wang et al. 2023) to compare.
The settings for these methods are in Appendix D.

Meta-evaluation Metrics We test two abilities: judging
whether the solution contains errors and locating the error
step. In the first task the ground truth is labels for solutions

(solution-level), and in the second tasks the ground truth
is labels for steps (step-level). Since both are classification
tasks, we present the macro F1 score as a performance metric.
Additionally, for any methods that require setting a threshold,
we report the Area Under the Curve (AUC) metric, which is
a more balanced evaluation of performance across different
threshold settings.

4.2 Results and Analysis
Overall Results We present our main results in Table 1.
REASONEVAL outperforms baseline methods across all error
types and label levels. It is noteworthy that the identification
of errors at the step level is generally more challenging than
at the solution level for all methods. This suggests a higher
complexity in pinpointing errors at the individual step level.
Furthermore, identifying redundant errors is more intricate
than invalid errors due to the inherent ambiguity involved in
the former.

Analysis on Base Models We investigate the correlation
between the base LLMs’ mathematical reasoning capabili-
ties and the performance of REASONEVAL fine-tuned from
them. In Figure 2, for the invalid errors, an increase in AUC
shows a positive correlation with the base models’ ability to
solve MATH problems, indicating that enhancing mathematical
problem-solving abilities is beneficial for identifying invalid
errors. It is noted that the Llemma-34B outperforms all 7B
models, although its Pass@1 is not the highest. It highlights
the importance of model scale and the continued pretraining
over math-related corpus. For the redundant errors, the dis-
tinction across different base models is small, and it does not
show the correlation as the invalid errors. This may be due to
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MR-GSM8K-original MR-GSM8K-reversed

Solution-level Step-level Solution-level Step-level

OOD F1 Score AUC F1 Score AUC F1 Score AUC F1 Score AUC
Embedding-based Methods
ROSCOE-SA ✓ 51.6 54.4 - - 54.5 57.9 - -
ROSCOE-SS ✓ 49.6 60.1 - - 49.6 52.1 - -

Prompting-based Methods
GPT-3.5-turbo - 54.9 - 52.3 - 54.3 - 49.9 -
GPT-4 - 81.7 - 69.0 - 72.2 - 52.2 -

Step-level Evaluators
Math-shepherd-Mistral-7b ✗ 86.0 93.9 73.4 88.5 77.2 88.0 59.6 77.9
REASONEVALMistral-7B ✓ 61.8 79.8 62.9 86.1 61.0 71.9 61.5 84.3
REASONEVALWizardMath-7B-V1.1 ✓ 74.1 90.7 72.8 91.4 74.4 86.3 70.5 90.5
REASONEVALLlemma-34B ✓ 81.0 88.1 73.5 86.8 76.1 84.1 69.3 85.0

Table 2: Comparison of methods for automatic evaluation of reasoning steps in MR-GSM8K. “OOD” represents that its training
data contains the labeled solutions for problems of the dataset. The results of prompting-based methods are from Zeng et al.
(2024).

developers for these models prioritizing the correctness of so-
lutions over their efficiency, resulting in similar performances
in this aspect across various LLMs.
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Figure 2: Correlation between Pass@1 for the base model on
MATH and AUC for the solution-level labels.

Analysis on Training Data In Table 1, the Mistral-
7B trained on Math-Shepherd falls behind that
trained on PRM800K. We summarize the information
about Math-shepherd and PRM800K in Table 3. For
Math-shepherd, although having 6x training data, there
is more noise in the step-level labels generated with

the unsupervised method, thus harming its precision in
identifying errors. And the only two classes of labels also
make it limited in evaluating redundancy. Nonetheless, the
data synthesis method is promising. We leave it for future
work to optimize this method to reduce noise.

Dataset #S #C Problem
Source

Human
Ann.

Math-shepherd 440K 2 MATH,
GSM8K ✗

PRM800K 75K 3 MATH ✓

Table 3: Comparison between Math-shepherd and PRM800K.
“#S” represents the number of labeled solutions. “#C” repre-
sents the number of label categories for the reasoning steps.
For Math-shepherd, the categories are “correct" and “incor-
rect". “Human Ann.” indicates whether the labels for the
reasoning steps are generated by human annotations.

4.3 Out-Of-Distribution Generalization
Setup To assess the out-of-distribution generalization
of REASONEVAL, we evaluate its performance on
MR-GSM8K (Zeng et al. 2024). We select two distinct types of
questions from the dataset. The first type of question is from
the original GSM8K. The second type, termed reversed rea-
soning (Yu et al. 2023), involves concealing one of the inputs
and requiring the computation of the missing input using the
provided original answer. Both problem sets cover the full
test set of GSM8K, comprising approximately 1.4K samples
each. The step-by-step solutions for these questions are sam-
pled from MetaMath-7B (Yu et al. 2023) and include human
annotations labeling the correctness of each step. Since the
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training data of REASONEVAL does not include the labeled
solutions for these types of problems, this evaluation serves
as a robust test of its generalization ability. All settings are
identical to those described in §4.1.

Results We present the results in Table 2. We
observe that both REASONEVALLlemma-34B and
REASONEVALWizardMath-7B-V1.1 achieve superior perfor-
mance at the step level and approach the performance
of GPT-4 at the solution level, demonstrating strong
generalization capabilities. Additionally, REASONEVAL
is more robust to the question types compared to other
methods. For Math-shepherd-Mistral-7B, it performs best
in solution-level labels but lags behind in step-level labels,
suggesting that the noise in step labels from Math-Shepherd
negatively impacts its ability to accurately locate error steps.

5 Utilizing REASONEVAL for Evaluating and
Improving Reasoning Quality

5.1 Evaluating Reasoning Quality of LLMs
Specialized in Math

Figure 3: Box-and-whisker plots of Svalidity (upper) and
Sredundancy (lower). The boundaries of the whiskers are based
on the 1.5 interquartile range. Solid boxes show scores for so-
lutions with correct results, while dashed boxes show scores
for solutions with incorrect results.

Setup The models selected for measurement are two main-
stream LLMs specialized in math: Abel (Chern et al. 2023)
and WizardMath (Luo et al. 2023), with different scales. We
also report the results of LLaMA-2 (Touvron et al. 2023)
naive fine-tuned on PRM800K (approximately 6K solutions
that reach the correct final answers) for comparison. We eval-
uate the performance of the LLMs on MATH and sample 100
solutions for each problem to reduce evaluation noise and
sampling randomness. Specifically, the sampling temperature
is set to 0.6, and the top-p value is set to 0.95. The maximum
sample length is set to 2048 tokens. All solutions are scored
by REASONEVALLLemma-34B.

Our analysis includes two aspects: (1) False positive rate:
it refers to the proportion of solutions that have the correct
final answers but contain incorrect steps among all solutions
with correct final answers. (2) The redundancy of solutions.

Model Acc. (%) FPR (%)
LLaMA2-13B-PRM800K 7.4 40.6
LLaMA2-70B-PRM800K 14.7 21.8

Abel7B-001 12.4 31.8
Abel13B 15.2 29.8 (g29.2)
Abel70B 25.7 20.0
Abel7B-002 30.0 22.8

WizardMath7B-V1.0 8.9 34.4
WizardMath13B 10.9 31.3 (g28.3)
WizardMath70B 18.7 16.5
WizardMath7B-V1.1 31.0 16.7

Table 4: We estimate the false positive rate (FPR) with REA-
SONEVALLLemma-34B. We also check the false positive rate of
Abel13B and WizardMath13B by human (denoted by g.),
sampling one solution for each problem. “Acc.” represents
the overall accuracy.

False Positive Rate We set the threshold to 0.25 for the va-
lidity scores and calculate the false positive rate. We describe
the details of choosing the threshold value in Appendix E.
We present the main results in Table 4. We also include the
results in Figure 4 with the information of the tested models.
We highlight three key takeaways:

Increased final-answer accuracy does not inherently en-
sure a corresponding reduction in the false positive rate.
In Figure 4, it is clear that the false positive rate drops and
stays at a level of about 20% as the final-answer accuracy
rises. When comparing WizardMath7B-V1.1 with Wizard-
Math70B, although the former exhibits a much higher accu-
racy (31.0% vs. 18.7%), its false positive rate is almost the
same (16.7% vs. 16.5%). It indicates there exists a bottleneck
for the quality of reasoning steps to advance.

The model size and base model affect the false positive
rate significantly. When comparing LLaMA13B-PRM800K
with LLaMA70B-PRM800K, although using the same train-
ing data, the distinction in false positive rates is large (40.6%
vs. 21.8%). It indicates the importance of the model scale.
The base model of Mistral (Jiang et al. 2023) also achieves
a lower false positive rate than LLaMA2 (22.8% vs. 31.8%,
16.7% vs. 34.4%). Overall, the scaling law still applies to this
field.

RLHF helps lower the false positive rate when the
LLMs are relatively strong. There’s no distinction in false
positive rates between SFT and SFT plus RLHF when the
model is relatively weak, like 7B and the 13B model of
LLaMA-2 (31.8% vs. 34.4%, 29.8% vs. 31.3%). As the
model size becomes larger, SFT plus RLHF performs better
(16.5% vs. 20.0%, 16.7% vs. 22.8%). This indicates that ef-
fective supervision by RLHF requires a strong mathematical
ability of the model itself.
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Figure 4: Correlation between the final-answer accuracy and
the false positive rate.

Redundancy of Solutions We analyze the redundancy in
reasoning steps. Our main results are in Figure 3. It is note-
worthy that the redundancy scores of Abel family are usually
higher. This is because the solutions from Abel often involve
restating the problem first, which is considered a meaningless
action towards solving the problem by our evaluator. More-
over, the redundancy scores for solutions that fail to reach the
correct answers are higher. This suggests that when a model
is unsure about how to solve a problem, it tends to make more
attempts that lack meaningful progression.

5.2 Improving Reasoning Quality by Selecting
Training Data

In this part, we explore the potential of REASONEVAL to
select high-quality training data for SFT.

Setup The MMIQC (Liu and Yao 2024) dataset consists
of a mixture of processed web data and synthetic question-
response pairs used to enhance the reasoning capabilities of
LLMs. We randomly sample 10K unique responses generated
by GPT-3.5-turbo on MATH from the dataset. We then filter it
using REASONEVALWizardMath-7B-V1.1, specifically removing
samples with validity scores below 0.5 or redundancy scores
above 0.15. We also combine these two conditions. We SFT
the mistral-7b in different subsets with 3 epochs and observe
the performance on MATH. To compare, we randomly sample
the same amount of training data three times and report the
average performance.

Results We make the following observations from Ta-
ble 5: (1) In terms of accuracy, all groups filtered by
REASONEVALWizardMath-7B-V1.1 outperform the random group
and achieve performance close to that of the full dataset. (2)
The average number of tokens for the solutions decreases in
groups filtered by REASONEVALWizardMath-7B-V1.1, indicating
its advantage in increasing problem-solving efficiency. (3)
The group that combines the two filtering conditions signif-
icantly improves the quality of reasoning steps with only
about half the training data.

Filter #D Acc. Val. Red. #Token
- 100% 22.2 65.2 27.4 723.4

val. 76.7% 22.0 65.9 26.4 699.9
random 76.7% 20.1 62.5 27.4 765.6

red. 71.9% 21.8 65.6 22.1 681.5
random 71.9% 20.3 62.3 28.0 746.1

red. & val. 56.7% 22.0 67.8 22.5 701.2
random 56.7% 20.0 62.1 27.6 739.5

Table 5: “#D” represents the percentage of training data from
the full set. “Acc.” represents the overall accuracy. “Val.” and
“Red.” represent Svalidity and Sredundancy for the solutions with
correct results. “#Token” represents the average number of
tokens for the solutions.

6 Related Work
Evaluating reasoning steps automatically The technique
used to assess reasoning steps automatically can be broadly
divided into three groups: (1) Embedding-based methods:
Golovneva et al. (2022) propose several metrics and uses
the embedding-based calculation among hypothesis steps,
reference steps, and problems to represent them; (2) Parsing-
based methods: this approach aims to parse steps into struc-
tured forms, like ‘subject-verb-object’ frames (Prasad et al.
2023) or symbolic proofs (Saparov and He 2022). However, it
presents challenges for complex datasets such as MATH due
to the intricate logic involved; (3) Prompting-based methods:
due to the generalization of LLMs, given tailored prompts
to SOTA LLMs, they can check the solutions and find the
potential errors (Tyen et al. 2023; Zeng et al. 2024).

Process reward model (PRM) Process reward models are
mainly used in reinforcement learning to give feedback to
LLMs to align with human logic in mathematics. Lightman
et al. (2023) and Uesato et al. (2022) both evaluate the per-
formance of PRM as a verifier against the outcome reward
model. Ma et al. (2023) combine a check-and-generation idea
with PRM to generate a more accurate response. Wang et al.
(2023) propose a way to automatically construct process-
wise supervision data. These studies focus on leveraging
PRM to enhance accuracy. In contrast, our research explores
the potential of PRM to develop new evaluation methods in
mathematics, moving beyond mere accuracy improvements.

7 Conclusion
In this work, we develop REASONEVAL, a new metric to
evaluate the quality of reasoning steps from the perspectives
of correctness and efficiency. We construct a meta-evaluation
testbed and show REASONEVAL using the optimal design
can consistently outperform baseline methods by a large
margin. Additionally, we empirically demonstrate the strong
generalization ability of REASONEVAL. With REASONEVAL,
we find an inconsistency between final-answer accuracy and
the quality of reasoning steps. We also show its efficacy in
selecting training data.
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