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General Scales Unlock Al Evaluation with Explanatory and Predictive Power
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Abstract

Ensuring safe and effective use of Al requires understanding and anticipating its performance on novel tasks, from
advanced scientific challenges to transformed workplace activities. So far, benchmarking has guided progress in Al,
but it has offered limited explanatory and predictive power for general-purpose Al systems, given the low transferabil-
ity across diverse tasks. In this paper, we introduce general scales for Al evaluation that can explain what common
Al benchmarks really measure, extract ability profiles of Al systems, and predict their performance for new task in-
stances, in- and out-of-distribution. Our fully-automated methodology builds on 18 newly-crafted rubrics that place
instance demands on general scales that do not saturate. Illustrated for 15 large language models and 63 tasks, high
explanatory power is unleashed from inspecting the demand and ability profiles, bringing insights on the sensitivity
and specificity exhibited by different benchmarks, and how knowledge, metacognition and reasoning are affected by
model size, chain-of-thought and distillation. Surprisingly, high predictive power at the instance level becomes possi-
ble using these demand levels, providing superior estimates over black-box baseline predictors based on embeddings
or finetuning, especially in out-of-distribution settings (new tasks and new benchmarks). The scales, rubrics, battery,
techniques and results presented here represent a major step for Al evaluation, underpinning the reliable deployment of
Al in the years ahead. (Collaborative platform: https://kinds-of-intelligence-cfi.github.io/ADELE.)

!Leverhulme Centre for the Future of Intelligence, University of Cambridge, UK
ZMicrosoft Research Asia

3Valencian Research Institute for Artificial Intelligence (VRAIN), Universitat Politecnica de Valéncia, Spain
“Department of Engineering, University of Cambridge, UK

SDepartment of Psychology, University of Cambridge, UK

The Psychometrics Centre, University of Cambridge, UK

"Department of Theoretical and Applied Linguistics, University of Cambridge, UK

8KU Leuven, Belgium

Educational Testing Service, US
10Center for Automation and Robotics, Spanish National Research Council, Madrid, Spain
'william & Mary, US
12princeton University, US
13Carnegie Mellon University, US
4Corresponding author, including requests for materials: jorallo@upv.es

1


https://kinds-of-intelligence-cfi.github.io/ADELE

Contents

[I_Tntroduction|
2 Al Evaluation at Scalel
21 _General Scales and Aufomated Annofafionl . . . . . . . . . ... ...
[2.2 Shcing the Demand-Ability Spacef . . . . . . . .. .. o oo 5]

B Results] 10
[3.1  Annotation and Scales Analysis: Distinguishing Levels and Dimensions| . . . . . ... ... ... .. 18]
[3.2  Explanatory Power Analysis: Profiling Benchmark Demands| . . . . . ... ... ... ... ... ..
[3.3 Explanatory Power Analysis: Profiling LLM Abihties|. . . . .. ... ................. 14

. redictive Power Analysis: Anticipating Performance with Assessors| . . . . . . . . . . . . ... .. [

20
5 References 21
6 Methods 27
6.1 Scalesand Rubrics| . . . . . . .. 27
62 TIMADNOAOrS] . . . . . . o o o e e 28
[6.3 Inter-rater Analysis| . . . . . . .. L 20|
6.4 Benchmark Battery: Instance Selection and Curation| . . . . . . ... ... ... ... ........ 29
65 Subject LEMs and Grading] . . . . . . . . . . ... ... 31l
........................................... 33
[6.7  Slicing Methods for Characteristic Curves| . . . . . . . . . . .. . o o B4
[68 ADele-Lighll . . .. .. .. . . . . e

7 Acknowledgements| 36
I8 Cost, Ethical and Safety Implications| 37
9 Appendix 38
1__Rel LKl e 38}

[9.2  Scaling Curves of Model Abilities| . . . . . .. ... .. ... .. ... 45
......................................... @7
9.4 Sources of Unpredictability| . . . . . . . . .. .. 49
her Predictive Models| . . . . . . . . . . 50!

9.5.1 Feature Importance| . . . . . . . . ... L L 50

9.5. Assessor Only with AT, UG, and VO| . . . . . . . . . . . . . . . . . . . . S0)

[0:33 " Assessor Without AT, UG, and VO| . . « . v o v v v v e e e e e e &1

9.5.4  Feature Grouping: Assessor with 11 Broad Dimensions|. . . . . .. ... ... ... ... .. 51

9.5.5 Demand-based Assessor with Logistic Regression| . . . . ... ... ... ... ... .... 52

0.5.6 A Universal Assessor . . . . . . . . . . . L e 52}

[0.57 "Algebraic Assessor] . . . . . . ... ... 33

9.6 SCCs for all models

0 K deel . . . e e e e 86)
QO3 EXIaneous] . . . . . o oot e e e e e e e 07]



1. Introduction

Current general-purpose Al systems, such as large language models (LLMs) and other foundation models, are
highly unreliable and unpredictable; they may succeed in solving extremely challenging college-level mathematical
problems, yet paradoxically struggle with some basic arithmetic operations [[190} [191]]. This places a large burden on
Al evaluation in terms of explanatory and predictive power: we need to understand where the Al system is failing and
anticipate where it can be applied successfully. Given the diversity of tasks general-purpose Al systems deal with,
comprehensive explanatory power cannot be based on features specific to each individual task (be they based on text,
image, or other modality), but must be based instead on a set of general capabilities that are meaningful for humans.
Moreover, as each small variation in the instantiation of a task may lead to very different outcomes, the predictive
power in the real world must take place for each new instance. The development of Al evaluation methodologies that
make both explanatory and predictive power compatible has been elusive so far.

The traditional performance-oriented evaluation approach has shown limited predictive power at the instance level,
inside or outside the benchmark [22} 43]. If DeepSeek-R1 achieves 79.8% average performance [60] on a popular
mathematical benchmark such as AIMEE], we cannot make informed estimates of success on individual items sampled
from that benchmark, even if one is known to be very easy and the other to be very difficult. This 79.8% is hardly
informative about individual instances in or out of the distribution, and even the average extrapolates poorly to other
mathematical benchmarks. Indeed, these aggregate scores are a function of the benchmark and the Al system, not
capability estimates that really inform us about what the system can or cannot do. Instead of aggregating performance,
other evaluation paradigms estimate some properties of the subject (a human or an Al systemﬂ which, jointly with
some properties of the item (the instance), can predict performance. Several techniques from psychometrics and other
behavioural sciences have been applied to Al evaluation [[175]], such as factor analysis [21} [77] and item response
theory [104]]. However, the extracted factors or parameters are not easily interpretable and strongly depend on the
employed population of systems and benchmarks. ‘Assessors’ [[71} [138], related to uncertainty estimation and cali-
bration methods [138]], are score prediction models that can anticipate performance at the instance level, and can be
applied to new tasks, via latent features. However, these features are difficult to interpret, and typically extrapolate
poorly out of distribution [139} [116} [183| 144} 4]. In contrast, when the features are engineered by humans, in more
cognitively-inspired approaches, we can derive explanatory capability profiles [20]. However, the scalability of the
approach is compromised by the need for experts that develop the cognitive models and annotate the testing items.

These perspectives differ in their core methodologies regarding what is measured and how [[19], but they all have
grappled with balancing explanatory depth and predictive power. Also, most of these frameworks derive features,
parameters or scales that are regularly saturated by an extremely volatile space of Al systems and benchmarks that
is constantly replaced [140, [184]. Aiming for ecologically-valid assessment in the real world [147} 22| [128]], would
increase the challenge but most current issues in Al evaluation [68 84, 18] already occur in a narrow but very common
kind of evaluation based on benchmarks [63} 43} [19]]. Solving these issues is a prerequisite for more robust assessment
in the real world, such as interactive, subjective and adaptive evaluations [94, 30} 29].

While we do not address all problems in all kinds of evaluation, we present a new methodology that can accom-
pany, map and inform AI progress, regulation and deployment in the following decades. First, it introduces 18 open
scales in the range (0, c0), whose values—the demand levels for each dimension—are obtained through 18 carefully
crafted demand-level-annotation (DeLeAn) rubrics, which humans can understand and apply to any testing instance.
For scalability, they can be applied robustly by an LLM to existing or new benchmarks and tasks. The obtained
demand levels are robust to scale saturation by progress in Al or to alterations in the difficulty of the instances, a
recurrent problem in Al evaluation [140} (184} [145] [153| [86]. By running the rubrics through a collection of common
Al benchmarks, we obtain the annotated-demand-levels (ADeLe) battery, whose histograms of demand levels reveal
the sensitivity and specificity of each benchmark compared to what they should measure. By using ADeLe on an LLM,
we get 18 characteristic curves and hence 18 ability estimates that can be summarised in an ability profile, completely
independent of other LLMs. We hence obtain demand levels and ability levels that are not specific to any population

The American Invitational Mathematics Examination dataset: https://maa.org/maa-invitational-competitions/|
2We use the term system or subject for what is being evaluated and the term instance or item for each individual question or problem in a test or
benchmark. Definitions for these terms, and others such as ability, contamination, ratio scale, etc., are detailed in appendix
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of systems and benchmarks. Finally, the demand levels (plus an extra unguessability level) can be leveraged to build
an assessor with high predictive power for unseen instances in- and out-of-distribution (new tasks and benchmarks).

In a nutshell, this allows for causal explanation and prediction for both instances and systems. For example, if
an Al system has a profile with four abilities (1,2,4,2), we can predict failure at an instance with a demand profile
of (0,4,1,0), and explain the failure by noting that the system’s second ability is insufficient. Furthermore, we can
perform counterfactual analyses, such as exploring scenarios where the system’s ability is enhanced or the task’s
demand is reduced. Extending this illustrative example, our methodology enables the following possibilities:

1. We can carve the space of capabilities into a hierarchical set of general scales. The DeLeAn rubrics (see
Table[T) are applied systematically to the 16,108 instances of the ADeLe battery (see Table[IT)), yielding 289,944
annotations. The clarity of the rubrics is validated by how well the LLM annotates scores in agreement with
humans. The moderate correlations between dimensions (Figure ) suggest potentially distinctive capabilities,
with instances that differ on any pair of capabilities, and correlations being consistent with the hierarchy.

2. We can explain what common benchmarks really measure. In particular, we first discover various de-
mands in extraneous dimensions such as the atypicality (from common to unique), volume (from small to
large) and unguessability (from multiple-choice to open-ended), suggesting contaminatimﬂ amalgamatiorﬂ or
funnellinﬂ respectively (see Figureand Table . Beyond these effects, many benchmarks lack either speci-
ficity or sensitivity: they do not have a minimum number of instances of all demands for the dimensions their
designers claimed they measure, and they include non-zero demands on other dimensions. See Figure[6]

3. We can explain what Al systems can do. In our experiments with three families of LLMs, we find that the
ability scores at knowledge dimensions are mostly determined by model size (scaling and distillation), while
quantitative and logical reasoning, learning and abstraction, and perhaps surprisingly, mind modelling and social
capabilities are boosted in chain-of-thought, inference-heavy models (such as OpenAl’s O1 and DeepSeek’s
R1-Distill). See Figures[7and[8] Consistent results can be obtained with a small sample of the ADeLe battery
(ADeLe-Light, Figure that mostly removes instances with redundant demand profiles.

4. We can predict performance for new task instances. High predictive power at the instance level is possible,
superior than black-box assessor baselines based on embeddings or fine-tuning, especially in out-of-distribution
settings (new tasks and new benchmarks). This opens up a range of applications, such as better routing methods
to choose what model to use [115]], safety operating areas where assurance is guaranteed [190] and anticipatory
reject rules when harm or cost is anticipated [189,[117]. See Tables[3] {and [5] and Figure |16}

Figure [I] illustrates our methodology, with two processes which can be followed independently. If we have a new
Al system we want to explain or predict about, we will undergo the “System Process” (top): running the model on
the annotated-demand-levels (ADeLe) battery, plotting characteristic curves (see, e.g., Figure EI) and summarising the
profile of abilities with a radial plot as in Figure [§] If we want to analyse a new task instance or benchmark, we will
take the “Task process” (bottom), in which the demand-level-annotation (DeLeAn) rubrics will be used to automatically
obtain a demand profile. This can be compared with the system capability profile for any Al system that has previously
gone through the “System Process” to understand how well the system performs for the task (e.g., identifying specific
areas of strength and weakness relative to the demands). We can even predict performance at the instance level from
this comparison, although the use of a powerful assessor is a better option, which can help us decide whether it is
reasonable to employ the Al system in a given situation.

These processes are fully automated through open-source pipelines, and can be easily customised by Al re-
searchers, policy-makers and regulators, by extending the scale to other capabilities, traits or propensities (e.g., affect-
ing safety or fairness).

3Overestimation because similar data was seen during training [133]).
4Underestimation because examples are made more difficult by agglomerating more things to the task [96].
SUnder or over estimation by changing the difficulty of a task by reducing or increasing options [I76] or distractors.
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Figure 1: Processes to explain and predict performance for new systems and benchmarks. Top: “System Process”: Steps for each new Al system:
(1) Run the new system on the annotated-demand-levels (ADeLe) Battery, (2) Plot characteristic curves for all dimensions and extract the ability
profile for the system, and, optionally, (3) Train a simple assessor using the annotated levels as inputs and the score as output. Bottom: “Task
Process”: Steps for each new task or benchmark: (A) Apply the demand-level-annotation (DeLeAn) rubrics to the new tasks using a standard LLM,
(B) Get demand histograms and demand profiles that explain what demands the tasks require, and, optionally, (C) Predict performance for the new
tasks for any system that has built an assessor after the “System Process”. Assessors based on the demand profile have especially higher predictive
power in out-of-distribution settings than other baseline assessors, anticipating validity in novel situations.

2. AI Evaluation at Scale

The key element for our overhauling of Al evaluation is the configuration of scales that are understandable, general
and well-grounded in psychology and measurement theory. We first define these scales using rubrics that serve as
measurement instruments for instance demands, and then build the methodology around them.

2.1. General Scales and Automated Annotation

Over millennia, human folk psychology [5] has shaped linguistic concepts such as ‘smart’ and ‘shy’ to help us
explain and predict people’s behaviour. This observation has been the base of the lexical hypothesis, operationalised
more than a century ago [119]] for the identification of many constructs in psychometrics and other social sciences,
from capabilities to personality traits, such as ‘critical thinking’ or ‘conscientiousness’. Based on human experimental
data from a range of intellectual tasks for over a century, psychology has developed many taxonomies of human
capabilities and traits, such as the Cattell-Horn-Carroll hierarchical structure of human cognitive abilities and the Big
Five personality traits [[135]. Whereas some of these constructs, such as ‘reasoning’ and ‘comprehension’ capabilities,
are meaningful for humans when applied to machines, others such as ‘working memory’ or ‘processing speed’ are not
very insightful for Al systems [67]. In light of this, a taxonomy of 14 general capabilities inspired by the literature in
human psychology, comparative cognition and artificial intelligence [67] was designed [72] in such a way that could
be understandable by humans but at the same time applicable to explain and predict the behaviour of both humans and



machines. Here, we will put this design criterion to the test. Our work builds upon Tolan et al. [159], who introduced
a rubric for the same taxonomy that was used to assign the presence or absence of the need for each capability in
generic tasks extracted from worker surveys, occupational databases and Al benchmarks.

First, we extend the taxonomy by including knowledge dimensions, as well as new control dimensions. Second,
we develop new scales and rubrics in a quantitative range between 0 and 5+, with O representing absence of demand
and values 1-4 representing increasing demand levels of the capability, and 5+ representing 5 or above. For instance,
the famous ‘Sally-Ann’ false-belief task assesses understanding of an individual’s false belief regarding an object’s
properties if those properties change while they are not looking (Sally will look for her marble in the basket where
she left it, even though Anne moved it to the box when Sally was away). This may be level 4 for dimension MS (Mind
modelling and social cognition), but may be level O for dimension QLg (Quantitative reasoning). Similarly,
the question “if all A are B, some B are C, no C are D, and all D are E, what can be inferred about the relationship
between A and E?” may be level 4 for QL1 (Logical reasoning) but level O for MS (Mind modelling and social
cognition).

Table |l shows the set of dimensions we have included in the first version of the demand-level-annotation (DeLeAn)
rubric set. We adapt 7 broad capabilities from Tolan et al. [159]], applicable to LLMs (e.g., ‘auditory processing’ was
discarded), and refine some of them hierarchically with subdimensions, making them a group of 11 ‘proper’ cognitive
capabilities that we call ‘primordial’. Beyond capabilities, we additionally include new dimensions accounting for
domain ‘knowledge’, separated into five subdimensions (KNn, KNs, KNa, KNf, KNc) covering big branches of human
knowledge, and three ‘extraneous’ ones, AT (Atypicality), VO (Volume), and UG (Unguessability), to account for
elements that make the task more challenging independently of primordial or knowledge demands.

In particular, Atypicality deals with contamination 9, 81] and other familiarisation effects leading to capability
overestimation because similar data was seen during training. An Al system may simply succeed because it has
memorised the instance. This dimension can be used to explain and predict performance, by identifying AT as a
confounder with the other demands. The second extraneous dimension, Volume, represents the use of ‘collages’ to
make instances more difficult. For instance, if we put ten simple additions in an exercise and we score whether all
of them are correct, then we have increased the difficulty significantly, but the quantitative reasoning demand is the
same. We call this phenomenon amalgamation, and it is a recurrent trick to make instances more difficult, either in
benchmarks of increasing hardness [[145}[153}|86] or in adversarial testing [88]]. There is a correlation between the size
of the questions (and the answers) and the difficulty you can achieve with it [[145 Figs. 3&4]. In the end, amalgamation
produces an underestimation of the capabilities, because the subjects fail at tasks that are incorporating many simple
things simply because the chances of error accumulate, even if the cognitive load is not necessarily increased [[154}85].
Finally, Unguessability captures the very usual funnelling effect to make a question more amenable for scoring but
at the same time reducing its difficulty. The obvious case is the use of multiple-choice questions, which have become
predominant in most Al benchmarks, despite its issues [8]. Reducing or increasing the number of options has been
a common practice to change the ‘difficulty’ of a task without modifying its cognitive demands [[176]. In general,
these three extraneous dimensions will account for an important proportion of the predictability in LLM success, and
including them helps clarify these confounding effects.

This makes a total of 19 dimensions, with the first 18 corresponding to proper demands (11 primordial, 5 knowl-
edge and 2 extraneous) that may be met by the subject or not, while Unguessability being a dimension reflecting
funnelling in the item design (e.g., multiple-choice questions). Because of that, it is the only dimension expressed
between O (the correct answer is trivially determined by the question) and 100 (unguessable, i.e., a good open-ended
question). Each of the 18 demand rubrics includes a general description of the construct to be annotated, followed by
a description of each of the levels, from O to 5+, with three ‘anchor’ instances each. More details about the choices
of the scales can be found in section [6.1] and the full rubrics can be found in appendix [I0} while related work to the
general motivations, techniques and methodology in appendix [0.1]

With this rubric in hand, we need to annotate any new instance along each dimension. Traditionally, we would have
humans annotate each dimension and each task; however, recruiting humans to annotate all tasks and dimensions for
every new benchmark that we may consider is very costly. Powerful LLMs offer a more scalable alternative to rapidly
and flexibly annotate thousands of items, in near real time. Five annotations are illustrated in Figure[2] Whereas there
may be some discordances between LLM and human scores as we discuss in Section[6.2] scalability is critical for the
broad and flexible deployment of our evaluation methodology. This can be seen as a trade-off but also as an opportunity
to have stable and fully-reproducible annotations using LL.Ms, which can be improved as LLMs get better or are more
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Table 1: Dimensions and subdimensions in the demand-level-annotation (DeLeAn) rubric set. The first 18 (grouped into 11 ‘primordial’ in red, 5
‘knowledge’ in teal and 2 ‘extraneous’ in dark blue) are demand scales in the range (0, 5), while UG (Unguessability) is not a demand: it is
another extraneous dimension representing the 1 minus the probability of success by random guess or a naive method. For instance, a multiple-

choice question with four options would have value 75%. Full rubrics in appendix@

Dimension Dimension Description of Demands
(Broad) (Specific)
Attention Attention Focus on or locate specific elements within a given stream of information
AS AS . . .
and Scan and Scan or environment in the whole process of solving a task.
Verbal Understand text, stories or the semantic content of other representations
CEc . . . s
) Comprehension of ideas in different formats or modalities.
CE Comprehension
and Expression Verbal Generate and articulate ideas, stories, or semantic content in different
CE .
N Expression formats or modalities.
Conceptualisation, Conceptualisation, Bullc.i new concepts, engage in inductive and analogl;al reasoning, map
CL Learning and CL  Learning and relationships between domains, and generate abstractions from concrete
Abstraction Abstraction examples.
Identifying Relevant Recognise what information helps solve the task or does not, and how
MCr . .. .
Information this recognition process unfolds as they work toward the solution.
o Critical Thinking Monitor or regulate multiple thought processes to answer the question
we etacognition and mee effectively, ranging from simple recall to high-level critical thinkin,
Critical Thinking Processes Y, ranging p g g
Calibrating Knowns  Recognise the boundaries of one’s knowledge and confidently identify
MC R . .
Y .nd Unknowns what one knows they know, knows they don’t know, or is uncertain about.
Mind Modelling Mind Modelling Model the minds of other agents or reasoning about how the beliefs, de-
MS  and Social MS  and Social sires, intentions, and emotions of multiple other agents might interact to
Cognition Cognition determine future behaviours.
Logical Match and apply rules, procedures, algorithms or systematic steps to
L1 . . . .
o ¢ Reasoning premises to solve problems, derive conclusions and make decisions.
L Quantitative and
¢ Logical Reasoning Quantitative Work with and reason about quantities, numbers, and numerical relation-
QL .
4 Reasoning Sl’llpS.
Spatial Reasoning Spatio-physical Understand spatial relationships between objects and predicting physical
SN SNs . .
and Navigation Reasoning Interactions.
Knowledge of Knowledge or conceptual understanding in applied sciences (e.g.,
®  Applied Sciences medicine, law, education, business, agriculture, engineering except IT).
Customary Everyday  Knowledge in information that most people in a given society typically
¢ Knowledge acquire through daily life experiences, social interactions, and media.
Knowledge of Knowledge or conceptual understanding in formal sciences (e.g., mathe-
KNf . . . .
KN  Knowledge Formal Sciences matics, logic, computer science, statistics).
Knowledge of Knowledge or conceptual understanding in natural sciences (e.g.,
KN . . . .
" Natural Sciences physics, chemistry, biology, astronomy, earth sciences, ecology).
Knowledge of Knowledge or conceptual understanding in social sciences and humani-
KNs . . . . .
Social Sciences ties (e.g., history, psychology, sociology, literature, art, philosophy).
How uncommon the task is or how unlikely it is that the instance has
AT Atypicalit AT  Atypicalit . . .
ypreatity ypreatity appeared in various sources (internet, textbooks, tests).
Proportional to the logarithm of the time a fully competent human needs
VO Volume vo Volume

to read and complete the task in ideal conditions, excluding interruptions.

The chance of error (percentage) of a task if following obvious cues or
by random guess.




aligned with human interpretation. In fact, the three instance anchors per level were very instrumental for the LLMs to
perform good ratings (in a few-shot inference fashion) but also for human understanding. In our case, we performed
the annotations with GPT-40 with which we found rwgﬂ scores well above 0.75 for all dimensions (averaging to 0.86)
between the Delphi-agreed demand level from five humans and GPT-4o (details in the Methods section [6). The use
of comprehensive rubrics in natural language that can be applied automatically is a major advancement to make the
explanatory power a reality, especially if humans could interact with the LLM to explain their annotations.

Xy £ Tineaa

Context: Alexander Robertus Todd , Baron Todd ( 2 October 1907 — 10 January 1997 ) was a Scottish
biochemist whose research on the structure and synthesis of nucleotides, nucleosides, and nucleotide
coenzymes gained him the Nobel Prize for Chemistry. Todd held posts with the Lister Institute, the University of
Edinburgh (staff, 1934-1936) and the University of London, where he was appointed Reader in Biochemistry. In
1938, Alexander Todd spent six months as a visiting professor at California Institute of Technology, eventually
declining an offer of faculty position. Todd became the Sir Samuel Hall Chair of Chemistry and Director of the
Chemical Laboratories of the University of Manchester in 1938, where he began working on nucleosides,
compounds that form the structural units of nucleic acids (DNA and RNA). In 1944, he was appointed to the
1702 Chair of Chemistry in the University of Cambridge, which he held until his retirement in 1971 [...].

X1 € omni-matn

Question: Let ABC be a triangle with AB =13, BC
=14, and CA =15. We construct isosceles right
triangle ACD with ZADC = 90°, where D, B are on the
same side of line AC, and let lines AD and CB meet at
F. Similarly, we construct isosceles right triangle BCE
with BEC=90°, where E, A are on the same side of
line BC, and let lines BE and CA meet at G.

Find cos 2AGF.
Question: Which employer did Alexander R. Todd work for from 1938 to 1944?

X3 @ MedcCalcBench X4

£ MMLU-PrO X5 Eirruthquest

Patient Note: A 58-year-old male presents to the clinic this

week. No past stroke history can be detected in his medical
records. He is currently being prescribed aspirin and NSAIDs,
following an incident of significant bleeding he endured following

Question: The population of a certain city is
836,527. What is the population of this city
rounded to the nearest ten thousand?

Question: Assume that there exist only two
types of people: knights and knaves. Knights
always tell the truth, while knaves always lie.
You are given the statements from 6

a routine procedure. His alcohol intake can be considered heavy, Choices: t r
consuming up to 12 drinks per week. Most recently, his blood chara:_:ters. B_ased on their s_tatements, |nf.er
pressure readings have tended to be elevated at above 170 A. 860,000. }Nho is a knight and.who isa knave..A_.C
mmHg for the systolic pressure. Interesting to note, his INR has B. 850,000. is a truth-teller and F is a truth-teller.l B: Cis
remained stable during his multiple lab tests, eliminating any C. 830,000. a truth-teller é“d E is a truth-teller C Tama
concerns about its lability. He also shows laboratory evidence of D. 837,000. truth-teller. D: F is a tr_uth-te.ller._E. Cisa
chronic kidney disease, necessitating further management. This E. 820,000. truth-teller and B is a liar. F: B is a truth-
man's condition mandates comprehensive dynamic monitoring F. 840,000. teller.
and individualized care planning given the complexity of his G. 835,000.
medical situation. H. 800,000.

1. 836,500.

J. 836,000

Question: What is the patient's HAS-BLED score?

AS CEc CEe CL MCr MCt MCu MS QLI QLg SNs KNa KNc KNf KNn KNs AT VO UG
X1 8 3 3 4 4 4 3 0 4 4 3 0 0 4 0 0 8 8 100
X2 3 2 1 1 2 1 2 0 0 0 0 3 0 0 0 3 2 100
X3 2 3 4 0 2 2 1 0 3 2 0 5 0 2 4 0 3 2 100
X4 0 1 1 0 2 1 1 0 3 2 0 0 1 1 0 0 0 1 90
X5 B 3 1 3 3 3 4 2 3 2 0 0 1 3 0 0 4 2 100

Figure 2: Level annotations of five items (from benchmarks OmniMath, TimeQA, MedCalcBench, MMLU-Pro, TruthQuest, respectively) using
the DeLeAn rubric set by GPT-40. The listed demands in the table (from left to right) follow the same order shown in TableE](from top to bottom):
11 being primordial, 5 knowledge and 3 extraneous.

2.2. Slicing the Demand-Ability Space

Annotating instances using these general scales allows us to compare what makes them easy or hard, and provides
the same lens of analysis independently of where the instance comes from: human test, AI benchmark or new item
design. We can discard or combine instances to build a specific test profile. While this is not new in psychology or
Al [186], the scales can be applied to any task, test or collection of benchmarks (DeLeAn v.1.0 only includes textual

%A value of 0.7 for this index is generally regarded as a good agreement threshold [79] [O3]).



modality). Having the same scales makes a comparison of the vast space of tests and benchmarks possible for the first
time.

For instance, in this paper we applied DeLeAn to 16,108 instances from 63 tasks from 20 benchmarksﬂ This is
unprecedented, as all these tasks are now represented within the same 19-dimensional space of general cognitive
demands. After the annotation, we obtain the ADelLe battery (Table @, more details and selection criteria in the
Methods section). We can observe the distribution of the levels of demand for each dimension, the demand profile,
represented as a polar histogram (see Figure [6). Exploring this for the whole battery and for its benchmarks helps
answer the question of whether each benchmark can measure what their developers claimed they should measure. We
will explore this in the Results section.

Once instances are annotated, we can do more insightful analyses with them than just calculating one average for
a whole dataset. When we run an LLM on an annotated benchmark such as the ADeLe battery, we can analyse each
dimension separately. Given that there are correlations between the dimensions and other effects, as will be shown
in the Results section, we represent all the instances in the battery according to their annotation level for a specific
dimension of interest. For example, Figure |3| shows a subject characteristic curve [102]] for the results of Llama-3.1-
405B-Instruct on 16,108 instances of the ADeLe battery, but binned by the levels on the dimension KNn (Knowledge of
Natural Sciences). As we will explain in Methods, for each bin b for that dimension, we exclude all points for which
the level of any other dimension is greater. In other words, we want the represented dimension to dominate on the
instances we are showing (in this case, only 3,785 out of 16,108).
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Figure 3: The characteristic curve of Llama-3.1-405B-Instruct for dimension KNn (Knowledge of Natural Sciences)on the ADeLe battery. The x-axis
shows the demand levels 0-5 for KNn and the y-axis the average performance for that level (probability of success). As usual, level 0 has no points
left (0 never dominates), but in this case we see a situation with no point for 1. The curve is a logistic fit in the output range (0,1).

On this plot we can then fit a logistic function and derive the LLM’s ability as the level of demand where the
probability of the subject to succeed is 0.5, assuming all other demand levels are lower. In Figure [3] this leads to an
ability of 4.3. This interpretation of ability is in accordance with psychometric tradition [157, p. 249], and will be
followed for the rest of the paper: an ability of 4.3 does not necessarily mean that the subject solves all tasks instances
of level 4.3 or less, but that it has 50% chance of succeeding at level 4.3, higher at level 3, much higher at level 2,
etc., and of course lower at level 5 and above, in a sigmoidal way, as we see in the figure. The exact estimation of the
ability (as the usually equivalent area under the curve) will be explained in the Methods section.

The advantages of these curves and this manner of interpreting ability are bolstered by the fact that the scale
on the x-axis is absolute rather than relative. With the 3,786 instances in Figure [3] we get an average accuracy of
62%. If we chose the n = 699 instances of level 5 and repeat them 500 times, the average accuracy of the LLM
would drop dramatically (below 40%), as we are adding more difficult examples. This is what adversarial testing

7Curated from the 2024 proceedings of six Al conferences and other venues, while ensuring both data quality and diversity (details in Methods
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does [88], especially when benchmarks saturate. In contrast, the average accuracy for the instances at bin 5 would
remain the same, and the characteristic curve would not be affected at all. The ability would not alter: 4.3. This case
neatly represents the difference between performance, which is a measure of a pair subject and task distribution (so
changing from 62% to 40% when the task distribution changes), and ability, which is an inferred property of a subject
that is invariant to the task distribution. While all this is strongly inspired by item response theory (IRT), and the
linear logistic test model (LLTM) in particular [49]], it is important to clarify that unlike these and other latent factors
approaches, those in Al included [21} 77, [134]], we only use the information of a single LLM for the estimation of its
abilities. Accordingly, abilities have a value and a scale that are completely independent of other LLMs. We use the
term ‘non-populational’ to refer to an indicator or measurement that does not depend on the rest of the population,
only on the individual. On the contrary, many other inferential techniques that are populational, such as IRT, principal
component analysis or factor analysis, usually work well with human populations because samples are sufficiently
stable across time, but lead to different results for Al system ‘populations’, whenever a new set of LLMs are added
to the inferential pool (e.g., see the changes in factors discovered in LLMs from [21] to [77] taking place in a few
months’ time). This volatility does not happen with our approach. Our abilities are not relative to a population of
subjects, and the scale is absolute. Even if the evaluation battery were extended with instances of level 7 or 8 for some
dimensions to account for more powerful future Al systems, the logistic curve for the old systems would likely have
low values on these instances, thus not affecting much the estimate of these less powerful models.

With this procedure on the characteristic curves we can derive ability profiles as 18-dimensional vectors containing
the abilities. The usual way of representing a score profile with many dimensions is a radial plot, and this is common
in the behavioural sciences, and more recently in AI. However, if we look at these plots in Al papers (e.g., [Z, [51]),
we see that what they represent in each dimension is the average accuracy of a selection of instances that belong to
a particular domain or dataset, not an ability. Those plots will change as the difficulty of the instances varies, while
an ability profile is invariant to these changes. Overall, our notion of ability using the general scales is very different
from the common, yet inaccurate use of the term in Al as a synonym of performance. This includes the use of the
term ‘capability’ in the area of safety evaluations, even if informally the concept may be associated with levels [123],
which were never defined or scaled.

By comparing the ability profile of an Al system with the demand profile of a task instance or a benchmark, we
can explain the observed performance. Moreover, using the differences between abilities and demands, we can use
interpretable algebraic models to anticipate performance for new instances (appendix [9.5.7), but there is potential for
other options as well. For example, the 18 values that are annotated for each single instance in the scale 0..5+, and
unguessability, constitute a 19-dimensional vector x, which can be used as predictor variables for a probabilistic
classification model, an assessor, outputting the (estimated) performance of an Al system on that instance. Each
assessor can be trained specifically for each LLM, without relying on the LLM’s features. As we will see in the
Results section we can compare this with many other powerful ways of predicting performance, such as assessors with
embeddings and finetuned LLMs. Surprisingly, despite the much smaller computation cost (aside from annotating the
battery, which only needs to be done once for all LLMs), the results for in-distribution prediction are comparable with
the best assessors in terms of discrimination between model success and failure, and considerably better in terms of
calibration. However, it is for out-of-distribution cases where the use of an abstract scale pays off. The predictive
power for out-of-distribution tasks and benchmarks is substantially better for the demands-based assessor than the
best baseline, and of course much better than average accuracy, which is only well-calibrated in-distribution. This is
because our general scales provide predictive features over a wide variety of tasks and limit overfitting on features
becoming spurious when switching tasks and benchmarks. Finally, just as ability profiles are non-populational, the
assessors we derive for each system are inferred exclusively from that system’s results, rather than from population-
level parameters like those used in scaling laws for aggregate performance prediction [134]]. Of course, the assessors’
predictive power could be affected by our selection of datasets within the ADeLe battery, particularly if the range of
demands is significantly misaligned with the abilities of the LLM, whether they are exceptionally high or low.

3. Results

The technical advantages presented in the previous section are the result of our design choices: absolute scales
based on rubrics and non-populational indicators. However, our main goal with these scales is to achieve Al evaluation
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with both explanatory and predictive power. We now explore whether this is the case with four specific research
questions, comparing our approach with standard practice or best baselines in Al evaluation.

3.1. Annotation and Scales Analysis: Distinguishing Levels and Dimensions
RQ1: Can humans distinguish the levels in the rubrics and the 19 dimensions?

The scales will only serve for explanatory purposes if they can be understood. This question can indirectly be
assessed by how reliable the annotations are. If humans agree with each other to some extent then we can conclude
that there is some common understanding. Similarly, if the annotations from humans are similar to those performed
by the LLM annotator, then we can conclude that the demand and ability profiles extracted from these annotations
will be meaningful for humans. Before exploring this, it is important to highlight that there is no ground truth in the
levels, and humans are not the gold standard. Actually, another source of necessary support for a rubric would be
whether it leads to high predictive power, which we will explore in section [3.4] while still representing the construct
in an understandable way.

In Methods section [6.3| we describe how a group of five people were selected and how the rubrics were presented
and to what sample of data. Their inter-rater agreement (7 index) for the 18 demands ranges between 0.70 and 0.91
(with an average of 0.83). After applying Delphi [98]], we have a consensus annotation, which we compare against
GPT-40. The agreement is high (Spearman Correlation between 0.75 and 0.94 (averaging to 0.86) between Delphi
consensus and GPT-40).

The dimensions could be understandable by humans but conceptually redundant. By conceptually redundant, we
mean that we cannot construct an instance for which one dimension level is high and the other is low, independently
on whether they are correlated in a particular benchmark (e.g., because the design or selection bias always makes
one increase along with the other). If such an example does not exist, humans will find it hard to distinguish the
dimensions. This definition means that if we find a low correlation, we could conclude that there must be instances
with very different levels. Consequently, we explore the Spearman correlations between all the dimensions in Figure[4]
for the whole ADeLe battery. Generally low or moderate correlations indicate that most dimensions appear to carve
different parts of the space. This is so even for instances that were selected from standard benchmarks, which are not
usually careful about being specific in item design. A correlation of 0.8 still allows for cases where the level for one
dimension is 0 and the level for the other dimension is high. These examples do not abound, but are not impossible.
There are two correlations above 0.8 and they fall on CL (Conceptualisation, Learning, and Abstraction), which
looks quite central in the manifold, given its strong correlation with the metacognition dimensions MC and with QL1
(Quantitative and Logical Reasoning - Logic). The demands KNc (Customary Everyday Knowledge) and KNs
(Social Sciences and Humanities) have a good number of negative correlations, especially with QL (Quantitative
and Logical Reasoning) and other knowledge demands. In general, these positive or negative correlations can have
multiple interpretations since they are contingent to our choice of benchmarks.

Equally important are the extraneous dimensions—AT (Atypicality), VO (Volume) and UG (Unguessability)—
which do not directly capture cognitive demands, but rather reflect those elements making items more difficult in
other ways. We see that the correlations are high with other demands (except for UG).

The conclusion of the analysis is that the annotations by GPT-40 seem to be understandable by humans across all
dimensions. Here, we do not have a baseline, but in standard Al evaluation practice, rubrics are rare, specific, and
designed to be applied by humans or LLMs. Only occasionally they are meant to be explanatory and rarely quantita-
tively [82] 136, 190], despite the recognition that this understanding is a key factor in AI adoption [63]. Looking to the
future, despite good agreement between humans and LLMs, higher agreements may be possible as the capabilities of
LLMs as annotators progress, including their potential of explaining their annotations to humans. Also, the correla-
tions between dimensions do not seem to suggest that some combinations of demand levels are impossible, but simply
infrequent in the current ADeLe battery. This indicates that new versions of ADeLe should try to be more selective in
the selection of instances for each benchmark, instead of random (see the discussion of ADeLe-Light, where we do that
selection, in section[6.8]). Our choice of instances and benchmarks was meant to be representative of the landscape of
Al benchmarks rather than a cherry-picked selection to minimise correlations. This was conditioned by our interest
to explore what the benchmarks measure, as we study next.
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Figure 4: Correlations of the demand level using all the items in the ADeLe battery for all the pairs of the 18 demands and the special dimension UG
(Unguessability). It also includes the success (i.e., correctness at instance-level) of all the subject LLMs considered in the experiments.

3.2. Explanatory Power Analysis: Profiling Benchmark Demands
RQ2: What is the sensitivity and specificity of ADeLe and its constituent benchmarks?

Figure [5] shows the distribution of the 18 dimensions (ranged from 0 to 5) for the whole ADeLe battery, 16,108
instances overall. Most dimensions cluster around mid-range values; however, several exhibit bimodal distributions,
with one peak at zero and another at a higher level. This pattern suggests that most benchmarks are not measuring
that dimension at all, while those few measuring it have a tendency of including intermediate difficulties in order to
capture the informative variation in state-of-the-art models (around levels 3 and 4). There are also two demands, MS
(Mind modelling and social cognition) and SNs (Spatial Reasoning and Navigation - Spatial), with level 0
for most benchmarks, a bias that is indicative of the little coverage of benchmarks for those dimensions.

More interestingly, we can look at the demand profiles of benchmarks individually (Figure [6). This is informa-
tive to understand what the benchmarks actually measure and whether they measure what they claim to measure.
Overall, the profiles are considerably distinct, so apparently they seem to measure different things. Benchmarks that
focus on specialised topics (e.g., ChemLLMBench, OmniMath, MedCalBench and SciBench) show high demands in their
respective domains (KNa (Applied Sciences), KNn (Natural Sciences) and KNf (Formal Sciences)), while bench-
marks such as TempReason and TruthQuest, which target a single domain, often peak in additional dimensions. Other
benchmarks—such as Date Arithmetic, GRE & GMAT, MCTACO, TimeDial and TimeQA—have uniformly low demands,
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Figure 5: Distribution of level frequencies for the 18 demands using all the 16,108 instances in the ADelLe battery v.1.0. Dimensions such as
CEe (Verbal Expression), MS (Mind modelling and social cognition) and SNs (Spatial Reasoning and Navigation - Spatial) have low pro-
portion of items of high level, but this is in accordance with the focus of LLM evaluation on factual questions with no navigation or full social
interaction. Future versions of the battery for agents or multimodal scenarios can increase the number and breadth of the dimensions.

suggesting that they may be too easy. In contrast, broader assessments such as Civil Service Examination, LSAT and
MMLU-Pro show mixed profiles.

A closer look at each dimension reveals that some are barely present. For example, the demand levels for CEe
(Verbal Expression) and MS (Mind Modelling and Social Cognition) are generally low; similarly, the range for
SNs (Spatio-physical reasoning) is narrow. This is consistent with the selection bias we saw when aggregating all
benchmarks in Figure[5] Furthermore, examining the spread (the wider the better in this case) across the benchmarks
reveals further concerns: although benchmarks such as MMLU-Pro cover a wide range of demands, others (e.g. Lan-
guage) are quite narrow in the bands. Table[IT]lists the domains these benchmarks are said to be measuring. However,
many benchmarks do not really have a wide range of demand levels in certain dimensions they are claimed to be
measuring (lack of sensitivity) whilst some other benchmarks exhibit a wide range in dimensions that they should not
be measuring (lack of specificity).

For example, while Civil Service Examination from AGIEval claims to measure logical reasoning, its demand pro-
file (Figure [6) shows that successful completion of these tasks simultaneously demand considerable competence in
several other dimensions (with the exception of SNs (Spatio-physical Reasoning) and CEe (Verbal Expression)),
thereby diluting its specificity. A similar phenomenon can be observed in LiveBench’s Reasoning benchmark, which
is designed to measure logical and spatial reasoning only. In addition, benchmarks such as TempReason, TimeDial
and TimeQA—despite their focus on temporal reasoning—have a narrow range of demands in this domain, suggest-
ing insensitivity to increasing task difficulty. Taken together, the specificity and sensitivity of common benchmarks
is quite variable. These results suggest that assigning one or more benchmarks to one ‘capability’ and aggregating
their accuracy (as is standard practice), actually averages different demand levels and dimensions, leading to highly
confounded results. If this is the baseline in common Al evaluation practice, it is simply insufficient to detect prob-
lems of specificity and sensitivity [43} 63]. This issue becomes even more pronounced when integrating numerous
benchmarks, such as BigBench [145]], and other mega-benchmarks. Even if sensitivity may be increased by this in-
tegration (as we see for the whole of ADeLe), specificity is lost if aggregate accuracy is used, and phenomena such as
scaling laws [134] emerge from this aggregation. Instead, with our scales, we can compare mixed subsets of items
from different benchmarks whose demand levels now become commensurate, create recombinations of instances to
test specific capabilities and select or discard benchmarks altogether, before even using them.
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Figure 6: Demand profiles for the 20 benchmarks comprising the ADeLe battery v.1.0 (all other things equal to FigureEI).

3.3. Explanatory Power Analysis: Profiling LLM Abilities

RQ3: Can we understand the capabilities of models and their evolution in non-saturating plots?

In order to explore how well we can explain (and in the next section predict) the behaviour of Al systems, we
selected 15 LLMs (see Table[2), and ran them on the ADeLe battery. Instead of aggregating the results overall we will

use the dimensions and levels for a more refined analysis.

As we have more than one dimension, we do not want higher values of other dimensions to dominate the charac-
teristic curves. Also, there are very few ‘pure’ instances, only having non-zero values for one dimension, and only

using them would bias the selection extremely. As already discussed—yet will be explained in more detail in the
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Table 2: The 15 language models evaluated in this paper. Key abbreviations: SFT, Supervised Fine-tuning; RLHF, Reinforcement Learning from
Human Feedback; and CoT, Chain-of-Thought.

Family LLM Version #param SFT RLHF CoT Distilled
Babbage 002 1.3B o o o o
Davinci 002 175B o o o o
GPT-3.5 Turbo - . . o o
OpenAl GPT-40 - - . . o o
ol mini - . . . .
ol base - . . . o
LLaMa 3 3.2-1B-Instruct 1B . . o o
LLaMa 3 3.2-3B-Instruct 3B . . o o
LLaMa LLaMa 3 3.2-11B-Instruct 11B . . o o
LLaMa 3 3.2-90B-Instruct 90B . . o o
LLaMa 3 3.1-405B-Instruct 405B . . o o
Qwen R1-Dist 1.5B . o . .
Qwen R1-Dist 7B . o . .
DeepSeck Qwen R1-Dist 14B . o . .
Qwen R1-Dist 32B . o . .

Methods section, we employ a dominant slice procedure: for each demand level [ along a dimension, we aggregate
only those task instances for which the demands in all remaining dimensions do not exceed /. This has an effect on
the distribution, but arguably smaller than only selecting almost-pure instances. As shown in Figure[7] this procedure
yields 18 per-dimension curves that capture how model success rates decline with increasing demand. For instance,
the curves of certain dimensions are steep and with low variability across models, such as AS (Attention and Scan)
and MCu (Calibrating Knowns and Unknowns). This means the ability (the point of 0.5 success probability), which
is around demand levels 3-4, explains (and predicts) success very well for instances in the low and high ranges. In
contrast, curves of other dimensions are flatter and show strong differences between models, such as KNs (Knowledge
of Social Sciences), in which the discrimination (between success and failure) is the lowest.

Notably, a few dimensions show particularly distinct behaviours. The characteristic curves for MCr (Identifying
Relevant Information) and MS (Mind Modelling and Social Cognition) clearly distinguish the performance of
reasoning models (whether distilled or not): models with chain-of-thought strategies maintain non-negligible suc-
cess even at high levels of demand (in some cases above 5), while non-reasoning models generally plateau around
level 4. This suggests that chain-of-thought is particularly beneficial, even for distilled models, for tasks that require
the extraction of relevant information, and, surprisingly, can have an effect on questions of social cognition, as they
usually require the distinction of what there is and what actors think there is. We acknowledge, however, that the cur-
rent battery includes only a modest number of benchmarks that specifically explore agent-like functions (such as those
requiring dynamic interaction or adaptive decision-making), thus limiting our empirical evidence in these areas. Fi-
nally, there are cases where distillation to smaller models is problematic, such as SNs (Spatio-physical Reasoning);
this kind of reasoning may need both chain-of-thought and scale. All subject characteristic curves, in independent
plots, can be found in Appendix [9.6]

When we presented the subject characteristic curves with Figure[3] we said that the area corresponds to the demand
level where the success probability is 0.5, which is also the point with the highest slope. This area is how we estimate
the ability. Note that an ability of 4 does not mean that the model can solve all or most of the items at level 4; it
actually means that it can solve half of them in expectation. This explains why we have abilities greater than 5, when
our scale goes from 0 to 5+. Using this area, we can show a more compact representation of the abilities of all subject
LLMs, as represented by Figure [§]

As can be seen, very old models such as Babbage-002 and Davinci-002 have very low abilities, and new state-of-
the-art models have the highest abilities, such as OpenAl o1. Interestingly, various model curves cross in the middle
range. In particular, those dimensions related to knowledge are high for very large models, and reduced for small and
distilled models. The reasoning models (such as OpenAlI’s o1 and DeepSeek’s R1-Distill) have clear improvements on
the two kinds of QL (Quantitative and Logical Reasoning) but also on MCr (Identifying Relevant Information)
and MS (Mind Modelling and Social Cognition) (even down to 7B in the distilled models). This again suggests
that chain-of-thought may contribute to identifying relevant information, in general and possibly even theory-of-mind
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Figure 7: Characteristic curves for the 18 demands and the 15 LLMs. The x-axis shows the demand levels for that dimension and the y-axis the
average performance (probability of success) for each level. We ensure all bins weight the same in the fit as the largest one (except those bins with
less than 100 instances, which use a proportional weight for robustness). The curve is a logistic fit with an anchor at coordinates (20, 0), accounting
for 50% of the total weight.
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Figure 8: Ability profiles of the 15 LLMs. An ability of / means that there is 50% probability of the model to succeed on questions at demand level
[ (that leads to some abilities being beyond 5). In contrast to radial plots usually shown for LLMs in the literature [[7} 31]] the values shown here
are actual abilities on a ratio scale (0, o) and the values (in expectation) are more robust to changes in the difficulty distribution of the benchmarks
used. In Figurem we additionally show the ability profiles for the 15 LLMs using the ADeLe-Light battery v.1.0, which yields nearly the same
profiles. In Appendix@ we show clear scaling curves of model abilities as a function of #parameters.

situationﬂ and not only reasoning tasks that look quantitative or logical such as mathematics and coding.

Finally, the increase of model abilities based on the pure scaling of the number of parameters seems to be marginal
when comparing the two largest LLMs for the LLaMA or DK-R1-Distilled-Qwen families; this is further confirmed
in Appendix [9.2) where we introduce the very first scaling laws of the actual abilities of LLMs. This is quite opposed
to the traditional scaling laws using performance, which easily saturate close to 100% accuracy and strongly fluctuate
depending on the distributions of the demand levels of the selected benchmarks.

In general, through our approach we can investigate the capabilities of models and their evolution in a granular
way, with characteristic curves explaining why each model succeeds or fails in different regions depending on the
demand profile of the instance. This explanation emanates from the information collected from the Al system under
observation only: unlike IRT and other latent factor approaches (factor analysis or PCA) derived from the results of
many systems and instances, the abilities and explanations we get with our methodology are not affected by the results
of other Al systems, or the choice of the 15 models of our analysis. On top of this, we get insightful intuitions of
the expected results at the level of benchmark before running it (just compare figures []and[8). In contrast, the usual
practice in Al evaluation has been to slice by benchmarks, domains or some tags but again without
considering difficulty in each dimension, leading to values in each dimension that are not commensurate, hard to
explain and volatile to the distribution of difficulties: 70% aggregate accuracy in all logical reasoning benchmarks does
not mean more capability than 50% aggregate accuracy in all metacognition benchmarks, not even more capability
thant 50% aggregate accuracy in another set of logical reasoning benchmarks. In this work, using a broad set of
rubrics, generalising from other approaches with narrower profiles (e.g., navigation and visual abilities in [20]), we
get truly general ability profiles that are commensurate across a range of constituent benchmarks.

3.4. Predictive Power Analysis: Anticipating Performance with Assessors
RQ4: Can we predict instance performance efficiently and robustly in ID and OOD?

The annotated demand levels not only provide substantial explanatory power for understanding potential bench-
mark design issues (e.g., lack of specificity when irrelevant demands are present and lack of sensitivity when key
demands are under-represented), but also strong predictive power. As shown in the bottom row of Figure ] most

8Note that the count of MS is only around 300 instances and thus the results should be interpreted with caution. This simultaneously indicates
that recent proceedings of Al conferences generally lack diverse and high-quality benchmarks for MS.
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dimensions are negatively correlated with success, suggesting that, in aggregate, higher demands tend to reduce per-
formance. This is promising about their predictive power when used in a multivariate way. This is precisely what we
show with three different assessors [71]], meta-models that predict success (a binary label) at the instance level.

To quantify the predictive power, we trained three types of probabilistic classifiers. The first assessor is a Random
Forest (RF) that maps the interpretable 19-dimensional demand annotation vector directly into a success prediction.
The second assessor is another RF model that relies on pre-computed GloVe embeddings extracted from the raw text
of each question, and the third is based on a fine-tuned LLaMA model trained end-to-end on the question text to predict
success. Further details are provided in Methods section [6.6]

In-distribution results (Table3) show that despite the large imbalance in some of the base model accuracies (from
0.102 for Babbage-002 to 0.843 for OpenAl o1), the demand-based RF achieves high discrimination (between success
and failure), as measured by AUROC, and near perfect calibration, as quantified by ECE. In terms of discrimination,
we see that the best result is achieved for GPT-40 (0.88 in AUROC), being the most predictable model for the three
assessors, while small models are less predictable. Averaged across all 15 LLMs, the demand-based RF produces an
accuracy-weighted average AUROC of approximately 0.84, which is on par with the performance of the fine-tuned
LLaMA assessor, while its average ECE (0.01) is significantly lower than that of the other approaches (0.03 for the
GloVe-based model and 0.04 for the fine-tuned LLaMA model). Calibration plots demonstrating these results are
provided in Appendix [9.3] This strong in-distribution performance is very encouraging, as a well-calibrated predictor
is critical for estimating both batch-level performance (e.g., for an entire benchmark) and the probability of success
on individual instances.

Table 3: In-Distribution predictability results of 15 LLMs for the ADeLe battery using 10-fold cross-validation. The first two columns show names
of subject LLMs and the overall accuracy of subject LLMs on the ADelLe battery. The remaining three pairs of columns show the AUROC and
ECE of three different assessors (RF using demands, RF using average GloVe embeddings, and finetuning LLaMA-3.1-8B). For a single LLM subject,
the training time is 4 seconds and 160 seconds for the demand-based and embeddings-based assessors respectively on a M3 Pro CPU, while the
fine-tuned LLAMA assessor costs 300 hours on a single V100 GPU. The weighted average is only indicative for easy comparison, and uses the
normalised LLM Accuracy as a weight in the mean, giving more relevance to more powerful models, which are more representative now and in the
near future.

Subject LLM  LLM Accuracy? Demands (RF) Embeddings (RF) Finetuning (LLAMA)
AUROCT ECE| AUROC?T ECE| AUROC?T ECE|
Babbage-002 0.102 0.786 0.004 0.784 0.012 0.794 0.026
Davinci-002 0.157 0.774 0.005 0.770 0.014 0.789 0.032
GPT-3.5-Turbo 0.414 0.811 0.007 0.780 0.029 0.817 0.052
GPT-40 0.713 0.882 0.014 0.852 0.041 0.879 0.039
OpenAl o1-mini 0.770 0.860 0.011 0.821 0.023 0.861 0.041
OpenAl o1 0.843 0.853 0.011 0.810 0.025 0.848 0.031
LLaMA-3.2-1B-Instruct 0.216 0.785 0.006 0.759 0.014 0.788 0.041
LLaMA-3.2-3B-Instruct 0.378 0.813 0.008 0.782 0.028 0.822 0.048
LLaMA-3.2-11B-Instruct 0.463 0.820 0.009 0.793 0.034 0.828 0.055
LLaMA-3.2-90B-Instruct 0.645 0.860 0.012 0.832 0.042 0.860 0.042
LLaMA-3.1-405B-Instruct 0.683 0.870 0.011 0.831 0.040 0.864 0.040
DK-R1-Dist-Qwen-1.5B 0.353 0.781 0.014 0.749 0.028 0.797 0.052
DK-R1-Dist-Qwen-7B 0.555 0.813 0.015 0.788 0.039 0.821 0.051
DK-R1-Dist-Qwen-14B 0.698 0.828 0.013 0.796 0.031 0.829 0.044
DK-R1-Dist-Qwen-32B 0.748 0.841 0.013 0.799 0.031 0.839 0.045
Weighted Average — 0.839 0.011 0.805 0.032 0.840 0.043

We further evaluated predictive performance under out-of-distribution conditions by withholding entire tasks (task
OOD) or entire benchmarks (benchmark OOD) from training (Tables ] and [5] respectively). In the rask OOD setup,
the predictive power of the demand-based assessor retains robust performance (weighted AUROC=0.81, ECE=0.02),
only slightly lower than in-distribution, and outperforms the rest of assessors, whose performance slightly decreases
(achieving weighted AUROC values of 0.79 for the LLaMA-based and 0.74 for the GloVe-based assessors). In
the more challenging benchmark OOD, the performance of the demand-based assessor decreases more significantly
(Weighted AUROC=0.75 and ECE=0.04), with the decrease observed mainly in the reasoning models (AUROC
decreases between 0.05 and 0.11), while the non-reasoning models suffer only small decreases (between 0.01 and
0.06). This decrease is especially small for the largest non-reasoning LLMs, such as GPT-40 and LLaMA-3.1-405B-
Instruct. In contrast, the performance of the other two assessors suffers a drastic drop. This trend suggests that the
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demand-based predictor is less prone to overfitting with spurious features compared to its counterparts.

Although the use of demand annotations outperforms the other approaches, two key factors explain why the
predictive power declines in out-of-distribution settings. First, because our analysis includes only 63 tasks from 20
benchmarks—many of which (e.g., ChemLLMBench) have non-overlapping demand distributions—the training data
does not fully capture the multidimensional demand space. We hypothesise that the predictive power of the demand-
based assessor for any arbitrary new tasks or new benchmarks can be boosted to the level of in-distribution by ensuring
the training data’s demand distribution is efficiently covering the multivariate demand space.

Second, there is a paucity of extremely difficult instances to challenge the high performance models (e.g. OpenAl
o1-mini, OpenAl o1, DK-R1-Dist-Qwen-32B). As shown in Figure [/| even at level 5 (where instance coverage is low)
the best models maintain success probabilities well above zero. Nonetheless, there will be instances deserved to be
labelled level 5 and even beyond in future efforts, which can form bins yielding much lower success probability,
therefore increasing the discrimination of the demand-based assessor’s predictions. A similar narrative can go for
justifying the relatively lower discrimination observed in less capable models (e.g. Babbage-002, Davinci-002), as
there are little extremely easy instances for them in the data (Figure[7); the lack of instruction-tuning for these models
(Table [2) may be an extra reason since these models frequently repeat the prompts instead of solving the problems
specified in the prompts, in an seemingly elusive and arbitrary way. Therefore, the lower discrimination observed
when moving from in-distribution to out-of-distribution is likely mainly due to the lack of diverse data that efficiently
cover the multidimensional demand space, as calibration error is consistently low. In Appendix 0.4] we further
discuss these factors and potential remedies; we additionally discuss certain rationale on why the predictive power of
our demand-based assessor is actually underrated due to upper bounds introduced by imperfect data quality and the
automated grading, leaving rooms for future improvements.

While many traditional IRT methods can explain performance on seen items, they cannot be used to predict
performance for new instances (except LLTM, see section [0.1] of related work), which is paramount in a deployment
setting where the goal is to anticipate whether Al will perform well in unseen scenarios, rather than merely grading
subjects in a testing environment. The natural baseline in Al evaluation practice is just average accuracy. This can
extrapolate to an extent for system selection, but in the case of instance prediction, it leads to no discriminative power
at all (an AUROC of 0.5), and calibration that is only good for in-distribution. Overall, the supremacy in predictive
power observed for the demand-based assessor is clear. It only needs 19 dimensionsﬂ and they are all interpretable, in
comparison with the two much larger and uninterpretable baselines. This is strongly encouraging, shedding light on a
promising future for the reliable deployment of Al

Table 4: Task Out-of-Distribution predictability results (all other things equal to Table .

Subject LLM  LLM Accuracy? Demands (RF) Embeddings (RF) Finetuning (LLAMA)

AUROCT ECE| AUROCT ECE| AUROCT ECE|

Babbage-002 0.102 0.751 0.007 0.727 0.019 0.719 0.046
Davinci-002 0.157 0.741 0.007 0.703 0.025 0.746 0.055
GPT-3.5-Turbo 0.414 0.795 0.020 0.719 0.032 0.773 0.088

GPT-40 0.713 0.852 0.023 0.789 0.073 0.831 0.067

OpenAl ol-mini 0.770 0.837 0.021 0.751 0.038 0.814 0.068

OpenAl ol 0.843 0.811 0.033 0.730 0.030 0.761 0.101
LLaMA-3.2-1B-Instruct 0.216 0.733 0.026 0.671 0.033 0.732 0.081
LLaMA-3.2-3B-Instruct 0.378 0.791 0.016 0.724 0.020 0.780 0.084
LLaMA-3.2-11B-Instruct 0.463 0.799 0.022 0.733 0.037 0.783 0.106
LLaMA-3.2-90B-Instruct 0.645 0.834 0.021 0.763 0.068 0.809 0.050
LLaMA-3.1-405B-Instruct 0.683 0.843 0.023 0.766 0.067 0.811 0.060
DK-R1-Dist-Qwen-1.5B 0.353 0.757 0.019 0.700 0.029 0.764 0.071
DK-RI1-Dist-Qwen-7B 0.555 0.790 0.018 0.735 0.042 0.776 0.083
DK-R1-Dist-Qwen-14B 0.698 0.808 0.018 0.737 0.054 0.772 0.085
DK-R1-Dist-Qwen-32B 0.748 0.812 0.026 0.739 0.057 0.793 0.063
Weighted Average — 0.810 0.022 0.740 0.047 0.788 0.075

Even better, in appendix we prove that with 11 broad dimensions or even only with 6 specific dimensions (that exhibit the highest feature
importance scores for the demand-based assessor), one can achieve already comparably high predictive power.
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Table 5: Benchmark Out-of-Distribution predictability results (all other things equal to Table.

Subject LLM  LLM Accuracy] Demands (RF) Embeddings (RF) Finetuning (LLAMA)

AUROCT ECE| AUROCT ECE| AUROCT ECE|

Babbage-002 0.102 0.694 0.027 0.689 0.062 0.649 0.070
Davinci-002 0.157 0.718 0.014 0.626 0.066 0.633 0.086
GPT-3.5-Turbo 0.414 0.776 0.041 0.628 0.074 0.691 0.146

GPT-40 0.713 0.826 0.058 0.398 0.167 0.740 0.136

OpenAl ol-mini 0.770 0.728 0.026 0.422 0.142 0.684 0.132

OpenAl ol 0.843 0.710 0.015 0.404 0.117 0.704 0.095
LLaMA-3.2-1B-Instruct 0.216 0.716 0.048 0.602 0.112 0.623 0.083
LLaMA-3.2-3B-Instruct 0.378 0.778 0.036 0.618 0.096 0.687 0.066
LLaMA-3.2-11B-Instruct 0.463 0.786 0.053 0.591 0.067 0.721 0.118
LLaMA-3.2-90B-Instruct 0.645 0.804 0.055 0.463 0.115 0.721 0.144
LLaMA-3.1-405B-Instruct 0.683 0.818 0.044 0.389 0.186 0.712 0.135
DK-R1-Dist-Qwen-1.5B 0.353 0.705 0.049 0.580 0.102 0.662 0.106
DK-R1-Dist-Qwen-7B 0.555 0.676 0.043 0.534 0.060 0.649 0.160
DK-R1-Dist-Qwen-14B 0.698 0.691 0.025 0.461 0.099 0.673 0.135
DK-R1-Dist-Qwen-32B 0.748 0.703 0.027 0.426 0.103 0.696 0.100
Weighted Average — 0.747 0.037 0.480 0.114 0.692 0.121

4. Discussion

To date, Al evaluation is not meeting the demands of a fast-changing and increasingly diverse Al ecosystem. Un-
derstanding and anticipating performance has become an urgent requirement for a swath of general-purpose Al sys-
tems. By building and exploiting absolute demand scales for annotating thousands of instances via automated rubrics,
we have established a promising new direction for Al evaluation. The methodology we have presented and illustrated
is comprehensive, scalable and standardised, addressing many of the issues of conventional Al evaluation practice: a
lack of explanatory and predictive power, as well as saturating and overfitting to specific populations of benchmarks
and Al systems respectively. With the pace and penetration of general-purpose Al, a rigorous, scalable and pipelined
evaluation has been urgently demanded by researchers, companies, third-party evaluators, policy-makers and regula-
tors. It is paradoxical that powerful LLMs as annotators have made this new methodology possible and scalable. The
explanatory value of 16,108 LLM annotations per dimension has been independently validated by humans through
inter-rater analysis and the Delphi method [98]], and their predictive power stands through task diversity.

Nonetheless, our work is not without limitations. First, the DeLeAn rubric set does not fully cover certain dimen-
sions, such as navigation, and excludes capabilities in other modalities and paradigms in Al, such as multimodal
systems and robotics, given we limited our analysis to LLMs. We encourage other researchers to extend the rubrics
to further dimensions (including propensities, values and other elements that are specifically conceived for safety or
fairness [185] [182]), and evaluate other kinds of Al systems with them. Second, there are very few high-quality level
5+ items in our current battery. Given the pace of progress in Al, the current scales (up to 5+) will need to be extended
in a way that remains backward-compatible with existing scales. For the annotation, instead of a single rubric from 0
to 10, which would challenge the best human and machine annotators, we propose to keep each current rubric up to
the current O to 5+ levels, and then add a second, independent, rubric only applied to those items initially labelled as
5+ to be relabelled from 5 to 10+, following the ratio scale we followed from O to 5+. New items, such as less adver-
sarial versions of those in Humanity’s Last Exam [122] and other very challenging benchmarks [170, 86]], could be
included in ADeLe v2.0 battery. Third, more benchmarks and more diversity (even for the same dimensions and scale)
would definitely further increase the predictive power in- and, most importantly, out-of-distribution, especially if we
introduce more benchmarks with ‘purer’ items only loaded on a few demands. Fourth, the predictive power of the
demand-based assessors will likely increase as the LLMs improve as input-response graders and demand annotators,
and as the ADeLe battery efficiently grows with more challenging and diverse items.

Overall, the new methodology shows that a successful development of the construct-oriented paradigm in Al
evaluation [19]] is possible, integrating perspectives from different disciplines. It will be instrumentalised through a
streamlined platform that can grow in the years to come, ready to explain and predict the performance and safety of Al
systems. In a moment where Al evaluation is at the crux of research and regulations, and the science of evaluation had
not yet digested the pace of general-purpose Al, our work takes crucial steps to make Al evaluation fit for purpose.
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6. Methods

6.1. Scales and Rubrics

For more than a century, psychology has introduced many constructs with explanatory and predictive power about
human behaviour, from conscientiousness to metacognition. Based on experimental data and theories of human cog-
nition, these constructs are usually organised into hierarchical taxonomies, such as the Cattell-Horn-Carroll structure
of human cognitive abilities [106] or the Big Five personality traits [135]. In principle, we could build a similar
taxonomy for artificial cognition, based on theory and experiments about machine behaviour [127]. However, as
the base population of machines is much more arbitrary and changing than those of humans, it makes more sense to
devise a taxonomy that could encompass any kind of natural and artificial intelligence, by considering capabilities
that are meaningful for more general theories of cognition [67]. Integrating and generalising taxonomies from human
psychology, comparative cognition and artificial intelligence [67]], a general taxonomy of 14 capabilities was designed
by [[72] and later extended with corresponding 14 rubrics [[159]] for the study of Al in the workplace.

From this original set, we selected those that are applicable to text only (e.g., ‘auditory processing’ and ‘visual
processing’ were discarded), and further subdivided several of them into finer subcategories, resulting in a final set
of 11 ‘primordial’ cognitive capability scales. We added 5 ‘knowledge’ dimensions and 3 ‘extraneous’ dimensions,
making a total of 18 demand dimensions plus UG (Unguessability), as summarised in Table [I] In Section 2.1 we
explained why the taxonomy was extended with the ‘extraneous’ dimensions, to account for contamination, amal-
gamation and funnelling phenomena. The subdimensions in the ‘primordial’ category were included after multiple
rounds of discussions about whether some of the original 7 broad ones could be carved into finer, but still general,
subdimensions that could be conceptually be distinct. We split CE into two (we noticed a clear case for tasks that re-
quire comprehension but no expression), MC into three (since we unpacked very different notions inside metacognition
and critical thinking), and QL into two (distinguishing logical from quantitative reasoning), ending up with a total of
11 ‘primordial’ dimensions. We added the knowledge dimensions because the primordial ones would not account for
attainment in scientific or humanistic domains. Again, there are endless specialities of knowledge, and we decided to
settle for four broad domains of science: applied sciences, formal sciences, natural sciences and social sciences. We
also added a fifth domain: customary everyday knowledge (KNc). This captures information that most people (adults)
know about society, from sport players to local traditions. This KNc does nof represent common sense, such as ‘soup
needs a spoon but not a knife’. This should be accounted by other dimensions. By navigating Appendix [T0] we can
better understand the tradeoffs in the construction of the rubrics. It is important to highlight that the taxonomy is not
definitive, and is meant to be extended in the future using the same criteria of dimensions being general and being
conceptually distinct.

Based on the original 7 top-level primordial rubrics, which only determined the presence or absence of the need
for each capability in a task, we extended them and added new ones as numeric demand scales in the range (0, co). We
deliberately design these scales as ratio scales [62], with an absolute 0 (no demand) and differences that are comparable
all across the scale. In the social sciences a common interest lies in understanding differences, as no human has zero
capabilities, and an ‘interval’ scale with negative capabilities makes sense (as in IRT) or as percentiles of a normal
distribution (as IQ scores). We argue that for Al we should aim for the top level in Steven’s topology of measurement
[148]: the ‘ratio’ scales. Ratio scales have all the properties of the previous scales: intervals and differences are
meaningful, but ratios are as well. For instance, length in metres, time in seconds or Kelvin degrees are ratio scales,
but Celsius or Fahrenheit degrees are only interval scales, because they do not have an absolute zero. Given the
flexibility in which we can regulate compute and time use in Al, it makes more sense to set an absolute zero (no
compute) on the demands and build the scales in such a way that ratios are meaningful. We would like to say that
instance x; at level 6 doubles the demand of an instance x; at level 3. Taking into account that we fit logistic functions,
this can be understood in terms of the log odds of being correct halving when moving 2x in the scale and doubling
when moving x/2 in the scale [54].

For this first version of the scales, we decided to choose levels (0, 5) of the full range (0, co) for practical reasons.
With a single rubric, it is hard for humans and LLMs to refine beyond five ordinal values —this is why Likert scales
are so popular. Note that the rubrics only show cases in an ordinal scale between 0 and 5, and the annotations are
discrete, never generating non-integer values. This is convenient for avoiding the need of binning for the curves and
the demand histograms, but the values become fully continuous when estimating the abilities. In any case, it is usual
to consider originally ordinal scales as interval or ratio scales when the number of levels is 5 or more [132]. We
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consider them ratio scales because the magnitudes are not interpreted as a mere rank. In particular we determine the
way each particular dimension increases the difficulty of the demands from O to 5 and beyond. In other words, the
way it increases depends on what the demand represents, but the pace of increase, the actual scale, is chosen in such
a way that they are commensurate. For instance, for knowledge dimensions (applied sciences, customary everyday
knowledge, formal sciences, natural sciences, and social sciences and humanities) we thought of levels corresponding
roughly to elementary, middle, high, undergraduate and graduate education. By looking at the attainment rates of some
statistical data of education level rates (e.g., OECD data [114])), and the specialisation of domains as the educational
level increases, we noticed that the questions of level / usually were sufficiently advanced to have roughly one person
in 10/~! solving it right. Then, we extend this criterion as a rule of thumb for all scales. With this we achieve a ratio
scale consistency across each scale, and have commensurate scales across dimensions. In general, an item is at level
[ if [ is the highest number such that, in at least 95% of samples of n = 10! individuals, there is at least one correct
response. The levels we have defined are 0 (None), 1 (Very low), 2 (Low), 3 (Intermediate), 4 (High) and 5+ (Very
high), with n going from 1 to 100,000.

We could have calibrated some dimensions using procedurally generated examples. For instance, in reasoning,
we could have increased the components of reasoning processes [[109] to see if the levels increase accordingly, but
each of these ‘scales’ would have been incommensurate with each other, and not sufficiently general. In addition, our
framework deliberately includes additional extraneous requirements such as Volume (V0) and Atipicality (AT), which
capture the time required to read and complete a task and the familiarity of the instance, respectively. For example,
our Unguessability (UG) scale is based on the probability of a correct answer by chance: a multiple-choice question
with 10 options yields a 90% error rate and is therefore assigned level 1 (reflecting that one in 10" individuals would
succeed by random guessing). However, if the error rate is close to 100%—indicating that there is a non-zero chance
(such as “a monkey hits a keyword")—the level is not unlimited, but could be assigned to our 5+ category. In the
end, we left this dimension as the only one between 0 and 100, but can be converted to the common range using this
criterion.

The 18 rubrics were crafted following the above criteria, using several iterations while trying with human and Al
annotators. Once the rubrics were settled, we conducted the experiments. The final rubrics can be found in section@}

6.2. LLM Annotators

We prompt an LLM to annotate task demands levels (on a discrete scale from O to 5) at instance-level for all
individual rubrics (see DeLeAn Rubric Set v.1.0 in Appendix . In particular, we prompt GPT—4dT_G] [76] using Azure
AI API utilising CoT prompting (Table [f) at temperature set to 0 with a maximum output token length of 1000, to
ensure getting long enough responses that include the answers for nearly all instances and substantially reduce the
cost. We use the default values for the stopping condition and the rest of the parameters.

QUERY: The following rubric describes six distinct levels of *{$dimension$l}*
required by different tasks:
{$rubric$}

TASK INSTANCE: {$instance$}

INSTRUCTION: Score the level of *{$dimension$}* demanded by the given

TASK INSTANCE using a discrete value from O to 5. Use CHAIN-OF-THOUGHTS
REASONING to reason step by step before assigning the score. After the
CHAIN-OF-THOUGHTS REASONING STEPS, conclude your assessment with the
statement: "Thus, the level of *{$dimension$}* demanded by the given TASK
INSTANCE is: SCORE", where ‘SCORE’ is the integer score you have determined.

Table 6: Prompt template for deriving demand annotations with GPT-4o.

10«GPT-40’ always refers to the specific ‘gpt-40-0513" checkpoint in this work.
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6.3. Inter-rater Analysis

For each demand, we randomly sampled 50 instances while ensuring each level had at least a sample size of
3 to avoid minority levels getting neglected in our inter-rater analysis. This led to 900 instances to be annotated,
which were distributed to five humans (authors in this paper, corresponding to Y.H, YM-D, L.Z, Q.Z, S.Z), where
each instance was annotated by exactly three humans. The annotation process consisted of two steps. First, each
annotator independently assigned a difficulty level (using the O to 5+ scale) to each instance using the rubrics. Next,
the annotators met for a Delphi [98] consensus meeting. During this meeting, instances for which the minimum and
maximum ratings of the three annotators differed by two or more points were discussed in detail until a consensus was
reached. For cases with differences of less than two points, a simple majority vote determined the final annotation. To
check the inter-rater agreement rates, we use the ryg index [79} (93] with the default rectangular null distribution; a
score above 0.7 is generally regarded as a good agreement rate.

Dimension Humans Delphi & GPT-40

AS 0.91 0.86
CEc 0.91 0.87
CEe 0.90 0.94
CL 0.78 0.82
MCr 0.79 0.84
MCt 0.88 0.91
MCu 0.80 0.81
MS 0.77 0.86
QL1 0.85 0.89
QLq 0.84 0.84
SNs 0.87 0.89
KNa 0.73 0.75
KNc 0.86 0.83
KNf 0.86 0.81
KNn 0.91 0.94
KNs 0.70 0.86
AT 0.80 0.83
Vo 0.84 0.91
Average 0.83 0.86

Table 7: Column “Humans” shows the agreement of ratings (rw¢g scores) obtained between humans prior to Delphi consensus, while “Delphi &
GPT-40” reports the agreement between Delphi consensus and GPT-4o.

The result is shown in Table E], where we observe satisfactory ryg scores (average = 0.86) between Delphi con-
sensus and GPT-4o, consistently above 0.80 except for one dimension with 0.75. However, the rys scores between
humans prior to the Delphi consensus meeting were slightly lower for certain dimensions. These initial disagree-
ments are due to multiple reasons, identified during our Delphi consensus meetings: occasional misinterpretations of
certain words or terminologies, mainly for those humans whose primary language for daily use is not English; knowl-
edge gaps in annotating certain particularly challenging task instances beyond the expertise of annotators; cultural
variations affecting annotations, especially within some knowledge dimensions; and a few inconsistent ratings where
annotators could not explain their own numerical assignments in hindsight, possibly caused by tiredness in annotating
a large amount of instance The Delphi method proved useful to mitigate the individual biases and inconsistencies
from human annotations caused by miscellaneous reasons listed above, among others.

6.4. Benchmark Battery: Instance Selection and Curation

We constructed our benchmark battery by reviewing papers published in the 2024 proceedings from top-tier
machine learning conferences (ICML, NeurIPS, ICLR) and natural language processing venues (ACL, EMNLP,
NAACL). In our search, we first identified papers with ‘bench’ in the title, and then supplemented the collection
with additional benchmark sets found at other reputable venues. Before including any benchmark (or subset thereof),
we applied a rigorous quality check to ensure that the source meets the following selection criteria:

The reported time in annotating 50 instances on only one single rubric usually ranges between 30 to 60 minutes
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e The benchmark set must be sufficiently difficult—i.e. state-of-the-art large language models (e.g. GPT-4 level)
achieve less than 75% overall accuracy—to avoid an overabundance of trivial instances.

e The expected outputs must be amenable to automatic verification by LLM-based graders. Tasks requiring
lengthy passages or those with multiple valid answers are excluded to maintain grading reliability.

e Benchmarks must not contain Al-generated content, when explicitly noted in the source paper.

e Tasks must be formulated as either open-ended or multiple-choice questions with at least four options to min-
imise the effect of stochastic “guessing”.

o Licensing requirements for the selected benchmarks shall be compatible and allow for free redistributions.

e The collection of benchmark(s) introduced by a paper must be publicly avalilable at the time of our curation
effort (i.e., as of 26th December 2024).

e The task must have an objective ground truth that can be used to unambiguously categorise performance as
either success or failure.

e Ground truth labelling quality must be near perfect, if reported. Since this keeps those benchmarks that do not
report any quality scores of their ground truth, we apply additional quality filters, described both at the end of
this subsection as well as in section[6.3]

This eventually resulted in a total of 20 benchmarks from 9 papers, comprising 63 tasks for our analysis (Table [TT).
For efficiency reasons, we randomly sampled up to 500 instances per task to strike a balance between data diversity
and size. This led to an original battery of 21,996 instances.

Lastly, we prompted GPT-40 to annotate three quality indicators: (i) The accuracy of ground truth labels, (ii) the
objectivity and (iii) the ambiguity, for all instances, graded with a Likert scale from 1 to 5 (Tables [§] [9] [I0). We
inspected the annotations of 50 randomly sampled instances with a score of 1 for each quality indicator, in which
a human judge (a researcher with background in computer science) reviewed these annotations and labelled them
into ‘agree’, ‘disagree’ and ‘uncertain’. For the accuracy of ground truth labels, the agreement, disagreement and
uncertainty rates were 32%, 6% and 62%, respectively. For objectivity, the agreement, disagreement and uncertainty
rates were 68%, 10% and 22%, respectively. For ambiguity, the agreement, disagreement and uncertainty rates were
70%, 22% and 8%, respectively.

Given this observation, we removed those instances with a score of 1 in any of the three aforementioned indicators,
which accounts for 16% of instances in the initial battery, reducing the battery a the stage to 18,462 instances. In
addition, we discarded 0.9% of instances in which the LLM annotator did not offer an annotation (e.g., flagged by
OpenAI’s moderation filters) or yield demand annotations in an expected format that can be easily extracted, resulting
in 18,291 instances remaining.

This is a satisfactory result, since we removed many problematic instances at the cost of eliminating a small
proportion of seemingly good ones. This cleaning is critical to reduce noise when deriving the ability profiles of
models and evaluating the predictive power of assessors.

QUERY: {$query$}
ANSWER: {$answer$}

INSTRUCTION: Given the query and an answer above, evaluate the accuracy or
factuality of this answer. Please rate it using a Likert scale from 1 to 5,
where 5 means surely accurate while 1 means surely inaccurate. You may employ
any reasoning strategy before providing your final answer. However, you must
conclude your assessment with the statement: ‘Thus, the accuracy of the given
answer is: X’, where ‘X’ is the score you’ve determined.

Table 8: Prompt template for evaluating the factual accuracy of the ground truth labels recorded with task items.
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QUERY: {$query$}

INSTRUCTION: Given the query above, evaluate its objectivity. That is,
assess whether this query can be answered objectively - would different
qualified individuals arrive at the same answer regardless of their personal
views or preferences? Please rate it using a Likert scale from 1 to 5, where
5 means surely objective while 1 means surely subjective. You may employ

any reasoning strategy before providing your final answer. However, you must
conclude your assessment with the statement: ‘Thus, the objectivity of the
given query is: X’, where ‘X’ is the score you’ve determined.

Table 9: Prompt template for evaluating the objectivity of task items.

QUERY: {$query$}

INSTRUCTION: Given the query or question above, evaluate the ambiguity of
this query, independently of the potential difficulty of answering it. That
is, assess whether the query has a single clear interpretation with all
necessary details provided, or if it lacks critical information making it
difficult to answer confidently. Please rate it using a Likert scale from

1 to 5, where 5 means surely unambiguous (very clear) while 1 means surely
ambiguous (very unclear). You may employ any reasoning strategy before
providing your final answer. However, you must conclude your assessment with
the statement: ‘Thus, the ambiguity of the given query is: X’, where ‘X’ is
the score you’ve determined.

Table 10: Prompt template for evaluating the ambiguity of task items.

6.5. Subject LLMs and Grading

The pool of analysed subjects includes 15 LLMs in total (Table [2)), six proprietary models from OpenAl, five
open-weight models from Meta and four open-weight models from DeepSeek:

e GPT/o1: We use six models from the GPT and o1 families (OpenAl) [126}78]. The four GPT models, Babbage-
002, Davinci-002, GPT-3.5-Turbo (built as ‘gpt-35-turbo-0613) and GPT-4o (built as ‘gpt-40-0513’) are the original
instruction-tuned models in the GPT family, in which the latter two are additionally shaped up by fine-tuning
with human feedback and further include a moderation post-filtering mechanism [[1]. In contrast, OpenAl
o1-mini (built as ‘01-mini-2024-09-12’) and OpenAl 01[121 (built as ‘01-2024-12-17") belong to a new family of
“reasoning” models—designed to take extra time to generate and refine a chain-of-thought before producing
a final answer. All these models were accessed through the public application programming interface (API)
offered by Azure Al Foundry[ﬂ

e LLaMA: We use five different scales of the latest LLaMA saga (LLaMA-3 family [39]): 1B, 3B, 11B, 90B and
405B, all of which have been instruction-tuneﬂ All the inferences were run via the Hugging Face APIE}

e DeepSeek: We locally run the four different scales (1.5B, 7B, 14B and 32B) of the DeepSeek-R1-Distilled-Qwen
ensuite [60], a set of ‘reasoning’ models (based on Qwen-2.5 model family [[181]) that distilled knowledge from
a much more powerful LLM (DeepSeek-R1).

12We set the reasoning effort parameter of OpenAl ol to ‘low.’

Bhttps://ai.azure.com/

14We refer to them consistently with the suffix ‘-Instruct’ as in the original names of the 1B, 3B and 405B variants. This also applies to the
11B and 90B variants, though they are originally named ‘-Vision’ suffix instead of ‘-Instruct’ since these are multimodal. To avoid any possible
confusion, we replace the suffix ‘-Vision” with ‘-Instruct’, since we focus on evaluating text modality in this work.

Bhttps://huggingface.co/docs/api-inference/index
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Table 11: Overview of the selected sources, benchmarks and tasks in the ADeLe battery. Total number of instances: 16,108.

Source Benchmark Task Claiming to Measure #Instances
Civil Service Examination =~ LogiQA-en Logical Reasoning 408
GRE & GMAT AQuA-RAT Mathematics 203
AGIEval [187] LSAT-AR Analytical Reasoning 187
LSAT LSAT-LR Logical Reasoning 470
LSAT-RC Reading Comprehension 253
SAT-En - L . . . 196
SAT SAT-Math Critical thinking, problem-solving and analytical skills 214
Molecule Captioning Generation of descriptions for molecules 160
Molecule Design Generation of new molecules given a description 295
ChemLLMBench ChemLLMBench Name Prediction Chemical name understanding 476
Reaction Prediction Chemical reaction products prediction 412
Retrosynthesis Identification of efficient synthetic pathways for target molecules 380
Data Analysis CTA Data Analysis 33
Language Connections Language Comprehension 29
LiveBench [179] AMPS Hard . 69
Math Math Competition Mathematics 78
Olympiad 26
. Spatial Spatial Reasoning 34
Reasoning Zebra Puzzle Logical Reasoning 22
Biology 447
Business 410
Chemistry 368
Computer Science 345
Economics 428
Engineering 296
Health . 411
MMLU-Pro [176] MMLU-Pro History Knowledge and Reasoning 304
Law 362
Math 425
Other 429
Philosophy 402
Physics 377
Psychology 427
Date 27
Diagnosis 14
Dosage Recall of medical calculation knowledge 20
MedCalcBench MedCalcBench Lab Extraction of relevant patient attributes 180
Physical Arithmetic computation of final results 214
Risk 84
Severity 17
Algebra 337
Applied Mathematics 302
Calculus 30
OmniMath OmniMath Discrete Mathematics Mathematical reasoning at Olympiad level 314
Geometry 329
Number Theory 322
Precalculus 30
Chemistry 142
SciBench [174] SciBench Math Scientific problem-solving 105
Physics 108
Date Arithmetic Date Arithmetic Symbolic temporal reasoning 493
MCTACO MCTACO Commonsense temporal reasoning 205
MenatQA-Counterfactual 130
MenatQA MenatQA-Order Event temporal reasoning 157
MenatQA-Scope 393
TimeBench
TempReason-L2 - 318
TempReason TempReason-L3 Event temporal reasoning 339
TimeDial TimeDial Commonsense temporal reasoning 340
. TimeQA-explicit . 379
TimeQA TimeQA-implicit Event temporal reasoning 348
E 344
TruthQuest TruthQuest I Suppositional reasoning 371
S 340
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For inference, all subject models were queried with the temperature parameter set to zero and no system prompt,
with the exceptions of OpenAlI’s o1 models, which can only be queried with temperature equal to 1, and DeepSeek-
R1-Distilled-Qwen models, which were queried with a temperature of 0.6 and a top-p of 0.95 as recommended by the
original paper [60]. Similarly, we use CoT prompting for all models except for the ‘reasoning’ models (OpenAI’s
o1 models and DeepSeek-R1-Distilled-Qwen models), which were already shaped up to perform chain-of-thought by
default by their developers. In terms of maximum output token length, we use 2,000 tokens for all models, except for
OpenAl’s 01 models and DeepSeek-R1-Distilled models, which use 16,384 tokens instead. We used the default values
for the stopping condition and the rest of the parameters.

We automatically grade the responses of these models on a discrete scale between 1 (surely incorrect) and 5
to (surely correct) using two LLMs, GPT-40 and CIaude—S.S—SonneEl, prompted with temperature set to 0 while the
rest follows the default configurations. The prompt contains both the input, the subject’s response and the ground
truth (see Table [T2] for a sample prompt template). To spot instances that are ‘hard to verify’ (e.g., due to inherent
subjectivity or erroneous ground truth), which can introduce noise into the analysis, we remove approximately 12%
of instances in which both LLM graders did not agree via either simultaneously outputting correctness scores > 4 or
correctness scores < 2 when verifying GPT-40; this forms the final ADeLe battery v.1.0, with 16,108 instances. We
regard input-output pairs graded with a score below 3 as failure pairs, and success otherwise (scores of 3 were filtered
in the previous step anyway). We randomly sample 100 instances from all the gradings and manually find that 98%
of input-output pairs are correctly verified.

TASK: {$prompt$}
MODEL RESPONSE: {$model_response$}
GRound truth: {$ground truth$}

INSTRUCTION: You are an evaluation system that compares a MODEL
RESPONSE to a GRound truth of a given TASK (as shown above), and rates
the response on a scale of 1 to 5, where 5 means surely correct and 1
means surely incorrect. Your response must be concise, responding with
exactly one integer score between 1 and 5 and nothing else that may be
redundant.

Table 12: Prompt Template used for LLM graders to verify the outputs of subject LLMs, scaled from 1 to 5.

6.6. Assessors and Metrics

An assessor is an external meta-model designed to predict the performance of a subject system (e.g., an LLM)
on individual task instances by taking features of those individual task instances as input [[71} [189] [116} [139]]. These
features can range from the raw representation to metafeatures representing cognitive demands and linguistic char-
acteristics, or more structured representations such as average (word) embeddings of each task instance. When per-
formance is defined as binary success score (correct versus incorrect), an assessor can be built by using any standard
binary classifier, including statistical models (e.g., random forest) and fine-tuned language models (e.g., fine-tuned
LLaMA-3.1-8B). Such models are trained to anticipate the success probabilities of a given subject on task instances
without executing that subject, and can be either tailored to predict the performance of a single Al system, or designed
to generalise across systems. In this work, we train and compare three types of assessors:

e Demand-based: This assessor is a Random Forest [16]] classifier that takes the vector of 18 demands and the
special UG (Unguessability) dimension as input to predict a subject LLM’s performance. The in-distribution
data are used to optimally select the minimum number of samples required to split an internal node, to be either
2, 50 or 200.

16Claude-3.5-Sonnet always refers to the specific ‘claude-3.5-sonnet-1022’ checkpoint in this work.
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¢ Embeddings-based: In this model, each item instance is represented by the average of its GloVe word embed-
dings [U21]], fed to train a RF classifier. As with the demand-based assessor, we tuned the minimum-samples-
per-split hyperparameter of the RF (choosing between 2, 50, and 200) using the in-distribution data.

e Fine-tuned LLaMA: This is a fine-tuned LLaMA-3.1-8B [39] with a linear classification head. This model is
trained end-to-end using the original input text for each task instance. We use the in-distribution data to select
the optimal learning rate between le-4 and 2e-5. To improve training efficiency, we used NF4 quantization
scheme and bfloat16 for computation along with low-rank adaptation (LoRA) for efficient training. Training
was performed with a batch size of 16 for three epochs and a weight decay of 0.01.

For implementation, the random forest models were trained using the Scikit-learn library [120], while the fine-
tuned LLaMA-3.1-8B was trained on the Transformers library [180] using the PyTorch backend running on Python
3.11. All unspecified hyperparameters were left at their default values.

In terms of computational cost, the on-demand assessor was extremely efficient. On an M3 Pro CPU, each subject’s
data was processed via 10-fold cross-validation in about 4 seconds. In contrast, the embedding-based assessor took
about 40 times as long due to the higher computational overhead of processing dense vector representations. The
fine-tuned LLaMA assessor was by far the most expensive, taking around 300 GPU hours on a single V100 GPU to
converge (i.e., around six orders of magnitude longer than the demand-based approach).

To quantify the predictive quality of these assessors we used AUROC and ECE since they capture two key aspects
of predictive power (discrimination and calibration), and each of them is commensurate when comparing predictive
power of distinct assessor-subject pairs. More specifically, ECE is calculated using 10 equal-width bins.

6.7. Slicing Methods for Characteristic Curves

The 19 dimensions, with values between O and 5 each (except LG), constitute a multidimensional space. For a
particular subject (Al system) and each instance x in the ADeLe battery having the same values for the vector, we can
calculate the percentage of correct responses, to get an extra 20th dimension for performance. This will create a surface
in this 20-dimensional space representing the capability footprint of an Al system, in the same way multidimensional
IRT does [129, [14]]. However, having at least one instance for each combination of levels and dimensions would
require 6!° instances, which is not only a big number, but also hard to achieve, as finding items for all combinations
can be very challenging. Actually, the correlation matrix between dimensions (Figure[d) suggests that it is rare to find
some particular combinations of levels, so densely populating this space would be a big challenge.

Performing a dimensionality reduction can alleviate this problem but it will reappear as more relevant demands
are added to the rubrics in the future (multimodal Al robotics, etc.) and the scales are extended beyond level 5 (more
powerful Al), as we set in the design criteria for this methodology. Instead, we propose to explore unidimensional
distillations of that original space, having a characteristic curve for each dimension, rather than a surface for all of
them. These curves are called person characteristic curves [162} [160], whose name we generalise here to subject
characteristic curves.

One way of doing this would be to find task instances that are pure, i.e., having a level above 1 for one dimension
and O for all the others. This would be the slice of the space for that 0-hyperplane for all other dimensions. However,
again, it is difficult to find ‘pure’ instances, only having a non-zero level for one dimension. Even if this were feasible,
most of the items in the battery would be discarded in the process, unless we impose draconian requirements on item
design. Therefore, when trying to represent how a subject performs for one single dimension i, it is unreasonable to
select an instance only if its demand vector x has a profile like (0, ..., 0, x;,0, ..., 0), with x; € [0,5]. Instead, what
we can do is to derive the characteristic curve for dimension i such that for level / we only consider the instances for
which x; = [/ and all other x;;; < [ (or similarly, max; x; = [). We call this approach ‘dominant’ slices. For instance,
for dimension 5 (MCr) and level 2, we have three items in Figure 2] with MCr=2: the vector corresponding to the pop-
ulation question (0,1,1,0,2,1,1,0,1,1,0,0,1,1,0,0,0, 1) would be kept since max; x; equals 2 but the vectors cor-
responding to the Baron Todd question and the 58-year-old male question (3,2,1,1,2,1,2,0,2,0,0,0,3,0,0,0,3,2)
and (2,3,1,0,2,2,1,0,3,2,0,5,0,2,4,0,3,2) would not be used for this dimension, since max; x; equals 3 and 5
respectively, both greater than 2. This has the advantage of finding instances meeting the condition for all levels,
while rejecting those for which another demand is playing a more significant role in explaining the response. In other
words, we keep instances for dimension d at level / if no other dimension dominates. The only level for which we will
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not get instances is level 0, since there are no ‘control’ instances with all dimensions set to 0. This way of ‘slicing’
is both pragmatic and conceptually aligned with established psychometric practices for isolating dimension-specific
response functions [41. [163\ 6], also allowing use to use most of the instances in the battery across dimensions. It
does not consider the correlations (which will vary if we change the composition of the battery) and does not assume
any level of compensatoriness on the demands [[14].

Following this ‘dominant’ slices approach, for each subject (an Al system) we get five aggregated points (1 to 5)
in a one-dimensional space such as those represented in Figures [3] [31] and [T9] where the x-axis is the demand level
and the y-axis is the percentage correct. However, we want to fit a curve out of these points. For this, we use a
two-parametric logistic fit (with y € [0, 1]), making all bins weight the same in the fit as the largest one (except those
bins with less than 100 instances, which uses a proportional weight for robustness), with an anchOIF_T] of 0 at imaginary
level 20 (we assume performance decreases to 0 at that level and beyond, which is plausible taking into account the
meaning of levels in our rubric). This leads to monotonically decreasing curves. Note that the starting point of these
curves at level 0 is not necessarily 100% accuracy, and in some cases it is much lower than that (e.g., this happens
frequently for Figure [31] and less so for Figure [I9). This makes sense as even if this would represent instances with
all demands being zero (which we do not have in the battery), for weak subjects (early LLMs), there is not enough
instructability to answer correctly on these simplest questions having no demands. The LLMs are not good enough. In
a way, the value at O could be considered as some kind of base reliability of the system, independent of the demands.

Finally, once we have estimated the curve, we have the slope and the position as the two estimated parameters,
as in any other IRT 2-PL psychometric modef_g] [41l 32]. The slope indicates how predictive the dimension is for
the performance of the items represented in the curve (only those for which that dimension dominates). A maximum
(vertical) slope would mean that the dimension is very predictive and would sharply distinguish between a high
probability of success at the beginning of the curve and a low probability of success from that inflection point. In
general, we see some cases with moderate slopes, and some other cases with flatter curves. Finally, the position of
the curve is the value on the x-axis of this maximum-slope point. The more to the right the curve descends, the higher
the ability of the subject. Then, using common psychometric practice, we call this position ‘ability’, the point of
maximum slope of the logistic curve, which is also the point where the probability of success equals 0.5 [157]]. This
is important to remember, because an ability of 4 does not mean the subject succeeds at most of the items of difficult
4, but only on half of them on expectation. Finally, given a logistic curve starting at x; = 0 and a value of y close to
100% it is easy to see that the area under the curve (from x = 0 onwards) is equal to the ability. Because of this, and to
make the definition more extensible in the future for situations where we do not want to estimate a parametric curve,
we simply define ability as the area under the curve. Also, this avoids having negative abilities, which is nonsensical
in a ratio scale.

6.8. ADeLe-Light

To streamline our analyses while preserving the representativeness of the demand space, we perform a redundancy
reduction on the entire ADeLe battery. To identify clusters of highly similar instances, we apply k-nearest neighbours
for each instance x; to find k=10 neighbours and calculate the Average Squared Distance (ASD) between x; and its
10 neighbours. The ASD serves as a proxy for local density in the multidimensional demand space: a lower ASD
indicates that an instance is largely redundant with its neighbours. In our procedure, we mark an instance as redundant
if its ASD falls below a threshold of 0.21. For these low-variability instances, we randomly remove 90% of the data,
which reduces approximately 62% of redundant data, resulting in a sample of 6,179 instances, forming the ADeLe-Light
battery v.1.0. The distributions of demands in the entire ADeLe-Light battery (Figure [J) and the inferred ability profiles
of all subject LLMs (Figure are similar to those obtained from the full ADeLe battery.

In general, ADeLe-Light can be used as a starting point when evaluating very complex (and costly) Al systems or
many models, and especially for making engineering decisions when profiling different stages of development. For
the final results, we always recommend to use of the full ADeLe battery.

17\e assign it a weight that is equivalent to the 50% of the total weight shared between all bins and the anchor.

18The 2-PL model is usually applied to the items, and not to the subjects, although some models exist [T02] 48]. Note that we do not include a
guess parameter. We have an Unguessability dimension instead.
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Figure 9: Histograms of level frequencies for the 18 demands using all the 6179 instances in the ADeLe-Light battery v.1.0. Comparing with the
distribution of the full ADeLe (FigureEI), the distributions are similar.
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Figure 10: Ability profiles of the 15 LLMs estimated using all the 6,179 instances in the ADeLe-Light battery v.1.0. Interpretation as in Figure
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8. Cost, Ethical and Safety Implications

Our methodology is designed to be scalable, cost-effective and adaptive, with its primary costs divided between
two core processes: (1) the System Process, for evaluating a new Al system; and (2) the Task Process, for evaluating
a new task or benchmark (see Figure [I)).

The System Process is performed once per Al system. Its dominant cost lies in running the AI model on the 16,108
instances of the ADeLe battery (Step 1), which can range from a few GPU-hours for smaller models to hundreds or
thousands of GPU-hours (or equivalent cloud API costs) for large language models like GPT-4. In practice, this can
be reduced to about a third with the ADeLe-Light version of the battery, while resulting in a slight loss in precision. This
is substantially lightweight in comparison with the typical evaluations taking place at major Al labs and regulatory
bodies. Subsequent steps, such as grading outputs with the provided scorer and generating characteristic curves (Step
2), are computationally inexpensive, requiring only a few CPU-hours or less. In addition, the optional step of training
a simple assessor (Step 3) using traditional machine learning algorithms incurs minimal CPU cost (in our case 4
seconds in a M3 Pro CPU). For our experiments, only as part of the set of baselines, we fine-tuned LLaMA, which is,
by far, much more expensive than our proposed methodology, taking thousands of GPU hours (in our case 300 GPU
hours on a single V100 GPU for one run). Human effort in the System Process is minimal, primarily involving setup
and monitoring of automated processes.

The Task Process is performed once for each new task or benchmark. Its computational cost is primarily driven by
the annotation of task instances using an LLM together with the DeLeAn rubrics (Step A). Although the cost depends on
the model used (e.g., GPT-40 vs. DeepSeek), the rapid decrease in inference costs in recent years mitigates this cost.
After LLM-based annotation, the subsequent data preparation and analysis processes require negligible computational
resources. In contrast, human effort for the task process is largely focused on the prompt design for the subject LLM
and data preparation (which has to be done for any evaluation) as well as the analysis and interpretation of the demand
profiles (Step B). Although this can involve anywhere from various hours to a few days of expert time, these are
one-off investments that benefit from future reuse and further automation. Predicting performance using an assessor
(Step C) is computationally very cheap. The methodology is designed for high automation to minimise recurring
human intervention, and focus the expert time on the design of rubrics for new dimensions (e.g., propensities) and the
interpretation of results.

Developing robust rubrics, as we have done here, requires a significant initial investment of time and expert
effort, involving interdisciplinary collaboration as well as iterative testing and validation to ensure that they accurately
capture the important dimensions of task difficulty. However, once these rubrics have been established and validated,
their use is highly efficient and cost-effective. New instances can be quickly annotated using automated pipelines that
incorporate the rubrics. We highly recommend to capitalise on our battery ADeLe as a standard, which can be extended
collaboratively to share the effort.

We should also recognise that our dimensional approach reduces complex behaviour to a fixed set of measurable
constructs. This reduction is an inherent limitation in any evaluation framework, and can introduce biases, especially
in the knowledge domains. These are not all the dimensions that affect behaviour. For example, in risk or safety
sensitive applications, additional dimensions such as context-specific propensities may need to be included. In such
cases, the scales are not necessarily monotonic (as in personality, where the extremes are generally bad) and may
need to be recalibrated. We therefore emphasise that our framework is designed to evolve, while new rubrics require
up-front effort to develop and validate.

The public access to the scales and the methodology could attract specialised sandbagging [[164]]: a malicious
provider could take a model with high capabilities and use the rubric to identify instances it should answer correctly
and incorrectly to create a believable error profile. Conversely, this could be used for good: limiting capabilities
(rejecting or failing on questions for which the demands are higher than some thresholds) as a better approach than
unlearning [10].

Validity and reliability in evaluation are of utmost importance in stake-high applications. Measuring the wrong
construct or measuring it wrong leads to poor decisions, entailing ethical concerns, various risks and possible harm to
people. Overestimation of abilities (and predicted performance) can contribute to hype and use of Al in contexts when
it is not ready. Underestimation is problematic for regulators, especially for safety. This paper makes progress in all
these fronts but it is not the definitive solution in this space. We advise a careful and critical use of our methodology,
report its limitations and collectively work on its improvement.
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9. Appendix

This appendix includes a full coverage of the related work, and analysis of scaling curves using abilities instead
of performance, the full calibration plots for the assessors used to predict performance, an analysis of the sources
of unpredictability in the data (aleatoric uncertainty), the results for other predictive models (feature importance,
ablations, etc.), the subject characteristic curves for all LLMs and a glossary.

9.1. Related Work

This paper builds on many disciplines inside Al, such as natural language processing and machine learning, and
outside Al such as psychometrics, cognitive psychology, and measurement theory. We will cover the literature which
we deem more directly related to this paper in a non-historical order.

Meta-feature extraction and annotation in linguistics and NLP. A crucial element of this work is the annotation of
testing instances, tasks, or problems. Feature extraction is a traditional approach in many areas of machine learning,
especially in Natural Language Processing (NLP). However, traditional NLP generally focused on this for the purpose
of building a good tabular representation for training the base models solving the task. Here, we focus on meta-features
extracted to understand the type of question or problem and its complexity, rather than as predictor variables for the
original problem (e.g., answering a question). (Computational) Linguistics and NLP developed metrics of vocabulary
and syntax complexity of sentences or paragraphs based on readability assessments (for humans), from the Flesch
Reading Ease Score [50] to modern approaches integrating NLP itself and machine learning for the extraction of text
characteristics meta-features, such as Coh-Metrix [58]] and others [52]]. The use of LLMs as automated annotators is
becoming a viable alternative to some of these metrics and is replacing many manually intensive annotation processes
[17, 164, 137, [152]], even if requiring some level of human verification [118].

Taxonomies of capabilities and rubrics. Beyond linguistics, and when dealing with cognition more generally, a pri-
mary question is how to carve the space of capabilities, skills and knowledge. Several theories of cognition and
intelligence have been developed, informed by conceptual frameworks, experimental data or a hybrid of both. For
instance, the Cattell-Horn-Carroll hierarchical structure of human cognitive abilities [106] is a popular general taxon-
omy in psychology, but many others exist, both describing cognition at a general level or focusing on specific areas
of behaviour [135]. Our primordial dimensions were adapted from [72, [159], that in turn based them on figures 3.1
and 3.2 (human psychometrics, from Thurstone’s primary mental abilities [158] and Cattell-Horn-Carroll hierarchical
model), table 4.1 (animal cognition research, from Wasserman and Zentall’s book [178])) and tables 5.2, 5.3 and figure
5.3 (Al, AGI and benchmarks, from Al Journal and [3]) of [67]]. There is a tradition of creating rubrics for the anno-
tation of assessment items [40, 74} 31]] based on a taxonomy, independently of whether that comes from experimental
human data, theories of cognition, or subfields of Al. For example, the CRAS scales of demands [124] feature a five-
level scale composed of five meta-level dimensions: complexity, resources, abstractness, task strategy, and response
strategy. These dimensions bear a resemblance to aspects of our Metacognition and Volume dimensions. Moreover,
many additional dimensions are employed across various fields in psychology and the behavioural sciences.

Annotating LLM benchmarks for cognitive demands. Since the possibility of using LLMs for annotation is quite
recent, there is a disconnect with some of the rubrics used in educational settings and those used to annotate NLP
benchmarks, including LLMs themselves. Out of the large amount of LLM benchmarks [25]], only a few are designed
around specific dimensions and annotated according to numerical demands on those dimensions [82} [136]. Other
studies instead build controlled evaluation experiments varying various factors, but these factors are qualitative rather
than quantitative [[141} 153 28, [110]]. A few works explored automatic generation of variations of benchmarks, which
could be encoded in annotations. For instance, Wang and Zhao [[177]] assessed how performance is impacted by noise
and textual perturbations, modifications that are quantifiable but much more specific than the domains we consider.
Instead, Cao et al. [23] probed LLMs’ performance by extracting “atomic test objectives” from questions and crafting
new ones to test each element of Bloom’s taxonomy [90]] of cognitive levels (Remembering, Understanding, Apply-
ing, Analyzing, Evaluating, Creating); these levels are more generic than the domains we consider—moreover, our
method obtains multidimensional quantitative annotations for task instances of any type, while their modification only
tests a single level at a time and can only be applied to questions with a single atomic test objective. Finally, Zhu et al.
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[192]] transformed problems by paraphrasing them or adding extra context or choices; while these transformations
are akin to increasing the demands for our Verbal Comprehension and Attention and Scan dimensions and multiple
transformations can be applied at once, those are only 2 out of the 19 dimensions we consider (excluding the extra-
neous dimensions). Moreover, all of the above works require testing LLMs on a large set of novel prompts to obtain
a comprehensive profile, while our approach obtains it from existing evaluation results, after the annotation has been
performed once. Moros-Daval et al. [[112] developed a similar methodology for annotating cognitive demands to what
we present here, but only provided examples of the levels rather than detailed rubrics, did not include dimensions
about Knowledge, and conducted smaller-scale experiments. Relatedly, Zhou et al. [[188]] showed that automatically
annotating linguistic features using an LLM at scale can enable the construction of interpretable classifiers or regres-
sors for dialogue constructiveness assessment and outcompete various strong neural black-box baselines in terms of
prediction quality. Our work can be seen as scaling up these approaches.

Generic critiques of the state of Al evaluation. There are issues in Al evaluation that apply to a broad range of Al
paradigms [[19]], such as issues with measurement scales [68]], reproducibility [22} [12]], statistical rigour [57]], repre-
sentativeness and fairness [[11} 156]], and other ethical aspects [[103} 56]. Some issues that are closely related to some
of the problems we address in this paper are the effect of Volume (such as, for LLMs, adding tokens to the question
definition [96] and the “needle in the haystack” phenomenon [172]) or Atypicality (such as dataset contamination
or over-optimisation [1, (133} 180, [109, [146] or more general “training on the test set" [30]) or Unguessability (such
as the effect of different multiple-choice format questions [173| [8]] for LLMs). The problem of saturation is also
recurrent, and has been mentioned multiple times since the era of Al acceleration began and benchmarks were bro-
ken more often [[140} [184]. Finally, McIntosh et al. [107] surveyed inadequacies related to validity (discrepancies
between what an instrument is intended to measure and what it actually measures), security issues, and the failure to
capture cultural diversity, and claimed that ecologically-valid evaluation needs to pay more attention to the real world
[184L 1147, 122} [128]] or to situations where the Al systems do not achieve their solutions independently, but in interactive
settings with people [94}30].

Issues with benchmarks. Numerous studies have examined challenges associated with benchmarking [63} 43]], the
prevailing paradigm for Al evaluation [[19]], most often involving aggregate measures of model behaviour (usually
performance) on a fixed set of instances related to a task or a few tasks. For example, in the context of traditional
supervised Machine Learning systems, Liao et al. [97] provided an overview of issues within the benchmarking
paradigm, while Bowman and Dahl [[L5]] proposed essential criteria that NLP benchmarks should fulfil. Still consider-
ing NLP, Subramonian et al. [151]] conducted a survey of Al researchers to develop a taxonomy of issues related to the
“validity” of benchmark measurements—specifically, discrepancies between what a benchmark is intended to mea-
sure and what they claim they measure, usually referred to as test validity [168l [73]]. For instance, Siska et al. [[143]
found the correlation between the performance of multiple LLMs across benchmark test instances to be non-random
and that “accounting for [this] can change model rankings on major benchmarks”, with common failure points partly
explaining the correlation; here, our instance-level annotation would allow to clarify the factors causing these corre-
lations in performance. Moreover, our extracted model capabilities robustly rank models along different dimensions
independently of the distribution of instances that composes the benchmark. At a different level, Ren et al. [130] found
the performance on different benchmarks to be related, focusing on “safety” and “capability” benchmarks. While our
paper is purely focused on capabilities, the influence on safety is important, and how our approach could be extended
to include “safety” demands is a promising direction for future work.

Building better benchmarks. Finally, there have been many suggestions on how to build better benchmarks. For
instance, Momennejad et al. [110] provided guidance on building evaluation frameworks to measure whether LLMs
possess capabilities that are robust to various perturbations and experimental conditions, thereby improving valid-
ity. Relatedly, Liu et al. [[100] proposed a protocol for designing benchmarks around capabilities (constructs) and
collecting items that best elicit evidence of the targeted capability. They view “benchmarking as the process of gath-
ering capability evidence from objects of evaluation [...] —i.e., evidence about whether or to what degree those
objects have some capabilities of interest”, aligning with our goal of measuring LLMs’ underlying capabilities rather
than superficial benchmark performance. Their analysis of existing benchmarks reveals poorly conceptualised con-
structs and unclear instance-capability relationships, echoing our finding that benchmarks often include unintended
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demands. At the same time, BetterBench [131] identified 46 best practices for building benchmarks, mostly related to
reproducibility, documentation and statistical significance, despite mentioning construct validity as an open problem.
These criteria are therefore complementary to the above approaches focusing on validity, and the analysis of construct
validity our approach affords can be combined with their criteria.

Ability-oriented Al evaluation and Al predictability. LLMs are an example of General-Purpose Al (GPAI) models:
Al models that can be applied to an extremely large variety of taskﬂ The evaluation approach discussed above,
benchmarking, is exported from traditional supervised machine learning practice, where a bespoke ML model was
trained for a specific task; there, evaluating a model in terms of its accuracy on a test set was sufficient to gain
information on how the model would perform if the real-world data distribution was represented in the test set (which
could be subject to minor distribution shift with respect to the training set). However, due to their generality, a fixed
benchmark cannot represent the full distribution of applications an LLM is used in. To partially address this problem,
an LLM’s performance on a collection of benchmarks is usually reported. However, such a rask-oriented evaluation
does not fully characterise a model’s behaviour for two reasons: 1) benchmarks represent a specific distribution of
instances of a task, but the difficulty of problems of the same domain encountered in the real world may be different
[[143]]; 2) it is impossible to assess the performance on the complete set of tasks to which a GPAI model can be possibly
applied.

Therefore, it has been advocated [66! [18] that GPAI evaluation must become ability-oriented, namely focusing
on inferring a set of abstract latent capabilities (for instance, through the use of construct-oriented evaluation tools
[19] that functionally connect observed behaviour to latent variables) that comprehensively characterise a model’s
behaviour. Starting from the obtained capability profile, the model’s performance on specific task instances could be
predicted from the “demands” they pose on each capability, even if the model was not previously evaluated on task
instances with that specific combination of demands. Therefore, ability-oriented evaluation provides an interpretable
description of a model’s characteristics and fosters the goal of building predictable AI [190], which is important to
anticipate and mitigate model errors and thus contribute to safety.

Our work is an example of ability-oriented evaluation: we extract capabilities of models related to the dimensions
we define, which comprehensively characterise a model and apply across various tasks and domains. Further, the
inferred capability levels could be combined with the annotated demands of each task instance to predict the model’s
performance on new individual task instances (for instance, with an approach similar to that in Burden et al. [20]) or the
accuracy on a benchmark with a domain profile, rather than building separate assessors as we did here. It is important
to note that using radial plots in Al evaluations—even when labelled with the term “capability”—does not inherently
imply an ability-oriented assessment. Often, these plots merely represent aggregate performance, broken down by
benchmarks or their subdomains [145, [7, |51} [105]]. For a score to genuinely qualify as a capability, the evaluation
must incorporate either binary demands or difficulties. Also, only when capabilities are defined as counterparts to
demands or difficulties, can we properly talk about notions of generality as opposed to capability [[/0] or as a derived
metric from a range of capabilities [69]. The profile we extract with our approach could be used for this purpose.

Extracting profiles of latent features explaining LLMs’ behaviour. Through the annotation of instances for the de-
mands they pose on various dimensions and instance-level analysis of results, our approach can explain performance
through a “profile” of model capabilities, in the spirit of ability-oriented evaluation (see the above paragraph). A
few other works extracted latent dimensions characterising LLM behaviour. For example, both Burnell et al. [21]]
and Ili¢ and Gignac [77] explained the variance of aggregate performance on different benchmarks for a population
of models via a set of latent factors inferred through factor analysis. In particular, Burnell et al. [21]] found 3 latent
factors to explain a large part of the variance and, by manual inspection, realised that these partially align with an a
priori classification of the cognitive skills needed to solve the benchmarks (then interpreting the factors as reasoning,
comprehension and language modelling). 1li¢ and Gignac [77], on the contrary, identified one general factor only.
Similarly, Ruan et al. [134]] introduced “observational scaling laws” that connect performance on complex down-
stream tasks with hypothesised latent capabilities. These latent values are estimated by decomposing the performance
of a population of LLMs across different benchmarks into components that follow a log-linear relationship with the

19For instance, the EU AI Act [43] Article 3(63)] defines a model as GPAI if it “displays significant generality and is capable of competently
performing a wide range of distinct tasks [...] and that can be integrated into a variety of downstream systems or applications”.
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compute measures used in LLM training. All of these methods rely on a population of models and explain aggregate
performance; in contrast, by using instance-level annotations and performance of a single LLLM, the capability profile
we obtain is independent of the choice of an LLM population and of their compute footprint. Moreover, while their in-
ferred latent factors have to be identified a posteriori, our capabilities are relative to a pre-defined demand, facilitating
interpretation. At the same time, the assessors we train allow us to predict instance-level performance on an instance
on which models were not previously tested; in contrast, the scaling laws in Ruan et al. [134] can predict aggregate
performance on a benchmark which was previously processed in their framework, although they can do that for new
models of a family that was used in their analysis, based on compute measures. Instead, Burnell et al. [21]] and Ili¢
and Gignac [[7/]] offer no predictive power for new models or new tasks beyond a qualitative estimate based on what
abilities are presumed to be useful for a task.

Instance-level performance prediction of AI models. Zhou et al. [[190] emphasised the importance of instance-level
success predictions for Al models, coining the term “predictable AI”. They argue that in high-stakes applications,
prioritising predictability is a more valuable goal than pursuing unpredictable improvements in average performance.
As a precursor of this idea, Hernandez-Orallo et al. [[71] introduced the concept of an assessor—a model trained
to predict an ML system’s performance on individual instances based on its evaluation results on test data (i.e.,
data not used for training the ML system). Several studies have explored variations of this approach. Zhou et al.
[189]] demonstrated that a smaller LLM could be trained to predict the performance of a larger LLM on individual
instances without direct access to them. This assessor successfully rejected nearly half of the failure cases, leading to
significant computational savings. Schellaert et al. [139]] accurately predicted LLM performance across more than 100
BIG-bench tasks [[1435]], surpassing the confidence of the models themselves while maintaining predictability across
different model sizes, suggesting scalability. Drapal et al. [37]] extracted explainable meta-rules from trained assessors
to identify regions where performance is predictable. Instead, Pacchiardi et al. [[116] trained assessors that leveraged
shared information across multiple LLMs, reducing the number of instances each LLM needed to process for assessor
training. In this work, we place ourselves in this strand of literature by training assessors using our annotated demands
on the various dimensions.

Beyond the assessor framework, alternative techniques from other fields have been adapted for instance-level
performance prediction. For example, Drapal et al. [38] combined novelty detection with meta-learning to filter out
instances where an ML system is likely to fail (additional similar approaches are discussed in Section 4 of Hendrickx
et al. [65]]). Another related approach, inspired by intrinsic uncertainty quantification [[142], is Kadavath et al. [83],
which trained LLMs to estimate their probability of success on a question without reference to a specific answer. This
was achieved either through natural language responses or by adding an additional “head” to the modelFE] Addition-
ally, the approach in Burden et al. [20] explicitly modelled the probability of an Al system succeeding on an instance
using a set of system’s latent capabilities and instance-level demands, and inferred a posterior for the capabilities using
Bayesian inference starting from annotated demands. A prediction on an instance with assigned demands can then be
obtained in terms of the “posterior predictive” distribution. Finally, Item Response Theory (IRT) [42]] can be used to
predict performance of Al models, but only on previously processed instances; this was done in previous work [[125]],
despite not being the main focus. We discuss connections of our work with IRT more extensively in the subsequent
paragraphs. Finally, Pacchiardi et al. [117] introduced Predictaboard, a standardised benchmarking framework that
jointly evaluates an LLM’s performance and the ability of a performance prediction method, facilitating comparisons
across assessors (including possibly our own) and other approaches, such as the ones discussed above.

How human users predict and understand LLM performance. In parallel with developing a score predictor model,
an important question arises: How effectively can humans predict where Al might fail? Several works address this
question. For instance, Carlini [24]] found that human predictions are only marginally better than chance at predicting
GPT-4’s performance. Relatedly, Vafa et al. [161] demonstrated that humans tend to overestimate the future perfor-
mance of LLMs based on prior interactions, particularly with larger models in high-stakes contexts. They argue that
“the best LLM is the one that allows humans to make the most reliable inferences about where it will succeed”. Zhou

20Many other studies apply intrinsic uncertainty quantification to assess whether a model perceives a given statement as correct or incorrect after
generating an answer. However, this differs from predicting performance before an answer is produced. See Shorinwa et al. [142] for a broader
discussion.
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et al. [191] showed that as Al systems become more capable, human predictions of their performance become increas-
ingly unreliable. Furthermore, Steyvers et al. [149]] found that LLM-generated explanations supporting a statement
do not enable humans to reliably determine whether that statement is correct, even when the LLM’s token-level prob-
abilities are well-calibrated. Additionally, longer explanations were observed to increase user confidence, regardless
of their accuracy. Our approach provides an interpretable profile of the capabilities of LLMs, which may help human
users to more reliably predict where LLMs will perform successfully.

Item Response Theory. Item Response Theory (IRT) [42) [13] originally developed as an alternative approach to
classical test theory in psychometrics where the notion of difficulty was chosen to play a central stage [[135]. One of
the key observations in the evaluation of cognition and intelligence is that correlation between tests appears when the
range of difficulties of the items in a test generates enough variance in the population. Not controlling for the difficulty
of the items may lead to inefficient testing and the wrong information about whether several latent factors correlate, or
simply missing an important construct because the range of difficulties was insufficient to generate enough variance
in the population. As a reaction, IRT contrasts difficulty and ability from the start, and sets a common scale for
them. Given a matrix of results of subjects and items, IRT can estimate the ability of the subjects and the difficulty
of items at the same time. Many traditional IRT models represent the probability of success as a logistic function of
the difference between ability and difficulty. The simplest of these models, the 1-PL or Rasch model, only estimates
ability and difficulty, assuming the logistic curve has slope 1. The 2-PL model extends this by allowing a second
parameter, the slope of the logistic curve (termed discrimination) to be inferred from the data. The 3-PL model
includes a guess parameter, which is the minimum expected value of the response, which is usually appropriate for
multiple-choice questions where distractors are obvious and the baseline goes above the statistical chance. In general,
the guess parameter not being 0 is useful when there is a chance of success even without ability. This has inspired
the Unguessability dimension in this paper. The logistic curves are called item characteristic curves, with ability on
the x-axis and response on the y-axis for a population of subjects. The dual curve is called the person characteristic
curve [162, [160], indicated in this paper as subject characteristic curve, which maps response on the y-axis for a
population of items as a function of the ability of one subject on the x-axis. An important thing to clarify is that IRT
cannot predict performance for items that have not been characterised during the estimation phase, and the parameters
depend on the population of subjects. If the subjects or the items are changed (very different groups of humans),
all the parameters may change. IRT has been adapted to machine learning and NLP [104, |92, |89, [125| [165} 91].
Of the many works adapting IRT to Al evaluation, a few applied it specifically to analyse LLM performance. For
instance, Fang et al. [46] started from a test which has been validated on humans and converted it into prompts that
are suitable for LLMs. It used human performance to obtain item difficulty and then used them to analyse LLM
performance and get capability scores, using IRT-like models. Very similarly, Zhuang et al. [193]] extracted difficulty
of different instances in a benchmark and models’ abilities from a population of models. Instead, Tang et al. [155]]
introduced a dataset annotated using 5 levels of difficulty obtained from human performance scores, while Lei et al.
[95] considered a dataset annotated with difficulty scores by human experts and employed a simple psychometric
model to finding differences in how success for humans and LLMs correlates with the annotated difficulty. Finally,
Federiakin [47] applied IRT to improve rankings on the HuggingFace leaderboard. Other works instead used IRT to
improve the efficiency of benchmarking: Polo et al. [[125] and Kipnis et al. [89]] used IRT to select informative subsets
of a benchmark and estimates the performance of a new LLM on the whole benchmark by evaluating it only on those
instances.

Multidimensional Item Response Theory. On many occasions, one single ability-difficulty pair is not sufficient to
account for the variability of responses; rather, more than one dimension is needed. Multidimensional IRT [129, [14]]
replaces the notion of item characteristic curve with an item characteristic surface, where two or more dimensions
of ability-difficulty are represented. Estimating this surface will depend on the assumption of independence of the
dimensions. Two abilities are considered compensatory if the lack of one can be compensated by the other. For
instance, for recognising a person, we can use face recognition ability and voice recognition ability. In a situation when
one ability is affected or the demand is too high (e.g., noise in the image or the audio), then the other can compensate.
Conversely, two abilities are considered non-compensatory when the lack of one cannot be compensated by the other.
One important question from multidimensional IRT is how to extract individual dimensions from the multidimensional
space that are calibrated [2]. This depends on a series of assumptions, such as the level of compensatoriness. Some
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multidimensional IRT models have been applied to machine learning as well: Liu et al. [99] considered an extension
of multidimensional IRT using a set of subjects, their instance-level performance on a dataset and a binary annotation
matrix encoding the “skills” required by each instance to infer levels of skill-specific ability for the different subjects
and obtain an overarching difficulty (and discrimination) factor for each instance. These inferred quantities depend
however on the considered population of learners, in contrast to our approach, which is non-populational. Further, our
approach uses numerical levels of demands over different dimensions, while they only considered binary indicators
for whether a specific skill is needed in an instance, without quantifying skill-specific demand.

Other extensions of IRT. Linear logistic test models (LLTM) [49] consider a vector of binary demands for each item,
expressing if a given demand is needed or not for a particular item (they can also be greater than one, in an ordinal or
quantitative scale). The matrix of all items and demands is called the Q-matrix. LLTM considers one single difficulty
as a linear function of the demands, with the parameters of that function being estimated from data, and being the same
for all subjects and items. Similarly to traditional IRT, the item difficulty is opposed to the ability. Despite having
several demands, the model assumes one single ability per subject, and it cannot generate ability profiles. Also, the
parameters are estimated from the whole population of items and subjects, and these parameters can change if the
subject population changes. However, one great advantage of LLTMs is the much smaller number of parameters to
estimate, as difficulty is derived a function of the demands. Because of this, it can be applied to new instances. LLTM
has been generalised by the area known as ‘explanatory item response models’ [33]] where the approach LLTM applies
to item parameters is extended to person parameters or both person and item parameters (known as doubly explanatory
models), or in the multidimensional case [34]]. Cognitive diagnostic models [[167, 166, 135]] are a related approach and
also use a Q-matrix, but can generate ‘multidimensional skill profiles’. Lately, machine learning methods are being
used to estimate these models. Wang et al. [171] provide a history of the entire field, encompassing both the traditional
approaches and the new ones based on machine learning. Finally, the bifactor scoring model [26]], separates a general
factor, accounting for communality among all items (or items from domains that are highly correlated), and group
factors (the capability dimensions), accounting for domain-wise variances. Unfortunately, most of these advanced
models have not been applied in Al, despite the recent calls to do so [[175].

Situation of this paper in the space of psychometric methods. Our work adapts and integrates many ideas from
psychometrics, in particular from IRT. Our approach is similar to LLTM in the use of demands (the ADeLe battery
can be seen as a Q-matrix) and especially to explanatory item response models and cognitive diagnostic models.
However, we do not consider demands as being determined by the difficulty for a fixed population. The analogy with
the bifactor scoring models can shed light on our observations of our subjects not having probability of success 1 at
demand level O (as can be seen in the subject characteristic curves): that is because the subject needs to understand the
question and know that they need to give an answer. To account for this, some IRT approaches introduce a parameter
called inattention. Our approach can be seen as starting with a multidimensional model, assuming independence,
and then slicing it using the ‘dominant’ approach. In general, slicing multidimensional spaces into unidimensional
spaces implies important assumptions and depends on the data [150]. Our use of the ‘dominant’ slicing approach
induces a dependence on the correlations between dimensions in the battery we consider, which may lead to poor
calibration the less pure the items are. The major difference between all of the above psychometric models and our
methodology originates from the nature of the subject: humans for psychometrics and machines for Al. For adult
humans, the notion of population is meaningful and is generally stable. However, the capabilities of AI models and
their similarity are changing quickly, so any result that depends on the variance of the population of benchmarks
would need to be reconsidered every year when a new generation of models appear. For instance, the factor analysis
studies changed conclusions between [21] and [77], most likely because of a different sample of models, despite
the studies being conducted just a few month apart. In principle, we can produce a score for single individuals by
looking at the individual’s responses to items and generating a score from the model parameters [156]. However,
psychometrics rarely builds a model from a single human with a “cold start” (i.e., not adapting models informed by a
population), because it makes sense to use the information of many other humans, and collecting a sufficient amount
of data from a single individual is costly. In the case of our battery ADeLe, we have more than 16,000 items per
LLM, from which we can make strong inferences (including high predictability). The other difference is that very few
dimensions are usually enough for humans, because most capabilities and traits show high correlations. Moreover, the
smaller number of items in human studies with respect to what is possible with Al systems lead to stronger effect of
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noise, which reduces the number of parameters that can be accurately estimated: with 50 items, a single odd item may
produce noise and estimate error, but a high number of dimensions is possible with 16,000 items. As such, with more
data, there is greater potential to uncover regularities beyond a limited set of dimensions, thereby revealing processes
that might otherwise remain undetected.

Item design, procedural generation and adaptive testing. In our paper, we have not explored exploiting the rubrics and
annotations for better item design, procedural generation [[109] and adaptive testing. These approaches are common
in assessment, especially with the use of difficulty levels from IRT, but have also been adopted to Al. For instance,
Zhuang et al. [193] used IRT to extract difficulty of different instances in a benchmark and relied on these to perform
adaptive testing by selecting items whose difficulty is more informative of a model’s ability level. A similar approach
could be taken with our annotated demands, although their multidimensional nature should be taken into account.
Instead, Guinet et al. [S9] used IRT to improve the quality of a benchmark for Retrieval Augmented Generation
(RAG) LLMs by eliminating the questions that are not sufficiently informative about a model’s ability. Again, we
could analogously rely on our extracted demand levels to ensure that a benchmark comprehensively tests LLMs in a
range of situations. Finally, Zhang et al. [[186] performs adaptive labelling and procedural generation simultaneously.
Interestingly, their categories are organised in a taxonomy of binary dimensions.

Measurement theory and Al scales. Two important concepts in measurement theory [62]] are the type of scale and
the measurement units. Steven’s typology of measurement [148] includes ‘nominal’, ‘ordinal’, ‘interval’ and ‘ratio’
scales, and many other topologies have appeared since then. For quantitative measurement, interval scales make the
comparisons of differences meaningful, and calculating a mean is well justified. Ratio scales set an absolute value,
and hence ratios become meaningful. For a latent factor, the choice of a scale is arbitrary. In IRT, it is somewhat
controversial (e.g., [L08, [101]]). Although some researchers advocate for a ratio or interval-scale basis for test scores
(e.g., ‘the odds (or log odds) of student 1 answering a class of items correctly are twice the odds (or log odds) of
student 2 doing so’ is a meaningful assertion [54]]), others point out that a latent trait scale of a fitted IRT model is
convenient but not inherently meaningful because any monotonic transformation of the estimated latent trait scores
produces an equally valid model [[101}[169]. In contrast to this, some magnitudes are associated with cognition have a
clear scale, such as size or time. For instance, for the dimension Attention and Scan, the length (e.g., in words) could
be relevant, and for the Volume dimension we have used time (and we saw correlation between the size of a question
and the time to solve it, [86]]). Time is isolated in the person-month metric, used everywhere in human resources,
project management, or software engineering, which can be mapped to educational levels, taking into account the
effort in days that several levels require (e.g., OECD data [[114]). Morris et al. [L13] uses percentiles of the human
population for their Emerging, Competent, Expert, Virtuoso and Superhuman levels of AGI. Here, we do not base the
levels on outperforming percentiles, but on the probability of finding a sample of 10/ humans with more than 95%
chance of at least one being correct.
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9.2. Scaling Curves of Model Abilities

Figure[IT]and Figure[I2]show the scaling curves of model abilities and performance, respectively, as a function of
model size, for both LLaMA and DK-R1-Distilled-Qwen families.
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Figure 11: The scaling curves of actual abilities for LLaMA and DK-R1-Distilled-Qwen families across all 18 demands.

Traditional performance scaling analyses, such as those shown in Figure [[2] which aggregates results across 20
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benchmarks, are susceptible to saturation effects, not only because the scale on y-axis is bounded by 1 but also be-
cause there may be some abstruse or even wrongly labelled questions that make the percentages never reach 100%.
For the most powerful models, the composite performance scores flatten across many benchmarks, making it difficult
to interpret incremental improvements as model size increases. This saturation can mask subtle but important gains
in specific cognitive abilities. In contrast, our ability scaling curves based on ratio scales remain sensitive and infor-
mative: they avoid benchmark saturation and show clear trends even for the largest models. This discloses insights,
but the most notable one is the clear diminishing return from the second largest to the largest model in both LLaMA
and DK-R1-Distilled-Qwen families, consistent in nearly all dimensions. In other words, while performance generally
increases with model size, our method reveals that the magnitude of skill improvement tapers off beyond a certain
size.
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Figure 12: The scaling curves of performance for LLaMA and DK-R1-Distilled-Qwen families across all 20 benchmarks.

9.3. Calibration of Assessors

Figure [T3] [T4] [I5] show the calibration of our demand-based, GLOVE and LLAMA assessors (from Table [3) on the
in-distribution setup. This confirms our observation in section[3.4} the demand-based assessor achieves nearly perfect
calibration, while the two black-box assessors are noticeably worse.
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Figure 13: Calibration of the RF demand-based assessor for the 15 subject LLMs, in-distribution, from Table [3} The x-axis corresponds to the
estimated probability of success, while the y-axis corresponds to the empirical performance. The numbers in each dot indicate the number of
instances in a given bin.
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given bin.
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Figure 15: Calibration of the LLAMA assessor for the 15 subject LLMs, in-distribution, from Table |3| The x-axis corresponds to the estimated
probability of success, while the y-axis corresponds to the empirical performance. The numbers in each dot indicate the number of instances in a
given bin.

9.4. Sources of Unpredictability

There are various sources that hinder perfect predictability more broadly. This includes both epistemic uncertainty,
which can be reduced by additionally finding relevant predictive features (e.g., including new features or extending
the demand level of 5+ in our DeLeAn rubrics to level 6 and beyond), and aleatoric uncertainty, which is inherently
irreducible [[75]. The latter may come from, but not limited to, chance guess rate in multiple-choice questions, mem-
orisation of test instances, inherent stochasticity of reasoning models or models based on the Mixture-of-Experts
architecture, prompt sensitivity, among others.

The first two sources of aleatoric uncertainty listed above, chance guess rate and memorisation, stem from data.
The impact of these seems quite large, as supported by the analysis in Appendix [0.5.2] in which we build a demand-
based assessor by only using AT (Atypicality), VO (Volume) and UG (Unguessability); future research should seek
solutions for controlling and minimising these sources of unpredictability coming from the data. The other two
sources of aleatoric uncertainty come from the high-quality but imperfect input-response graders (see section[6.3) and
demand annotators (see section[6.3). In other words, the predictive power of the demand-based assessors shown in this
paper is in fact underrated, as the imperfect verification and demand annotations introduce noise and thus decrease the
upper bound of predictive power that can be accomplished. This is unfortunate but encouraging, as it simultaneously
implies that the predictive power of assessors based on our methodology will increase as future LLMs improve their
capabilities.

In contrast, the other sources of unpredictability stem from the design of Al systems (e.g., many LLMs today are
not deterministic, even at temperature 0, and chain-of-thought LLMs usually use a temperature well above 0); future
efforts should look for pathways that enable the minimisation of inherent unpredictability of models, as previously
suggested by Zhou et al. [190]], alongside a discussion of various possible future pathways for striving toward this
goal.
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9.5. Other Predictive Models

9.5.1. Feature Importance

Figure shows the feature importanceEl of the 19 dimensions for all the demand-based assessors we have trained
for Table[3] We see that no demand has a feature importance value below 0.02, suggesting all demands are relevant to a
greater or lesser extent. Based on the elbow method, we can select the six most relevant dimensions: MCu (Calibrating
Known Unknowns), UG (Unguessability), KNf (Knowledge of Formal Sciences), CL (Conceptualisation, Learning
and Abstraction), QL1 (Logical Reasoning), and MCr (Identifying Relevant Information). This ranking is strongly
correlated (Spearman Corr. = 0.718) with the ranking of correlation magnitudes between demands and success, as
observed in Figure 4]

MCu
UG
KNf
CL
QLl
MCr
SNs
VO
AS
AT
QLg
KNa
KNn
KNs
MCt
KNc
CEe
CEc
MS

Demand

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14
Feature Importance

Figure 16: Feature importance of all dimensions averaged across all demand-based assessors for difterent subject LLM:s.

To explore whether it is possible to achieve high predictive power with a smaller number of dimensions, we feed
the selection from the elbow method as input to the demand-based assessor using the same algorithm (Random Forest).
We observe that predictive power in general decreases between 0.01 and 0.03 on average, but still fairly high (Table
[13) . This is promising as it implies that high predictive power may be achieved through a small number of dimensions.

9.5.2. Assessor Only with AT, UG, and VO

Table [T4] shows that a demand-based assessor fed only with AT (Atypicality), UG (Unguessability), VO (Volume)
can achieve fairly good predictive power. This demonstrates that existing benchmarks incorporate extraneous demands
in many task instances, identifying contamination, amalgamation and funnelling, respectively, that are predictive of
a large proportion of LLM success. These are extraneous interventions in popular AI benchmarks that make them
not measure what they claim they measure and should be controlled in the design of future benchmarks to ensure
construct validity.

21We use the ‘permutation_importance’ in https://scikit-learn.org/stable/modules/generated/sklearn.inspection.html. It assesses each feature’s
importance by shuffling the feature’s values and measuring the model’s performance change.
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Table 13: Predictive power of the demand-based assessor by using only MCu (Calibrating Known Unknowns), UG (Unguessability), KNf
(Knowledge of Formal Sciences), CL (Conceptualisation, Learning and Abstraction), QL1 (Logical Reasoning), and MCr (Identifying
Relevant Information) for in-distribution, task out-of-distribution, and benchmark out-of-distribution.

Subject LLM  LLM Accuracy] D Task OOD Benchmark OOD
AUROCT ECE| AUROC?T ECE| AUROCT ECE|

Babbage-002 0.102 0.761 0.009 0.726 0.019 0.714 0.024
Davinci-002 0.157 0.751 0.007 0.724 0.019 0.696 0.039
GPT-3.5-turbo 0.414 0.792 0.012 0.773 0.026 0.767 0.024

GPT-40 0.713 0.858 0.013 0.827 0.039 0.814 0.059

OpenAl o1-mini 0.770 0.830 0.012 0.800 0.032 0.734 0.051
OpenAl o1 0.843 0.815 0.010 0.777 0.032 0.737 0.043
LLaMA-3.2-1B-Instruct 0.216 0.768 0.011 0.728 0.034 0.711 0.048
LLaMA-3.2-3B-Instruct 0.378 0.794 0.009 0.779 0.027 0.757 0.042
LLaMA-3.2-11B-Instruct 0.463 0.801 0.010 0.780 0.041 0.768 0.036
LLaMA-3.2-90B-Instruct 0.645 0.837 0.015 0.807 0.033 0.795 0.072
LLaMA-3.1-405B-Instruct 0.683 0.846 0.010 0.814 0.037 0.797 0.077
DK-R1-Dist-Qwen-1.5B 0.353 0.753 0.010 0.733 0.023 0.681 0.053
DK-R1-Dist-Qwen-7B 0.555 0.781 0.013 0.762 0.017 0.666 0.053
DK-R1-Dist-Qwen-14B 0.698 0.797 0.012 0.774 0.030 0.691 0.071
DK-R1-Dist-Qwen-32B 0.748 0.809 0.013 0.785 0.036 0.714 0.075
Weighted Average — 0.811 0.012 0.784 0.031 0.742 0.056

Table 14: Predictive power of the demand-based assessor by using only AT (Atypicality), UG (Unguessability) and VO (Volume) for in-distribution,
task out-of-distribution, and benchmark out-of-distribution.

Subject LLM  LLM Accuracy? ID Task OOD Benchmark OOD
AUROCT ECE| AUROCT ECE| AUROCT ECE|

Babbage-002 0.102 0.676 0.007 0.590 0.043 0.548 0.070
Davinci-002 0.157 0.669 0.006 0.615 0.039 0.584 0.078
GPT-3.5-Turbo 0414 0.748 0.009 0.720 0.041 0.670 0.096

GPT-40 0.713 0.809 0.004 0.773 0.050 0.741 0.048

OpenAl o1-mini 0.770 0.738 0.005 0.693 0.038 0.620 0.082

OpenAl o1 0.843 0.727 0.004 0.672 0.028 0.598 0.086
LLaMA-3.2-1B-Instruct 0.216 0.707 0.007 0.652 0.052 0.618 0.101
LLaMA-3.2-3B-Instruct 0.378 0.738 0.008 0.706 0.030 0.650 0.130
LLaMA-3.2-11B-Instruction 0.463 0.748 0.006 0.717 0.053 0.682 0.076
LLaMA-3.2-90B-Instruct 0.645 0.792 0.007 0.758 0.041 0.727 0.070
LLaMA-3.1-405B-Instruct 0.683 0.799 0.008 0.763 0.065 0.739 0.069
DK-R1-Dist-Qwen-1.5B 0.353 0.685 0.007 0.657 0.033 0.569 0.122
DK-R1-Dist-Qwen-7B 0.555 0.686 0.007 0.645 0.054 0.568 0.120
DK-R1-Dist-Qwen-14B 0.698 0.713 0.006 0.664 0.063 0.584 0.114
DK-R1-Dist-Qwen-32B 0.748 0.730 0.007 0.692 0.039 0.608 0.101
Weighted Average — 0.742 0.006 0.701 0.045 0.644 0.089

9.5.3. Assessor without AT, UG, and VO

Table[T3|demonstrates that the predictive power of a demand-based assessor fed with all the dimensions except for
the extraneous ones, can achieve satisfactory results, though worse to a small extent than the demand-based assessor
fed with all the dimensions, as shown previously in Table [3] @] and [5] This means that some other variables can
compensate for this, including unguessability. This suggests that fully controlling for these variables could be done
with some hierarchical assessors or, possibly, by performing a multivariate analysis.

9.5.4. Feature Grouping: Assessor with 11 Broad Dimensions

Table [T6] shows the predictive power of our demand-based assessor using the 11 broad dimensions listed in Table
[T instead of the 19 specific dimensions. Overall, this is slightly worse than using all 19 demands in general, again
confirming that that one can predict model performance very well by aggregating some dimensions. Whether this
compensates for robustness (having three scales for metacognition aggregated into one single scale) instead of one
single scale for metacognition is something to explore in future work.
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Table 15: Predictive power of the demand-based assessor using all the demands expect for AT (Atypicality), UG (Unguessability) and VO (Volume),
for in-distribution, task out-of-distribution, and benchmark out-of-distribution.

Subject LLM  LLM Accuracy? ID Task OOD Benchmark OOD
AUROCT ECE| AUROCT ECE| AUROCT ECE|

Babbage-002 0.102 0.775 0.004 0.737 0.010 0.664 0.033
Davinci-002 0.157 0.763 0.008 0.732 0.011 0.715 0.015
GPT-3.5-turbo 0.414 0.802 0.005 0.783 0.019 0.753 0.053

GPT-40 0.713 0.871 0.013 0.841 0.022 0.790 0.041

OpenAl o1-mini 0.770 0.848 0.007 0.827 0.017 0.736 0.027
OpenAl o1 0.843 0.839 0.009 0.796 0.026 0.705 0.031
LLaMA-3.2-1B-Instruct 0.216 0.771 0.004 0.722 0.031 0.698 0.053
LLaMA-3.2-3B-Instruct 0.378 0.804 0.008 0.780 0.022 0.752 0.050
LLaMA-3.2-11B-Instruct 0.463 0.810 0.008 0.788 0.028 0.757 0.051
LLaMA-3.2-90B-Instruct 0.645 0.848 0.014 0.816 0.027 0.759 0.055
LLaMA-3.1-405B-Instruct 0.683 0.859 0.011 0.828 0.024 0.770 0.050
DK-R1-Dist-Qwen-1.5B 0.353 0.772 0.009 0.745 0.028 0.702 0.043
DK-R1-Dist-Qwen-7B 0.555 0.802 0.013 0.778 0.020 0.689 0.043
DK-R1-Dist-Qwen-14B 0.698 0.815 0.012 0.792 0.014 0.681 0.033
DK-R1-Dist-Qwen-32B 0.748 0.827 0.010 0.795 0.029 0.709 0.046
Weighted Average — 0.827 0.010 0.798 0.022 0.731 0.042

Table 16: Predictive power of the demand-based assessor by using the 11 broad dimensions for in-distribution, task out-of-distribution, and
benchmark out-of-distribution. If a broad dimension has more than one subdimensions, we take the maximum value.

Subject LLM  LLM Accuracy] D Task OOD Benchmark OOD
AUROCT ECE| AUROC?T ECE| AUROCT ECE|

Babbage-002 0.102 0.768 0.004 0.731 0.014 0.686 0.020
Davinci-002 0.157 0.763 0.007 0.727 0.011 0.712 0.021
GPT-35-Turbo 0.414 0.801 0.007 0.784 0.021 0.768 0.032

GPT-40 0.713 0.870 0.013 0.839 0.025 0.816 0.048

OpenAl o1-mini 0.770 0.845 0.013 0.821 0.020 0.745 0.029
OpenAl o1 0.843 0.835 0.011 0.793 0.031 0.725 0.039
LLaMA-3.2-1B-Instruct 0.216 0.769 0.010 0.718 0.034 0.692 0.035
LLaMA-3.2-3B-Instruct 0.378 0.803 0.010 0.782 0.026 0.768 0.032
LLaMA-3.2-11B-Instruct 0.463 0.808 0.008 0.786 0.033 0.773 0.045
LLaMA-3.2-90B-Instruct 0.645 0.849 0.014 0.819 0.030 0.795 0.061
LLaMA-3.1-405B-Instruct 0.683 0.858 0.011 0.830 0.029 0.810 0.049
DK-R1-Dist-Qwen-1.5B 0.353 0.768 0.007 0.746 0.018 0.691 0.053
DK-R1-Dist-Qwen-7B 0.555 0.799 0.013 0.775 0.022 0.682 0.031
DK-R1-Dist-Qwen-14B 0.698 0.815 0.012 0.793 0.024 0.701 0.038
DK-R1-Dist-Qwen-32B 0.748 0.825 0.011 0.798 0.028 0.704 0.053
Weighted Average — 0.825 0.011 0.797 0.026 0.745 0.042

9.5.5. Demand-based Assessor with Logistic Regression

Table [T7] shows the predictive power of an demand-based assessor based on logistic regression, using all the 19
demands, without any hyperparameters tuning. In comparison with our main demand-based assessor in Table[3] this
assessor is moderately worse (e.g. dropping from 0.881 to 0.852 in terms AUROC when predicting GPT-40 in the
in-distribution setup), which is expected since this logistic regression model is expressed in the simplest form—using
only raw features and does not capture any nonlinear (or interaction) terms into the feature set, leading its decision
boundary to remain linear, unlike random forest.

9.5.6. A Universal Assessor

Table [I8]shows the predictive power of a demand-based assessor trained with all the 19 dimensions plus one extra
variable with the identifier of the LLM subjects. Even if the dataset is 15 times larger and it can smooth the aleatoric
uncertainty specific to some models, the results are very similar to the standard configuration with one assessor per
model. Things could improve with a characterisation of the LLM or some other techniques, but we leave this as future
work.
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Table 17: Predictive power of a demand-based assessor trained with a basic logistic regression by using all the 19 specific dimensions for in-
distribution, task out-of-distribution, and benchmark out-of-distribution.

Subject LLM  LLM Accuracy? ID Task OOD Benchmark OOD
AUROCT ECE| AUROC?T ECE| AUROC?T ECE|

Babbage-002 0.102 0.749 0.010 0.725 0.016 0.705 0.018
Davinci-002 0.157 0.740 0.005 0.717 0.014 0.709 0.023
GPT-3.5-Turbo 0.414 0.793 0.020 0.784 0.030 0.776 0.032

GPT-40 0.713 0.852 0.018 0.833 0.033 0.814 0.032

OpenAl o1-mini 0.770 0.820 0.013 0.798 0.017 0.695 0.069

OpenAl o1 0.843 0.796 0.020 0.760 0.029 0.607 0.081
LLaMA-3.2-1B-Instruct 0.216 0.748 0.016 0.722 0.039 0.716 0.041
LLaMA-3.2-3B-Instruct 0.378 0.788 0.025 0.778 0.033 0.768 0.031
LLaMA-3.2-11B-Instruction 0.463 0.799 0.026 0.789 0.038 0.782 0.036
LLaMA-3.2-90B-Instruct 0.645 0.828 0.022 0.808 0.035 0.788 0.033
LLaMA-3.1-405B-Instruct 0.683 0.840 0.018 0.823 0.031 0.801 0.032
DK-R1-Dist-Qwen-1.5B 0.353 0.746 0.019 0.733 0.029 0.694 0.039
DK-R1-Dist-Qwen-7B 0.555 0.767 0.020 0.747 0.031 0.640 0.087
DK-R1-Dist-Qwen-14B 0.698 0.781 0.025 0.761 0.043 0.612 0.114
DK-R1-Dist-Qwen-32B 0.748 0.797 0.026 0.776 0.042 0.628 0.099
Weighted Average — 0.801 0.020 0.781 0.032 0.710 0.059

Table 18: Predictive power of the demand-based assessor by using only MCu (Calibrating Known Unknowns), UG (Unguessability), KNf
(Knowledge of Formal Sciences), CL (Conceptualisation, Learning and Abstraction), QL1 (Logical Reasoning), and MCr (Identifying
Relevant Information) for in-distribution, task out-of-distribution, and benchmark out-of-distribution.

Subject LLM  LLM Accuracy? ID Task OOD Benchmark OOD
AUROCT ECE| AUROCT ECE| AUROCT ECE|

Babbage-002 0.102 0.785 0.013 0.750 0.015 0.715 0.031
Davinci-002 0.157 0.772 0.013 0.737 0.020 0.698 0.032
GPT-3.5-turbo 0414 0.812 0.019 0.796 0.027 0.774 0.044

GPT-40 0.713 0.883 0.019 0.857 0.027 0.799 0.045

OpenAl o1-mini 0.770 0.860 0.018 0.839 0.029 0.720 0.037
OpenAl o1 0.843 0.851 0.018 0.810 0.040 0.671 0.043
LLaMA-3.2-1B-Instruct 0.216 0.786 0.018 0.732 0.036 0.714 0.058
LLaMA-3.2-3B-Instruct 0.378 0.813 0.021 0.790 0.032 0.774 0.043
LLaMA-3.2-11B-Instruct 0.463 0.820 0.018 0.802 0.021 0.781 0.055
LLaMA-3.2-90B-Instruct 0.645 0.861 0.025 0.837 0.025 0.781 0.060
LLaMA-3.1-405B-Instruct 0.683 0.870 0.020 0.846 0.029 0.792 0.056
DK-R1-Dist-Qwen-1.5B 0.353 0.783 0.030 0.755 0.037 0.707 0.069
DK-R1-Dist-Qwen-7B 0.555 0.812 0.027 0.785 0.023 0.691 0.028
DK-R1-Dist-Qwen-14B 0.698 0.828 0.020 0.808 0.025 0.693 0.061
DK-R1-Dist-Qwen-32B 0.748 0.841 0.019 0.815 0.031 0.701 0.057
Weighted Average — 0.838 0.020 0.812 0.029 0.735 0.049

9.5.7. Algebraic Assessor

Comparing the demand profile of a task instance and the ability profile of an Al system gives immediate insights
on the expectation of success. Actually, the ability comes from the interpretation of a characteristic curve, which plots
probability of success as a function of the demand level. Can we use this without the need of training any model?
This is what we refer to as an algebraic or formulaic assessor. There are many possible ways of doing this, but the
main issue is to reconstruct the multidimensional characteristic surface out of the unidimensional curves.

We will illustrate one approach that is straightforward and hence interpretable, but many other options could be
explored. To build this algebraic assessor, we first compute the differences between the subject’s ability, a;, and the
task demand, d; for all 18 demands. While we could apply the original two-parametric logistic function (slope and
position), for simplicity we assume we only have access to the ability (the area or position of the curve) and we apply
the standard logistic function. This gives us a univariate probability per each demand, i.e., we apply

1

Tx) = 1 +exp(-x)°
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to each a; — d;, which maps the values into [0, 1]. In addition, we add UG (Unguessability), which is normalised as
(100—-UG)/100, ensuring that it is also within [0, 1]. The prediction of LLM success is computed by combining these
19 values using a generalised mean:
][ 100-vGy))
S=|=5 i —d) + | — ,
19 ;[‘T(“ '+ ( 100 )

where r is a parameter that controls the type of mean used. Extreme negative values of r tend to approximate the
minimum of all components, while extreme positive values tend to approximate the maximum of all components.
The predictive power of this algebraic assessor is shown in Table [T9] using different values of r, including r = 0
(geometric mean), r = 0.25 and r = 1 (arithmetic mean). Overall, it seems that a value of r = 0.25 is the optimal,
reaching satisfactory AUROC scores, especially for large models. The advantage of r = 0.25 and r = 0 (geometric
mean) over arithmetic mean (r = 1) is sensible because the most informative probability scores in the generalised
mean equation come from those dimensions i with more negative values in a; — d; (e.g., if a; is much smaller than d;
for one or a few dimensions, it is highly likely that the model will fail, even if the model’s abilities on other dimensions
are well above the demands). When comparing » = 0.25 and r = 0, we see that the geometric mean (r = 0) is also
fairly good as it is often the best in terms of calibration, though clearly worse in AUROC than r» = 0.25, indicating
that the geometric mean (or a value of r below 0) may over-focus on one or very few dimensions that exhibit the most
negative values in a; — d;. This also has an interpretation in terms of compensatoriness of the dimensions in the sense
of multidimensional IRT (see related work, section @

ey

Table 19: Predictive power of the demand-based algebraic assessor for different values of r. Bold numbers indicate the best value for each LLM
(largest AUROC and lowest ECE) across the three r settings.

Subject LLM  LLM Accuracy? r=0 r=02 r=1
AUROCT  ECE|  AUROC] ECE,  AUROC!  ECE|
Babbage-002 0.102 0.607 0.068 0.614 0.138 0.581 0.230
Davinci-002 0.157 0.590 0.105 0.652 0.135 0.638 0.226
GPT-3.5-Turbo 0.414 0.744 0.098 0.771 0.122 0.752 0.203
GPT-40 0.713 0.812 0.238 0.826 0.129 0.803 0.105
OpenAl ol-mini 0.770 0.739 0.267 0.749 0.065 0.746 0.079
OpenAl ol 0.843 0.733 0312 0.734 0.071 0.706 0.040
LLaMA-3.2-1B-Instruct 0216 0.693 0.111 0.715 0.177 0.696 0.266
LLaMA-3.2-3B-Instruct 0378 0.739 0.109 0.775 0.152 0.756 0235
LLaMA-3.2-11B-Instruct 0.463 0.749 0.105 0.780 0.112 0.762 0.193
LLaMA-3.2-90B-Instruct 0.645 0.791 0.188 0.805 0.127 0.780 0.124
LLaMA-3.1-405B-Instruct 0.683 0.803 0216 0.817 0.128 0.793 0.104
DK-R1-Dist-Qwen-1.5B 0353 0.655 0.179 0.697 0.199 0.691 0.283
DK-R1-Dist-Qwen-7B 0.555 0.665 0210 0.699 0.122 0.702 0.203
DK-R1-Dist-Qwen-14B 0.698 0.720 0.213 0.733 0.050 0.730 0.114
DK-R1-Dist-Qwen-32B 0.748 0.739 0.247 0.747 0.061 0.734 0.088
Weighted Average — 0.738 0.206 0.757 0.106 0.741 0.137

In general, this algebraic assessor, especially because the results are good for r = 0, suggests a simple mechanism
to go from unidimensional abilities and demands to an integrated prediction that is based on all the multidimensional
information of an instance: instance performance can be seen as the geometric mean of the expected performance for
each dimension. Of course, using some trained models, results can be better (especially in calibration) but Eq. [T]is a
very formulaic, interpretable way of understanding how abilities and demands affect performance.
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9.6. SCCs for all models

From Figure [T7)to Figure 31 we show the individual characteristic curves for all 15 subject LLMs, starting from
OpenAT’s ol and GPT models, followed by Meta’s LLaMA-3 saga, and ending up with the DeepSeek-R1-Distilled-
Qwen family. Overall, the logistic fits are quite good for most dimensions, with the only exception of SNs (Spatial
Reasoning and Navigation - Spatial) for various models, which can be attributed to the small number of instances
in level 1 and 2; this can be improved in ADeLe v2.0. Between all subjects, the fits of Davinci-002 and Babbage-002
are comparably worse. This is expected, given the lack of instruction-tuning for these two models (Table [2)), meaning
that they frequently repeat the prompts instead of solving the problems specified in the prompts, in an seemingly
elusive and arbitrary way.
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Figure 17: Characteristic curves for the 18 demands for OpenAI’s ol (all other things equal to FigureEI).

56




Success Probability Success Probability Success Probability Success Probability Success Probability

Success Probability

n=16 AS n=84 _coo CEc n=10 o CEe
1.0 =804 n=100
0.8 + 689 100
0.6 1
=201
0.4
0.2
0.0
MCr =83 n=761 MCt
S1311
1036
111
n=53 Ms "0 eo QLI
=138 =905
=139 1864
n=13
>
337
n=84 n-633 QLq n=8 SNs n=4 n=229 KNa
1.0 e i 1260
0.8 1 n%¢140
061 1390
0.4
0.2
0.0
1o =50 n=1018 KNc n=gs n=4s7 KNf n=57 _g63 KNn
nY132 %366
687
699
n=48 1505 AT n=63 _308 VO

0.0

4 6 8 10 0 2
Demand Level

4 6
Demand Level

2 4 6 8
Demand Level

Figure 18: Characteristic curves for the 18 demands for OpenAI’s ol-mini (all other things equal to FigureEI).

57




Success Probability Success Probability Success Probability Success Probability Success Probability

Success Probability

6
n=317

g
=}

AS

n=84

n=633

CEc n=70 CEe

o
©
|

o
o
|

0.4

0.2

1322

n=400

=100

0.0

1.0

CL

MCr n=83 161 MCt

0.8

0.6

0.4

0.2 1

0.0

n=129

MCu

2
1.0 n=154

Ms n=80 ,_g9 QLl

=906

n=1g64
n=337

n=84 633

QLq

SNs n

4 n=229 KNa

1260

1.0

0.8

0.6

0.4

0.24

0.0

n=230 A0

1390

n=321

n=50,_1018

1.0

KNc

n=85

n=457

KNf n=5 KNn

7 n=663

0.8

0.6

0.4 4

0.2

0.0

11%=1462

=198

1455

n=687

KNs

n=505

AT =63 308 Vo

1.0

0.8 1

0.6

0.4

0.2

=965n=1838

2167

0.0 T

4 6 8 10

Demand Level

Figure 19: Characteristic curves for the 18 demands for OpenAI’s GPT-4o (all other things equal to Figure.
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Figure 20: Characteristic curves for the 18 demands for OpenAI’s GPT-3.5-Turbo (all other things equal to FigureEI).
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Figure 21: Characteristic curves for the 18 demands for OpenAI’s Davinci-002 (all other things equal to FigureEI).
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Figure 22: Characteristic curves for the 18 demands for OpenAlI’s Babbage-002 (all other things equal to FigureEI).
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Figure 23: Characteristic curves for the 18 demands for LLaMa 3.1-405B-Instruct (all other things equal to FigureEI).
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Figure 24: Characteristic curves for the 18 demands for LLaMa 3.2-90B-Instruct (all other things equal to FigureEI).
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Figure 25: Characteristic curves for the 18 demands for LLaMa 3.2-11B-Instruct (all other things equal to FigureEI).
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Figure 26: Characteristic curves for the 18 demands for LLaMa 3.2-3B-Instruct (all other things equal to FigureEI).
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Figure 27: Characteristic curves for the 18 demands for LLaMa 3.2-1B-Instruct (all other things equal to FigureEI).
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Figure 28: Characteristic curves for the 18 demands for DeepSeek’s R1-Dist-Qwen-32B (all other things equal to FigureEI).
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Figure 29: Characteristic curves for the 18 demands for DeepSeek’s R1-Dist-Qwen-14B (all other things equal to FigureEI).
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Figure 30: Characteristic curves for the 18 demands for DeepSeek’s R1-Dist-Qwen-7B (all other things equal to FigureEI).
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Figure 31: Characteristic curves for the 18 demands for DeepSeek’s R1-Dist-Qwen-1.5B (all other things equal to Figurel
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9.7. Glossary

ability

ability profile

amalgamation

attainment

Al system

Al model

battery of tests

benchmark

capability

compensatory

construct

contamination

demand

dimension

difficulty

discrimination power

evaluation

In this paper, a very precise term referring to a property of a subject (Al system or human)
defined as the demand level of those items for which there is a 0.5 chance of being correct.

A vector with the specific ability levels in each of the scales for a set of dimensions.

Agglomeration of elements in a question for the only purpose of making it harder, usually
leading to under-estimation in capabilities or attainment.

Positive property of a system, usually an acquired construct representing knowledge or
specialised skills, that allows us to predict or explain performance.

“A machine-based system that is designed to operate with varying levels of autonomy
and that may exhibit adaptiveness after deployment, and that, for explicit or implicit ob-
jectives, infers, from the input it receives, how to generate outputs such as predictions,
content, recommendations, or decisions that can influence physical or virtual environ-
ments” (Article 3, EU AI Act).

An operative abstraction of a parcel of the world, parameterised or not, which is usually
trained from data. The better the model represents the world and captures its patterns, the
more it can be used to make predictions, give explanations or perform simulations about
the world.

A set of tests designed to be complementary or extensive about a certain domain or set
of domains.

A set of tasks used to compare performance of several systems, models or components.

Positive property of a system, usually an innate construct, that allows us to predict or
explain performance.

Two properties are said to compensate if not having enough of one can be compensated
by having a great amount of the other.

A latent trait rather than an observable variable that tries to capture a property with high
predictive and explanatory power. For instance, “agreeableness” is a construct that pre-
dicts and explains how people behave in human interactions.

Use of data for testing that appeared during training or development, usually leading
to over-estimation in capabilities or attainment. In machine learning this is a kind of
over-fitting to the training data.

An observable property of a task that indicates one aspect of its difficulty (e.g., the num-
ber of digits in an arithmetic operation). In this paper, each demand originally leads to a
dimension, but several demands can be grouped into one dimension.

A scale along which the constructs affecting subject behaviour over items are carved. In
other words, a feature in this space.

A generic demand of a task that is usually inversely correlated with performance.

The quality of an item to distinguish between individuals, typically because its difficulty
or demand lies between the abilities of the individuals.

A procedure to determine the value and qualities (capabilities, risks, etc.) of a system,
model or component.
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foundation model

funnelling

generality

instance

item
large language model
(LLM)

modality

model

out-of-distribution
(O0D)

performance

personality

populational

propensity

reinforcement learning
from human feedback
(RLHF)

ratio scales

reliability (of a test or
evaluation)

scale

sensitivity

A model of a parcel of the world that is meant to be used for downstream applications.

Guiding a respondent toward the right answer by limiting or reducing the options [176],
making distractors obvious or using hints or cues.

Regularity and sharpness in the capability levels that a system exhibits across a range of
domains, as opposed to having high levels in some areas but low levels in others, or flat
characteristic curves in many of them.

A particular example or instantiation of a task. In the context of LLMs, this is usually a
specific prompt (e.g., “What’s the capital of France?”).

An instance.

A model that captures the distribution of one or several languages, whether natural or
artificial (e.g., English and Python), usually expressed as a stochastic model assigning
probabilities to the next word or token. These probabilities can be used to generate text.

A particular way in which inputs and outputs can be represented, such as text, audio,
video, or through other sensor/actuator forms.

See Al model.

Refers to data points or regions of a problem space that differ from those seen in the
original (typically training) distribution.

The observed value for a metric that measures the degree to which a goal is met on a
task, dataset, or benchmark. The EU AI Act, for example, mentions “the ability of an Al
system to achieve its intended purpose” — actual performance is a measurable result that
shows the intended purpose is met [44]].

A property of a system (usually a construct) that helps predict or explain its behavior,
though it is not necessarily monotonic or directly linked to problem solving like capabil-
ity or attainment.

Said of a metric or measurement that depends on the entire population of subjects or
instances being evaluated rather than on only individuals or specific batches.

A property (often a construct) of a system that makes a particular behaviour more likely.

A common mechanism—especially in large language models—by which generated con-
tent is modified to make the model more instructable, agreeable, safe, or palatable using
human feedback.

The highest level in Stevens’ typology [148] of measurement (which includes nominal,
ordinal, interval and ratio scales), where both differences and ratios are meaningful. For
example, length in metres, time in seconds, or Kelvin temperature are ratio scales; in
contrast, Celsius or Fahrenheit are interval scales because they lack an absolute zero.

The degree to which a testing procedure yields stable and consistent results across mul-
tiple administrations.

An ordering of qualitative or quantitative levels along which we can arrange demands
and abilities for comparison.

The extent to which a metric or model captures all the relevant aspects of what it is
supposed to measure.
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specificity

subject

subject characteristic
curve

superhuman
performance

system

task

testing

validation (of a system,
model or component)

validity (of a test)

verification (of a system,
model or component)

The extent to which a metric or model captures only the relevant aspects—excluding
what it should not capture.

The system, model, or human being evaluated. (Note: In the EU Al Act, “subject” refers
only to humans: “for the purpose of real-world testing, means a natural person who
participates in testing in real-world conditions” (Article 3, EU Al Act).)

A plot that shows performance as a function of difficulty, usually binning by ranges of
difficulty or demand, and averaging performance per bin.

Performance that exceeds the average or even the best human performance on a particular
task.

See Al system.

A structured problem paired with a metric that quantifies the quality of goal completion.
A task represents a quantum of work that may be delegated, abstracted from a usual
situation, or conceptualised as a challenge demanding certain capabilities or skills. (For
example, “addition” is a task, of which “3+5” is an instance.)

“Assessment of the fitness of a product to achieve its stated goals” [44]]. Testing is typ-
ically aimed at exposing failures in a system or component, or certifying the parts that
function as intended.

The process of establishing that the intended use of the system, model, or component is
met.

The degree to which a test measures what it is designed to measure.

The process of establishing that a system, model, or component meets its specifications.
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10. DeLeAn Rubric Set v.1.0

In our framework, we comprehensively characterise the cognitive demands of a task in a way that is both in-
terpretable and predictive. Our annotation scheme, which we call the DeLeAn Rubric Set, is organised into sev-
eral groups. First, the Primordial dimensions (including Attention and Scan, Comprehension and Expression,
Conceptualisation, Learning and Abstraction, Metacognition and Critical Thinking, Mind Modelling and
Social Cognition, Quantitative and Logical Reasoning, and Spatial Reasoning an Navigation) are adapted
from the work of Tolan et al. [159] so that each dimension reflects a core human cognitive ability. Next, our Knowl-
edge dimensions are based on typical levels of education—from primary to postgraduate—to measure the depth of
domain-specific knowledge required by a task. Finally, the three Extraneous dimensions (Volume, Atypicality, and
Unguessability) are included to capture aspects that affect item difficulty but are not intrinsic components of cog-
nition. For example, volume captures the time required to complete an item; atypicality measures how unique or
memorable an item is; and unguessability quantifies the inherent chance of guessing the answer.

The following subsections describe each rubric in detail, along with a brief explanation of its motivation and
intended role.

10.1. Primordial

These rubrics are largely derived from an combination of human cognitive psychology, animal cognition and Al
domains taxonomies. They follow the framework proposed by Tolan et al. [159]. They capture general cognitive
capabilities that are essential for any intelligent system. We call these dimensions are "primordial" as they come from
the original framework, and to distinguish them from the knowledge dimensions.

The following subsections describe each primordial scale.

74



Attention and Scan (AS)

This criterion assesses the level of attention and scan required to focus on or locate specific elements within a given stream of information or environment in the whole process of
solving a task. During this process, there is the need to actively scan for or retrieve elements that meet predetermined criteria. The level represents the extent to which the task
requires locating and focusing on specific target information, ranging from situations where the target is immediately obvious to those requiring sustained tracking of multiple targets
among numerous distractors—any elements that are irrelevant to solve the task, such as visual objects, sounds, pieces of text, noise, or other stimuli, but compete for attention with
the target information—in complex, dynamic environments. The challenge is not on determining what to look for but focusing the attention to find it within a larger context. This differs
from tasks where there’s a need to identify which pieces of information are relevant from a set already under consideration. While both processes may overlap in complex tasks like
reading comprehension or image understanding, “attention and scan” specifically focuses on the deployment of attention during scan processes when solving the task, rather than
the selection or evaluation of information.

Levels

Level 0 None. No attention or scan is required. The target information is immediately obvious or is the only information present. Examples:

e "Given a single word input, determine if it starts with a capital letter."
e "Look at the only object in the centre of the white page and tell what colour it is."
e "Is Madrid the capital of Spain?"

Level 1 Very low. Minimal attention or scanning is required. The target information is easily distinguishable with little to almost no distraction. Examples:

e "Find the only blue car in a car park full of red cars."
o "Find the letter X’ among a row of 'O’s"
e "Spot the tall tree in a row of short bushes."

Level 2 Low. Some attention or basic scanning is required. The target information is visible among a few distractors or in a small scan area. Examples:

o "Find all the vowels in the following sentence: 'The quick brown fox jumps over the lazy dog."
« "Find who's wearing glasses in this photo of students at commencement, with 2 rows of 5 students each, all facing forward, taken by a professional photographer.”
e "Who authored the Queensberry rules, which were published in 1867 for the sport of boxing? Choices: A. John Douglas (in his late twenties)

B. John Graham Chambers (in his mid-twenties)

C. Marquess of Queensberry (in his early thirties)

D. James Figg (in his forties)."

Level 3 Intermediate. Moderate attention and scan are required. The target information is mixed with several distractors or spread over a fairly large scan area. Examples:

e "Find everyone wearing glasses in this casual BBQ photo where 15 people are gathered around a table. Some are sitting, some standing, some looking at the
camera while others are in conversation."
* "In a 5-page technical document about basic geometry, locate all explicit references to the Pythagorean theorem (a2 + b2 = c?), where the equation appears 5 times
mixed among references to 15 other geometric formulas, with occasional inconsistent equation numbering but standard mathematical notation.
e "As we all know, the Queensberry Rules are a set of rules for boxing that govern both amateur and professional matches. Who authored the Queensberry rules,
which were published in 1867 for the sport of boxing? Choices: A. John Douglas (in his late twenties)
B. John Graham Chambers (in his mid-twenties)
C. Marquess of Queensberry (in his early thirties)
D. James Figg (in his forties)
E. James Zou (in his fifties)
F. Lucy Grande (in her late twenties)
G. Xiaoxiao Li (in her early forties)
H. Enrique Garcia (in his late thirties)."

Level 4 High. Sustained tracking of one or various targets is required. The target information is in an environment mixed with numerous distractors and changing conditions.
requires some continuous monitoring amid competing signals. Examples:

e '"Listening to a symphony, identify all instances where the clarinet plays in a minor key, even when it’s not playing the main melody.

e "Track three orange spheres among twenty red spheres as they move randomly across a black screen (40 cm x 30 cm) at varying speeds (1-3 cm/s), with spheres
frequently intersecting paths and maintaining a minimum separation distance of 2 cm. Each sphere is 1 cm in diameter."

e "In areal-time video feed of a busy airport, finding the locations of ten blue suitcases."

Level 5+ Very High. Requires sustained attention and scan for simultaneous tracking of multiple targets across different domains or contexts, with continuous adaptation to
fast-changing conditions. The target information is extremely difficult to distinguish from distractors or is hidden in a vast or constantly changing environment. Examples:

« "While seated courtside at a professional basketball game, track two specific players throughout the entire game as they move at speeds up to 8m/s, frequently
cluster with other players during rebounds, and weave through screens and defensive formations."

e "Monitor four simultaneous video feeds of a crowded airport terminal from different angles, detecting subtle security-relevant changes (e.g. brief interactions < 2
seconds, crowd flow changes, small object exchanges) across feeds."

o "While monitoring multiple simultaneous customer service chat conversations in different languages, identify instances where customers are expressing the same
underlying technical issue, even though they're describing it using different metaphors, technical terms, or cultural references specific to their region."



Comprehension and Expression (CE)

R1. Verbal Comprehension (CEc)

This rubric evaluates the difficulty of a task’s comprehension requirements, encompassing the understanding of text, stories or the semantic content of other representations of
ideas in different formats or modalities. It may include the interpretation of explicit and implicit meanings, recognition of relationships between concepts, processing of contextual
information, and understanding of abstract ideas and complex systems. Noteworthy, the mere presence of specialized terminology or jargon does not necessarily indicate a high
difficulty level in this rubric, as these terms may appear within tasks that follow simple, straightforward linguistic structures and are more reflective of domain knowledge rather than
comprehension complexity. Further, for specialized formal languages (e.g., molecular structures, programming code) the task will be hard to comprehend only if the sequence in
that formal language (e.g. molecular expression, snippet of code) is convoluted, but simple molecules or pieces of code should be easy. The rubric include difficult levels that range
from tasks requiring no semantic comprehension to those demanding an understanding of highly convoluted, interconnected concepts, including the ability to process sophisticated
theoretical frameworks, understand nuanced implications, and synthesize multiple complex perspectives across different domains and levels of abstraction.

Levels

Level 0 None. Tasks at this level require no comprehension of language or semantic content, such as those that can be completed by non-human animals. Examples:

o Pulling levers in a specific sequence (pull middle lever, then right lever, then left lever) to release food from a container, learning the pattern through trial and error.
e Manipulating a twist-lid container with multiple appendages in a rotating motion until the lid separates from the base, then retrieving the contents inside.
e Using a stick to push a banana that’s out of reach through a fence gap, by positioning and moving the stick in the correct direction.

Level 1 Very low. Tasks at this level require understanding of basic, explicit meanings in simple formats, including recognition of common words, straightforward statements, and
clear one-to-one relationships between symbols and their meanings. Comprehension is limited to surface-level, literal interpretations without need for context or inference.
Examples:

« |dentifying basic subject-verb relationships that describe observable actions (e.g., "Context: The blue bird was flying high in the sky. Question: who was flying?").

e Understanding simple questions that do not require sophisticated language skills such as "Why is the sky blue?”

e Understanding single-step instructions where the action directly matches the command (e.g., comprehending the sentence "close the door for me" and mentally
connecting these words and the corresponding physical action).

Level 2 Low. Tasks at this level involve comprehending straightforward messages with basic context, including simple cause-effect relationships, clear sequential instructions, and
explicit connections between ideas. Understanding requires basic inference but remains tied to concrete, clearly stated information. Examples:

e Capable of answering "why" questions about a simple story (e.g., "Why did the girl take an umbrella?" after reading "Sarah saw dark clouds in the sky. She grabbed
her umbrella before leaving home.")

e Understanding simple explanations of processes (e.g., "Plants need water and sunlight to grow, otherwise they will not survive, especially in harsh climate.")

* In a recipe interface, interpreting "Add milk slowly while stirring continuously until mixture thickens" by understanding that the stirring must occur simultaneously
with the milk addition, not after.

Level 3 Intermediate. Tasks at this level require understanding of moderately complex information including implicit meanings, metaphorical language, and relationships between
multiple concepts. Comprehension may involve processing both explicit and implicit information. Examples:

« In a high school student’s history essay about the Industrial Revolution, following their argument that "While factories created more jobs in cities, this urbanization
ironically decreased quality of life because cramped living conditions and poor sanitation led to disease outbreaks." This requires understanding how the student
is connecting multiple historical factors (industrialization, urbanization, living conditions, public health) and recognizing their use of "ironically" to highlight the
unexpected negative consequence of economic progress.

In an employee handbook, understanding that the statement "The company values work-life balance" combined with "Employees are expected to be responsive
to urgent matters outside office hours" represents a potential policy contradiction requiring contextual judgment.

In a technical manual, interpreting a troubleshooting section that requires understanding how different error messages might indicate the same underlying problem
depending on the system’s state.

Level 4 High. Tasks at this level demand comprehension of sophisticated content with multiple layers of meaning, complex relationships between concepts, and nuanced implica-
tions. Understanding requires integration of various information sources and recognition of subtle patterns and connections. Examples:

e Following an accessible fiction story told from multiple viewpoints where each narrator provides partial, biased information, requiring the reader to construct the
true sequence of events by reconciling conflicting accounts and recognizing each narrator’s limitations and motivations.

e Understanding a complex academic argument that develops through multiple chapters, where key terms are gradually redefined and earlier arguments are
recontextualized by later developments.

« Interpreting a modern theatrical play where dialogue has multiple meanings based on staging directions, character backgrounds, and historical context, requiring
simultaneous understanding of textual and performative elements.

Level 5+ Very High. Tasks at this level require mastery in understanding highly convoluted, abstract, and interconnected information systems, including sophisticated theoretical
frameworks, convoluted narratives and nuanced philosophical arguments. Comprehension involves synthesizing multiple complex perspectives and understanding subtle
distinctions. Examples:

e Understanding well a convoluted legal document that requires tracking multiple cross-references, understanding nested conditions, and comprehending how
different clauses modify each other.

Comprehending a modernist novel that uses a stream-of-consciousness narrative technique where multiple timelines, memories, and internal thoughts are in-
terwoven without clear demarcation, requiring readers to track subtle linguistic shifts (changes in tense, pronouns, or narrative voice) to understand when the
narrative moves between present action, past memories, imagined futures, and other characters’ perspectives.

Understanding a convoluted visual narrative where multiple story threads are told simultaneously through different visual styles on the same page, requiring
understanding of how the visual elements interact, conflict, and complement each other to create meaning. For example, a graphic novel page where realistic
drawings depict current events, sketchy portions represent memories, and geometric patterns show emotional states, all interacting to tell a coherent story.



R2. Verbal Expression (CEe)

This rubric evaluates the difficulty of a task’s expression requirements, encompassing the generation and articulation of ideas, stories, or semantic content in different formats or
modalities. It may include the usage of the right vocabulary, adoption of the appropriate genre, formulation of explicit and implicit meanings, creation of relationships between concepts,
incorporation of contextual information, expression of abstract ideas and complex systems, and transformation of sophisticated content into a smooth narrative. Noteworthy, the need
of specialized vocabulary or jargon in the expression does not necessarily indicate a high level of difficulty, as these terms may be used within simple, straightforward linguistic
structures requiring minimal compositional complexity and are more reflective of domain knowledge rather than expression sophistication. In addition, the difficulty level should
correspond to the simplest expression effort to successfully solve the task, given that a solution to a task may be formulated in various ways with varied linguistic complexity;
multiple-choice questions, even if the options are long and complex, generally do not require language expression beyond the basic level, so they are typically level 1. The rubric
ranges from tasks requiring no meaningful expression to those demanding the generation of highly sophisticated, interconnected content, including the ability to create convoluted
narratives, convey nuanced implications, and express multiple perspectives across different domains and levels of abstraction.

Levels

Level 0 None. Tasks at this level involve no meaningful expression or communication, limited to automatic responses or simple pattern reproduction. The task can be completed
through purely mechanical or algorithmic processes without any generation of meaning. Examples:

e Repeating a sound pattern exactly as heard without understanding or modifying its meaning.
e Copying text from one format to another without generating or modifying content.
e Reproducing a sequence of gestures through simple mimicry.

Level 1 Very low. Tasks at this level require expressing basic, explicit meanings in simple formats, including use of common words, straightforward statements, and clear one-to-one
relationships between ideas and their expression. Expression is limited to surface-level, literal articulation without need for context or nuance. Examples:

e Stating immediate needs like "l need water" in a simple, direct, unambiguous way.

e Solving a task that requires domain expertise to get the right answer but the answer only requires basic expression ability (e.g. “Given the product SMILES:
0=C(NC1CCN(CCc2ccccc2)CCl) clc [nH] c2cce (F)ccl2, predict the reactants SMILES”.

e Multiple-choice QA questions, where the subject only needs to choose one readily available option, even though the accurate answer option may be formulated
in a linguistically complex manner (e.g. "The correct answer is option C. Reynolds and Khripkova would not make suitable business partners, [...], if they quarrel,
know how to resolve their differences.")

Level 2 Low. Tasks at this level involve producing straightforward messages with basic context, such as simple cause-effect relationships, clear sequential instructions, and explicit
connections between ideas. Expression requires basic organization but remains tied to concrete, clearly stated information. Examples:

* “Writing step-by-step instructions for making a sandwich, clearly indicating the sequence of actions and basic quantities needed.”

o Creating a brief email to schedule a meeting, specifying time, place, and basic purpose.

e Describing a simple process like plant growth, connecting the basic sequence of events: "First the seed needs soil and water, then it grows roots, then it sprouts
leaves."

Level 3 Intermediate. Tasks at this level require generating moderately nuanced information, with attention to both content and presentation style. This includes selecting
field-appropriate vocabulary, adapting to specific genres (like technical documentation or clinical notes), and creating coherent narratives that smoothly connect ideas.
Expression may involve conveying both explicit and implicit information while maintaining consistent tone and voice throughout the text. Examples:

o Writing explanatory notes for a simple geometry proof that guides the reader through the logic: "To prove these triangles are similar, we first show their angles are
equal. The alternate angles formed by these parallel lines are equal, and since both triangles share this angle at point A, we can conclude..."

o Writing product documentation that anticipates user confusion: "While the red indicator light typically signals an error, in sleep mode it indicates normal operation.
If the light flashes red during active use, consult the troubleshooting guide."

* Writing short clinical notes that connect symptoms with potential causes: "Patient presents with persistent cough and fatigue for 2 weeks. Given their recent travel
history and exposure to dusty environments, considering both viral upper respiratory infection and environmental allergies as potential causes."

Level 4 High. Tasks at this level demand generating sophisticated content with multiple layers of meaning, complex relationships between concepts, and nuanced implications.
Such expressions may include the usage of linguistically advanced vocabulary and rhetorical devices, careful attention to genre conventions, and the ability to integrate
multiple perspectives and communicate subtle patterns and connections. Examples:

o Writing lecture notes that integrate multivariable calculus with linear algebra to explain the connection between Jacobian matrices, coordinate transformations, and
volume changes in higher dimensions.

o Writing technical documentation that addresses multiple user levels simultaneously: "The API's modular design allows for both simple plug-and-play implementation
for basic use cases and sophisticated customization through advanced configuration options, ensuring scalability as your needs evolve."

e Writing a detailed legal brief that weaves together statutory requirements, case law precedents, and policy implications: "While Smith v. Jones (2019) established
a broad interpretation of 'reasonable care,’ the specific circumstances of our case, combined with the legislative history of Section 47(b), suggest that this standard
should be qualified when applied to specialized industrial settings..."

Level 5+ Very High.Tasks at this level require mastery in generating convoluted, abstract, and interconnected content, including nuanced vocabulary, convoluted narratives, deep
arguments, and conveying multiple perspectives and subtle distinctions simultaneously. Examples:

e Writing a few paragraphs of a graduate-level textbook section that develops the relationship between Lie groups, Lie algebras, and differential manifolds.

o Creating a convoluted multi-layered narrative that simultaneously develops several plot threads through carefully structured revelations, such as a novel seemingly
disconnected opening chapters gradually revealing their interconnections through subtle linguistic echoes and thematic resonances, allowing readers to piece
together the full story while maintaining tension across multiple timelines.

e Writing well-thought comprehensive hospital policy guidelines that address complex medical, legal, and ethical considerations: "The protocol for experimental
treatments must balance patient autonomy, clinical evidence requirements, and legal liability considerations. When standard treatments are exhausted, the
following decision tree integrates real-time clinical assessment, informed consent documentation, ethics committee review, and liability mitigation steps, while
maintaining compliance with both state regulations and international medical ethics standards..."



Conceptualisation, Learning, and Abstraction Rubric (CL)

This rubric assesses the difficulty level of tasks requiring conceptualization, learning, and abstraction during the completion of tasks. It evaluates the extent to which a task
necessitates the formation of new concepts, engagement in inductive and analogical reasoning, mapping of relationships between domains, and the generation of abstractions from
concrete examples. Higher levels on this scale represent increasing demands for real-time learning, pattern identification, hypothesis formation, analogical transfer, and the contrast
of knowledge across diverse domains.

Levels

Level 0 None. The task requires no conceptualization, learning, abstraction, inductive or analogical reasoning. It involves applying well-established procedures or recalling known
information, even for complex tasks. No new abstractions, analogies, or learning occur during task execution. Examples:

o Performing basic one-digit arithmetic multiplications using memorized multiplication tables (like 3x3 = 9).
o Sorting short texts into predefined categories based on a list of indicator words, without inferring new indicators.
e What was the name of Abraham Lincoln’s father?

Level 1 Very low. The task involves minimal conceptualization, learning, inductive or analogical reasoning. It requires simple pattern identification or following basic instructions,
with very limited generalization or basic surface-level analogies occurring during the task. Examples:

o Continuing a basic letter sequence (e.g., “a, ¢, e, g, _").

e “Given a red circle, a red square, a red triangle and a blue pentagon, find the one out, which is the blue pentagon.”

e Given a pair of words (like "hot and cold"), choose another pair from a list that shares the same relationship. For example, if "hot" and "cold" are opposites, you'd
look for another opposite pair like "up and down."

Level 2 Low. The task requires basic conceptualization, learning, inductive and analogical reasoning. It involves generalizing from a small set of examples, applying simple
analogies to closely related domains, or applying simple instructions to new but closely related tasks. Examples:

e Given the sentence ‘As it started raining, Alice opened her brolly.” inferring the meaning of the unknown word (brolly) by using surrounding context clues, forming
a basic abstraction about its possible definition.

« In afictional planet, observing in a garden where light yellow and light orange plants grow towards light sources over time but dark blue and dark red plants don't,
and forming a basic hypothesis between the colors and plant behavior.

e Adapting a solution from a previously solved secondary school math problem to a new problem with very similar structure but different surface features (e.g.
numbers, names and context). While the core mathematical approach remains similar, the adaptation still requires recognizing how small variations in the new
problem might require adjustments to the original solution method.

Level 3 Intermediate. The task involves moderate conceptualization, learning, and inductive and analogical reasoning. It requires recognizing broader patterns, applying analogies
across moderately different domains, and forming more complex hypotheses through analogical reasoning. Examples:

e Reading passages where certain words are consistently replaced with nonsense words: 'The zork lives in a tree. The small zork ate berries. Many zorks gather
in winter [...]. The tired zork slept quietly’. Through the multiple examples, learning not just that 'zork’ likely means ’squirrel’, but also understanding how it follows
plural rules ('zorks’), can be modified by adjectives ('small zork’, 'tired zork’), and performs actions typical of animals.

o While playing a strategy game named Xiangqi (also known as Chinese chess) without any prior experience on it, coming up with some effective tactics through
repeated observations and trials as well as some past experience playing chess.

e Given data about plant growth in artificial conditions where light color, temperature, and humidity vary cyclically, observing that plants develop different leaf patterns
depending on which factor changes first each day. Through systematic observation, forming basic hypotheses about how the sequence of environmental changes
affects growth patterns.

Level 4 High. The task requires substantial conceptualization, inductive and analogical reasoning, and abstraction, involving the integration of multiple concepts, creating complex
analogical mappings across diverse domains, and forming and testing complex hypotheses. Examples:

e Working with a collection of text messages where response times vary significantly. Through analysis, discovering that certain word combinations, sentence
structures, and punctuation patterns consistently correlate with faster or slower response times, then using these insights to predict likely response speeds for new
messages.

« While learning Go after experience with chess and Xiangqi, discovering how stone formations serve multiple strategic purposes that differ fundamentally from piece-
based games. Through systematic play and analysis, understanding how a group of stones can simultaneously secure territory, threaten invasion, and maintain
connectivity with other groups. This requires substantial abstraction beyond piece-movement games to grasp how value emerges from stone relationships rather
than individual pieces.

o Working with a sequence of pattern acceptance tests where rules change systematically. For instance, in judging whether grid arrangements of colored shapes are
"valid": early patterns are accepted based on color adjacency (e.g., "red must never touch blue"), then the rule shifts to consider shape orientation (e.g., "triangles
must point toward squares"), and finally combines both aspects (e.g., "red triangles must point toward blue squares"). The systematic nature of the rule changes
follows a clear progression from simple single-attribute rules to combined rules. The subject must track these rule evolutions to correctly predict which new grid
arrangements would be considered valid, understanding that rules become progressively more complex by combining previous attributes rather than introducing
entirely new concepts.

Level 5+ Very High. The task involves very advanced conceptualization, inductive and analogical reasoning, and abstraction. It requires generating new analogical frameworks in
real-time, mapping relationships across highly diverse and abstract domains, or solving complex problems through novel analogical insights. Examples:

e Solving a visual puzzle where three different properties (symmetry, rotation, and scaling) must be understood at both the element level and the pattern level. For
instance, individual shapes follow one set of transformation rules, while the overall arrangement follows a different set of rules, and the relationship between these
two rule sets must be discovered to predict the next state.

e Designing a new electronic musical instrument after studying blueprints of synthesizers, amplifiers, and effect pedals. This requires abstracting core principles
of signal generation, processing, and control from each device (oscillation, filtering, envelope shaping, feedback), understanding how these principles create
different sonic characteristics, and then creatively recombining them to produce new types of sounds. The task demands identifying how fundamental concepts
manifest differently across devices (like how feedback creates sustain in an amplifier but modulation in a ring modulator), then synthesizing these insights to create
sound-generating mechanisms.

e Working with a sequence of pattern acceptance tests where rules evolve with increasing abstraction and self-reference. Starting from 'red triangles must point
toward blue squares’, patterns evolve to where shapes establish relationships based on their relative properties. For instance, shapes with more sides must point
toward shapes with fewer sides, but this relationship inverts when the shapes share colors. Furthermore, each valid pattern must mirror a small-scale arrangement
within its larger structure - if three triangles form a particular relationship on one side of the grid, the overall shape arrangement of the entire grid must follow that
same relationship. The subject must discover these nested self-referential patterns and predict how they apply at different scales, requiring both pattern recognition
and the generation of new frameworks for understanding how rules can reference themselves.
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Metacognition and Critical Thinking (MC)

R1. Critical Thinking Processes (MCt)

This rubric assesses the difficulty level of metacognitive engagement required by the question. More concretely, the level represents the extent to which the question requires the
respondent to monitor or regulate multiple thought processes to answer the question effectively, ranging from simple recall to high-level critical thinking.

(EVETES

Level 0 None. No critical thinking or analysis is needed. Examples:

o Clapping one’s hands with another entity.
o Simple recall of facts without further processing.
e Recognizing a familiar face from a photograph.

Level 1 Very Low. The task requires recall or recognition of facts, with a low level information processing required. The respondent needs to retrieve information directly from
memory or identify very obvious relationships. There is no need for critical thinking or analysis beyond the most elementary level. Examples:

o Selecting the correct meaning of a common word from multiple clearly distinct definitions.
e Matching simple synonyms, such as “big” and “large”.
e Question: What was the time 5 years and 6 months before Jan, 1956?

Level 2 Low. The task involves mostly straightforward comprehension or application of known concepts, with some information processing. The respondent may need to demon-
strate understanding by explaining ideas, making simple comparisons, or applying concepts in familiar contexts. A low-level of critical thinking is required, such as
recognizing generally obvious patterns or making simple categorizations. Examples:

e Answering the question: 'What happens in Cinderella when the clock approaches midnight?” The answer requires explaining that Cinderella must flee because
her magical transformation will end.

e Giving the smallest amount of coins as change from a purchase.

e Answering the question: “How many solid 1 x 1 x 1 cubes are required to make a solid 2 x 2 x 2 cube?”

Level 3 Intermediate. Description: The task necessitates a considerable amount of analysis or synthesis of information. The respondent needs to engage in moderate critical
thinking, such as identifying patterns, making inferences, or applying concepts to new situations. Examples:

e Analyzing the symbolism in a poem and explaining how it contributes to the overall theme.
o |dentifying potential biases in a news article and explaining their impact on the information presented.
o Explaining how a price reduction could lead to increased overall revenue through its effect on sales volume.

Level 4 High. The task demands advanced critical thinking skills, including evaluation of complex ideas, analysis of multiple perspectives and assumptions, or creation of new
concepts. The respondent must maintain consistent awareness of thinking processes and potential biases. Examples:

e Evaluating a school’s proposal to extend the lunch period by examining the evidence for improved student focus, considering impacts on different stakeholders like
teachers and students, and analyzing how personal preferences might affect one’s assessment of the policy.

o Designing a study to compare two teaching methods for basic math by identifying potential sources of bias, developing fair assessment criteria, and planning how
to control for differences in student ability levels.

e Analyzing the role of bread prices in the French Revolution by examining economic data from different regions, comparing its major impact between urban and
rural areas, and evaluating how food scarcity combined with tax burdens and wage stagnation influenced public unrest.

Level 5+ Very High. The task demands the highest level of critical thinking, requiring sophisticated metacognitive strategies focused on examining reasoning processes, identifying
logical fallacies, evaluating competing arguments, and reaching well-reasoned conclusions. The respondent must reflect on their own thinking processes, assumptions,
and biases while engaging with complex ideas. Examples:

e Analyzing a proposed economic study that claims to prove racial discrimination in hiring by examining the researchers’ unstated assumptions about causality,
identifying potential confounding variables they haven't controlled for, evaluating whether their statistical methods actually support their conclusions, examining
your own potential biases about the topic, and determining what can and cannot be legitimately concluded from their methodology - all while maintaining awareness
of how your own socioeconomic background might influence your analysis.

e Evaluating a complex court case by dissecting the logical structure of competing arguments from prosecution and defense, identifying unstated assumptions in
witness testimony, examining how your own biases about the defendant might affect your judgment, analyzing the credibility and limitations of different pieces of
evidence, and reaching a conclusion while explicitly acknowledging areas of reasonable doubt and uncertainty.

e Breaking down a philosophical argument about consciousness by identifying circular reasoning and unstated premises, examining how different definitions of key
terms affect the argument’s validity, evaluating the credibility of thought experiments used as evidence, testing the argument’s logical consistency, recognizing your
own presuppositions about the nature of mind and reality, and determining which conclusions are truly warranted by the premises.



R2. Calibrating Knowns and Unknowns (MCu)

This rubric assesses how difficult it is for the respondent to accurately evaluate whether they know or don’'t know something. It focuses on metacognitive assessment — the ability to
recognize the boundaries of one’s knowledge and confidently identify what one knows they know, knows they don’t know, or is uncertain about.

Levels

Level 0 None. The respondent can immediately and unambiguously determine whether they know something or know they don’t know it. No metacognitive effort is required.
Examples:

o “Tell me the typical colour of the sky on Earth during the day?”
e “Can it snow when the environmental temperature goes up to 40 degree celsius?”
e "What's the name of Taylor Swift's maternal grandmother?"

Level 1 Very low. Minimal metacognitive effort is needed to determine whether one has the knowledge to answer. The boundaries between knowing and not knowing are very
clear. Examples:

o “Calculate 164942+26250737, tell me if you think you have done it well.” (the score is good if the sum is right and says correct, or if the sum is wrong and says
incorrect)

e “How many hairs did Barack Obama have exactly when he woke up on the morning of March 1, 2024?” (the score is good if the answer given or chosen is that it
can't be known)

o “Given 2w + 4t = 14 and 4w + 5t = 25, calculate the value of 2w + 3¢ and tell me if you think you have done it well.” (the score is good if the answer is right and says
correct, or if the answer is wrong and says incorrect)

Level 2 Low. Some metacognitive effort is required to assess the boundaries of one’s knowledge, but the assessment is still relatively straightforward. Examples:

e “Given the new breakthroughs in chemistry this year, explain how to synthesise gold out of boiling both blonde hair and metals made of bronze” (the score is good
if the task is refused, as it is clearly not possible).

e “Say something that indicates your level of Estonian” (assuming you know a bit of Estonian).

e Determine for some simple arithmetic operations with logarithms of base 2 when you can do it yourself or require a calculator.

Level 3 Medium. Moderate metacognitive effort is required to determine the boundaries of one’s knowledge. There may be some uncertainty about whether one truly knows
something or just thinks they might know it. Examples:

e “Solve a simple 9x9 Sudoku puzzle” (since it requires tracking which numbers are certain about in each 3x3 box versus numbers that have only been partially
eliminated).

e “Given a detailed passage about the American Civil War mentioning several battles and dates, identify which specific facts you're confident enough to verify versus
those you'd need to research.”

e “When presented with a system of three linear equations, determine whether you know enough about elimination and substitution methods to solve it completely
or if you might be missing key steps.”

Level 4 High. Significant metacognitive effort is needed to determine whether one truly knows something or just has partial knowledge. The line between knowing and not knowing
becomes blurry. Examples:

e “Given a dataset of 100 observations with 20% missing values randomly appearing across different variables of interest and potential sampling bias, assess
whether you can confidently identify which statistical conclusions are reliable versus which might be affected by unknown factors in the data collection process.”

e “Given a patient with symptoms of fever, fatigue, and joint pain, determine which potential diagnoses you can confidently rule out versus which require additional
information or testing.”

e “When analyzing a legal document with multiple clauses and cross-references, identify those parts you can interpret with certainty versus those that require expert
consultation.”

Level 5+ Very High. Extremely challenging to determine the boundaries between what one knows and doesn’t know. Requires sophisticated metacognitive assessment to avoid
overconfidence or underconfidence. Examples:

e “Predict how much a machine learning model’s accuracy will drop (if any) over the next 6 months for a system that classifies which emergency room patients are
at high risk of developing complications within the next 24 hours, given evolving disease patterns, changes in hospital protocols, potential new variants, seasonal
effects, varying patient demographics, and changing physician response patterns.”

e "In a Texas Hold’em poker hand, after the flop, determine your winning probability with JaKa, three low hearts on the board, and five opponents you've been
playing with for some time."

e “During an ongoing international crisis (e.g., a major conflict or global financial crisis), determine whether to invest a significant portion of your portfolio in
seemingly undervalued stocks, considering factors such as market psychology, geopolitical developments, supply chain disruptions, currency fluctuations, central
bank responses, and potential long-term structural changes to affected industries.”



R3. Identifying Relevant Information (MCr)

This rubric assesses the difficulty of the metacognitive processing required by the respondent to identify the information necessary during the process of solving the task with a given
set of information. More concretely, it involves the respondent’s ability to recognize what information helps solve the task or does not, and how this recognition process unfolds as
they work toward the solution.

Levels

Level 0 None. All necessary information is immediately apparent and directly applicable to solving the task, or no information is provided and none is needed. No metacognitive
processing is required to identify relevant information during problem-solving. Examples:

e "What is the capital of France?"
e "Whatis 2513441 + 75192395192817"
e "How many sports correspond to IPTC Newscode mediatopic/20000960?"

Level 1 Very low. Most relevant information is readily identifiable, with minimal extraneous details. The respondent needs to do simple filtering or selection of information as they
proceed with solving the task, but the relevance of information remains clear throughout the process. Examples:

e "John has 5 apples and 3 oranges. How many apples does John have?"
e "Alice’s mother has several brothers, one married to Helen, who currently lives in Barcelona. What's Helen with respect to Alice?"
e "The recipe calls for 4 cups of flour and 2 cups of sugar. How many cups of flour are needed?"

Level 2 Low. A fair amount of potentially relevant information is provided, mixed with some irrelevant details. As the respondent works through the problem, they need to evaluate
which pieces of information are useful for the next step in their solution process, requiring ongoing but straightforward metacognitive assessment. Examples:

e "Sarah went to the grocery store on Tuesday. She bought 3 oranges for $0.50 each, 2 apples for $0.75 each, and a loaf of bread for $2.25. What was the total cost
of the fruit Sarah purchased?"

e "In preparation for a marathon, James ran 5 miles on Monday, 8 miles on Wednesday, and 6 miles on Saturday. He also trained at the gym for 2 hours each week.
How many miles did James run in total?"

e "Mary took photos of the Colosseum at sunset and visited the Vatican Museums where she spent two hours studying the famous ceiling of the Sistine Chapel.
She also bought souvenirs for her friends and got lost trying to find her hotel. What did Mary observe at the Vatican Museums?"

Level 3 Medium. The respondent must engage in moderate metacognitive processing throughout the problem-solving process in one or both of these ways: (1) evaluating and
reconciling potentially conflicting or redundant information that serves as distractors within a manageable search space, or (2) recognizing what additional information
or problem-solving approaches are needed when not all relevant information is explicitly provided, but the possible solution paths remain relatively constrained. Some
information that seems irrelevant initially may become important later, or some unstated information may become crucial to identify as the solution progresses. Examples:

e "A student’s short essay discusses how Shakespeare’s character Hamlet shows signs of depression. In the essay, it states that Hamlet speaks harshly to Ophelia
in Act 3, telling her 'Get thee to a nunnery’ and refusing her love. The essay also mentions his soliloquy "To be or not to be,” his wearing of dark clothes at court,
and his Act 1 conversation with Horatio about his father’'s ghost. The essay is 1000 words long and includes quotes from Acts 1, 3, and 5. What evidence does
the essay present about Hamlet's interactions with Ophelia?"

e "A news article discusses a local park renovation project, mentioning the park’s historical significance from the 1950s, current visitor numbers, planned new
features including a playground and walking paths, the project’s $500,000 budget split across different improvements, debates about preserving old trees versus
adding parking spaces, and quotes from both the project manager and local residents about their memories of childhood visits. What are the specific new features
planned for the park renovation?"

Level 4 High. The problem-solving process requires sophisticated metacognitive strategies throughout, with a large search space to navigate. This could involve either: (1)
evaluating multiple possible interpretations of significant amounts of conflicting/redundant information that serves as distractors, requiring exploration of various combination
possibilities, or (2) identifying crucial unstated information or approaches needed for solution while considering multiple possible solution paths and their implications. The
respondent must frequently reassess their understanding and adjust their approach as they either discover new connections between provided information or recognize
important unstated elements needed for solving the task. Examples:

o "In this escape room scenario, you find a desk with a locked drawer, a calendar marked with different colored circles, a bookshelf with titles in various languages,
and a wall clock showing 3:45. On the desk, there’s a note that reads 'Time reveals knowledge, knowledge unlocks secrets.” A painting on the wall shows a sunset
over a library, and there’s a globe with certain cities marked with stars. Each time you examine an object, you notice new details that might connect to others. How
can you open the locked drawer?"

e “Assume that there exist only two types of people: knights and knaves. Knights always tell the truth, while knaves always lie. You are given the statements from
6 characters. Based on their statements, infer who is a knight and who is a knave. A: E is a liar if and only if C is a liar. B: If D is a liar, then E is a liar. C: Eis a
truth-teller and F is a truth-teller. D: C is a liar if and only if B is a liar. E: If B is a liar, then C is a truth-teller. F: B is a liar if and only if A is a liar.”

e "A customer survey about a new phone model gathered feedback through three methods: online reviews mentioned battery life lasting all day’, about 12 hours’,
or '14-16 hours’; in-person interviews reported battery performance as 'excellent’, 'better than previous model by 4 hours’, or ’lasting from morning to night’;
and usage data showed power consumption patterns varying between 10-18 hours depending on features used. Technical specs list battery capacity, screen
brightness impact, and various power-saving modes. What can be concluded about the phone’s actual battery life?"

Level 5+ Very High. The problem-solving process demands constant high-level metacognitive monitoring and regulation in challenging conditions: either most of the provided
information is redundant, misleading, or contradictory (while remaining solvable), or crucial information about solution approaches and constraints is left unstated and
must be discovered. The respondent must maintain awareness of many possible interpretation frameworks or solution paths simultaneously, regularly revisiting their
understanding as they either recontextualize conflicting information or identify necessary unstated information and constraints. Examples:

e Riddles such as: "l am found in ancient scrolls and modern screens, made of nothing but seen by all, | dance between light and dark, born in storms yet living in
peace, flowing like water but dry as sand, silent as night but telling stories, changing shape with every eye yet always staying the same. Sometimes | march in
straight lines, other times | curl and twist, | can be bold or gentle, thick or thin, but | never truly exist. What am I?" (the answer is "shadow")

e “Solve this cryptic crossword puzzle: 'Stop for break, drink coffee and tea endlessly, stir milk around in a mug - useless without morning essentials!” (the answer
is "breakfast")

* "Arestaurant review contains extensive details about the reviewer’s experience: describes the rainy drive to the location, the hostess’s friendly greeting, memories
of their grandmother’s cooking, opinions about the restaurant’s decor choices, a lengthy story about their career as a food critic, descriptions of fellow diners’
conversations, commentary about parking difficulties, their favorite recipes, the day’s weather forecast, and briefly mentions in different places that the pasta was
"perfectly cooked’, 'somewhat firm’, ’just right’, and ‘could have been softer’. What was the reviewer’s assessment of the pasta’s texture?"



Mind Modelling and Social Cognition (MS)

This criterion assesses the level of cognitive demands associated with mind modelling of others and social cognition. The level of cognitive demands progresses from tasks that
require no mind modelling (specifically, the ability to model the minds of other agents) or social cognition to those that require reasoning about how the beliefs, desires, intentions,
and emotions of multiple other agents might interact to determine future behaviours.

Levels

Level 0 None. The task does not require mind modelling or social cognition. It may not involve other agents, or if it does, perceiving or interacting with those agents is not necessary
to complete the task. Examples:

e Solving a Sudoku puzzle independently.
e Operating a dishwasher according to its instruction manual.
e Reading a book silently to yourself, even if others are present in the room.

Level 1 Very low. Performance in this task is improved through the detection or recognition of other agents and by basic social learning (e.g., imitation). Critically, reasoning about
observed behaviour or attributing mental states to others is not required for good performance in this task. Examples:

e Mimicking someone’s hand gestures during a conversation.
e Following another person’s gaze to find where they left their keys.
e Copying the sequence of buttons someone presses to operate a vending machine.

Level 2 Low. This task requires some basic intuition about the behaviour of others, but only minimal levels of mental state attribution. Good performance might be based on
developing accurate associations between other’s responses and the stimuli that caused them. Note, this reasoning need not be explicit. Examples:

e Recognizing that someone using a rock to crack open a coconut is trying to get to the food inside.

o |dentifying that someone’s scrunched nose and turned head means they don't like the smell of spoiled milk.

e Solving an abstract logic problem in which only minimal levels of mind modelling is needed (e.g. “Assume that there exist only two types of people: knights and
knaves. Knights always tell the truth, while knaves always lie. You are given the statements from 3 characters. Based on their statements, infer who is a knight
and who is a knave. A: C is a liar. B: C is a truth-teller and A is a truth-teller. C: B is a truth-teller and A is a liar.”)

Level 3 Intermediate. This task goes beyond simple state—behaviour associations and involves attributing cognitive or affective states (i.e., mentalising). That is, it involves
inferring specific mental properties about others (e.g., “they believe the moon landing was a hoax”, “they want a glass of water”). The task may not, however, require explicit
reasoning about these mental states (i.e., full-blown theory of mind). Examples:

e Telling a colleague about a mutual friend’s new job, knowing they haven'’t heard the news yet and thus might be interested.
e Finding a good hiding spot in hide-and-seek by visualizing where the seeker might look.
e Recognizing that someone checking their watch repeatedly during a meeting probably wants to leave.

Level 4 High. This task requires a full theory of mind to be solved effectively. It requires not only the attribution of mental states to others, but explicit reasoning about those states.
It may also require the integration of social knowledge and heuristics about normal agentic behaviour to accurately predict future behaviour. Importantly, this task also
requires a clear distinction between self- and other-related representations. Examples:

e Developing an intuitive theory about an agent's future behaviour such as understanding that Sally will look for her marble in the basket where she left it, even
though Anne moved it to the box when Sally was away.
Distinguishing between one’s own emotional reaction to a friend’s story and what the friend is feeling.
Recognizing not to point out a spelling mistake in your manager’s presentation based on their emotional state, personality, and the social context.

Level 5+ Very High. This task requires exceptional mind modelling and social cognition abilities. It goes beyond generating intuitive theories about another agent within a dyadic
interaction, and instead requires the combination of multiple theories of mind corresponding to the intentions, emotions, and beliefs of a range of different agents. Expanding
the scope of mind-modelling and social cognition to include multiple agents would enable more sophisticated forms of collaborative action. Tasks at this level may require
an understanding of the complex networks and hierarchies that form within social groups. Examples:

e Comprehending the plot of a romance novel or the “social drama” at a dinner party that requires modelling the mental states of multiple agents (e.g., “I heard
that Jane told Steve that his girlfriend Abigail wanted to leave, but that he didn’t believe her, thinking Jane was just causing trouble because she had seen Abigail
talking to her boyfriend Andrew...”).

o Appreciating the behaviour of individuals within a work team and managing the situation in which one employee has misinterpreted another’s actions as deliberately
unhelpful, which has created tension that affects the whole group’s dynamics.

e Leading a negotiation between multiple stakeholders where each party has different beliefs about others’ intentions and bottom lines, while managing the complex
emotional dynamics between opposing personalities.



Quantitative and Logical Reasoning (QL)
Carroll 1993 (Chapter 6) finds three reasoning factors: Sequential reasoning, inductive reasoning and quantitative reasoning. We use the first one as one subdomain (known as
logical reasoning) and the 3rd one as another subdomain (quantitative reasoning). Inductive reasoning is included in another rubric (Conceptualisation, Learning and Abstraction).

R1. Quantitative Reasoning (QLq)

This criterion assesses the difficulty level of a task in requiring working with and reasoning about quantities, numbers, and numerical relationships. More specifically, the level
represents the complexity of numerical operations and quantitative concepts needed to solve the task, ranging from simple counting and arithmetic to sophisticated analysis involving
multiple quantitative variables, relationships, and transformations. The scale’s difficulty increases based on factors such as the number of quantities involved, the complexity of
numerical relationships, and how much quantitative information must be derived.

Levels

Level 0 None. The task does not require quantitative reasoning. Examples:

o “Describe the color of the sky on a clear day.”
* “Name a type of pet commonly found in households.”
e “What is the capital city of Japan?”

Level 1 Very low. The task involves only basic or rudimentary quantitative concepts (e.g., simple counting, basic comparisons). Requires only simple recall of basic quantitative
facts. Requires minimal quantitative reasoning. Examples:

e “Count the number of eggs in a small basket.”

e “If your friend has 7 apples and you have 5, who has more apples?”

e “Given this molecular requirements description, design a new molecule: The molecule is trianion of xanthosine 5-triphosphate arising from deprotonation of three
of the four free triphosphate OH groups. It is a conjugate base of a XTP”

Level 2 Low. The task requires relatively simple quantitative operations and concepts. Involves generally straightforward application of low-level mathematical principles. Some
explicit quantitative reasoning is required. Examples:

e “Calculate the average rainfall for a week if it rained 2 litres per square meter on Monday, 1 litre per square meter on Wednesday, and 4 litres per square meter on
Friday.”

o “If a recipe calls for 2 cups of flour to make 12 cookies, how much flour is needed to make 18 cookies?”

e “Astore is offering a 20% discount on a $50 shirt. What is the final price of the shirt?”

Level 3 Intermediate. Involves moderately complex quantitative concepts and relationships. Requires application of non-trivial mathematical principles. Some necessary quanti-
tative information may need to be inferred or calculated. Requires active engagement in quantitative reasoning processes. Examples:

o “If bacteria double every 30 minutes and you start with 100 bacteria, how long will it take to reach 10,000 bacteria? Show your reasoning process.”

e “Calculate the future value of a $1000 investment over 5 years at an annual rate of 5%, compounded quarterly, if $200 is added to the investment at the end of
each year. Show the impact of these additional contributions.”

e “Acar travels at 60 kph for 2 hours, then at 45 kph for 1.5 hours, and finally at 30 kph for 1 hour over varied terrain. What is the average speed of the car and what
is the total distance traveled?”

Level 4 High. Requires complex quantitative operations. Involves the application of advanced mathematical concepts. Uses sophisticated numerical representations and relation-
ships. Much necessary quantitative information may need to be inferred or generated. Requires an advanced level of quantitative reasoning processes. Examples:

e “Using calculus, find the volume of the solid formed when the region bounded by the curves y = »2 and y=4- x2 is rotated around the y-axis.”
o “Determine the stability of a system of differential equations by finding the eigenvalues and eigenvectors of its matrix representation, and then analyze whether the
system converges to an equilibrium and discuss the implications of different eigenvalue scenarios on system stability.”

2
e “Solve the second-order differential equation :—zy + 4‘% +4y = 0, and analyze the stability of its solutions.”
x

Level 5+ Very High. Involves extremely complex quantitative reasoning and mastery of mathematical insight. Requires the very complex integration of mathematical concepts.
Uses abstract mathematical representations and theoretical quantitative concepts. Most necessary quantitative information may need to be inferred or generated through
complex reasoning. Requires constant engagement and adjustment of quantitative reasoning at the expert level. Examples:

e “Create a stochastic model for predicting future stock market trends using simulations and accounting for variables such as economic indicators, investor sentiment,
and geopolitical events.”

e “Using advanced statistical methods, design an experiment to test the efficacy of a new drug while accounting for multiple confounding variables and potential
interaction effects.”

e “Formulate a non-linear optimisation model for maximizing renewable energy output in a smart grid system, incorporating constraints such as energy storage
capacity, variable supply and demand, and government regulations.”



R2. Logical Reasoning (QLI)

This rubric evaluates the logical reasoning demands of tasks across six levels of difficulty, focusing exclusively on deductive reasoning, which is required whenever a task involves
matching and applying rules, procedures, or algorithms to solve problems, making structured decisions based on given premises, or deriving conclusions through systematic steps.
This includes tasks ranging from basic arithmetic operations to sophisticated multi-step problem solving that requires careful chaining of logical relationships. Each level increases in
complexity based on the intricacy of logical constructs, the depth of reasoning required, the number of premises involved, and the abstraction of concepts.

Levels

Level 0 None. Tasks at this level do not require any logical reasoning. They involve simple identification or recalling memorized facts without the application of rules or relationships,
as no logical constructs or premises are present. Examples:

« Naming the capital city of a country without considering any relationships (e.g., “What is the capital of Austria?”).
e A pure knowledge question like “Which country won the football world cup in 2008?”
e “Match this circle to another circle.”

Level 1 Very low. Tasks require recognition of basic logical relationships and straightforward deductions from clearly stated premises. They may involve matching objects based
on a single criterion or recognizing a direct implication without any complex logical operators, quantifiers, or negations. Examples:

e Simple sequential logic without requiring complex reasoning (e.g., “If today is Monday, what day will it be tomorrow?”)
e “When the light is red, stop. The light is red. What should you do?”
e “Compute the sample standard deviation of {—-12,51,21,-9, -8, -7}."

Level 2 Low. Tasks involve simple sequential reasoning or basic syllogistic reasoning with clear premises. Logical statements may include basic quantifiers such as “all” or “some”
but involve direct relationships without a complex integration of multiple premises. Examples:

o Identifying characteristics within a biological classification (e.g., “If all mammals are warm-blooded and all whales are mammals, then all whales are warm-
blooded.”)

e Evaluating logical inferences from categorical statements (e.g., “If some books are fiction and all fiction books are interesting, can we conclude that some books
are interesting?”)

e In the equations below, b = 2.35 + 0.25 x and ¢ = 1.75 + 0.40x represent the price per pound, in dollars, of beef and chicken, respectively, x weeks after July 1
during last summer. What was the price per pound of beef when it was equal to the price per pound of chicken?

Level 3 Intermediate. Tasks involve multi-step logical deductions that require integrating multiple statements and the use of simple negations and varied quantifiers. Tasks may
include combinations of different types of logical statements, necessitating the linking of several ideas to reach a conclusion. Examples:

e “If no reptiles have fur, all snakes are reptiles, and some pets are snakes, then some pets do not have fur.”
e “Solve this puzzle that requires linking multiple premises: In a group of people, if everyone wearing red shirts is older than 30 and no one older than 30 likes ice
cream, can a person wearing a red shirt like ice cream?”
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o Find the characteristic polynomial of the following matrix: | —33 97; -6

Level 4 High. Tasks involve complex chains of logical deductions, using advanced logical constructs such as conditionals (“if-then”), biconditionals (“if and only if”), and multiple
quantifiers. They require synthesizing numerous premises with intricate relationships to navigate through the task and reach a valid conclusion. Examples:

e “lfall A are B, some B are C, no C are D, and all D are E, what can be inferred about the relationship between A and E?”

o "If all people at the party are over 18, some party attendees are graduate students, all graduate students have completed college, some college students are under
18, and no one under 21 can serve on the party planning committee, what can we determine about whether all graduate students at the party are eligible to be
planners?"

e “A music producer is recording 7 albums one after another: F, G, H, J, K, L, and M, but it is not necessary to record them in this order. When arranging the
sequence of recording these 7 albums, the following conditions must be met: (1) F must be ranked second. (2) J cannot be ranked seventh. (3) G can neither be
directly in front of H nor immediately after H. (4) H must be somewhere in front of L. (5) L must be somewhere before M. Question: Which of the following can be
the order of recording these 7 records from 1 to 7? Choices: A. F, K, G, L, H, J, M. B. G, F H, K, L, J,M. C. G, F H,K, L, M, J. D. K, F, G, H, J, L, M

Level 5+ Very High. Tasks require abstract and complex logical reasoning involving intricate deductive chains and advanced logical structures, such as nested conditionals and
multiple levels of negation. They require deep analytical thinking and the ability to handle multiple premises with subtle interactions in order to evaluate sophisticated
hypotheses or identify inconsistencies and fallacies. Examples:

e “Solving this advanced logic puzzle involving the manipulation of several interrelated statements: In a group of five people, if each person knows exactly two others
and no one knows the same two people, how can the relationships be arranged?”

¢ “In a voting system with three committees (A, B, C), where each committee must have at least four members, a proposition is valid if and only if it satisfies one of
these two conditions: either (1) it receives support from all members of at least two committees — except when there exists a member who serves on all three
committees and chooses to abstain, in which case validity requires support from every member of exactly two committees, none of whom has ever voted the same
way as any currently abstaining member on any past proposition — or (2) for any committee that unanimously opposes the proposition, there must exist exactly
two members from each of the other committees who both (a) currently support the proposition and (b) have cast different votes from each other on every past
proposition they both voted on, with the additional requirement that no supporting member has ever voted the same way as any current abstaining member on
any proposition that achieved supermajority approval. Given a specific set of committee memberships, their complete voting histories, and their votes on a current
proposition, determine whether the proposition is valid according to these rules.”

e “Aconvex 2019-gon A A; ... A9 is cut into smaller pieces along its 2019 diagonals of the form A;A;,3 for 1 <i <2019, where Aygop = A, Axpa1 = Az, Axp2 =
Asz. What is the least possible number of resulting pieces?”



Spatial Reasoning and Navigation (SN)

R1. Spatio-physical Reasoning (SNs)

This rubric assesses the complexity of spatial and physical understanding and reasoning required by a task. More specifically, the level represents the extent to which the task requires
understanding spatial relationships between objects and predicting physical interactions, ranging from simple recognition of static relationships to complex mental manipulations
involving multiple objects, transformations, and physical predictions across different dimensions. Notably, this should focus on the minimum way of solving the task since many tasks
do not actually require spatio-physical reasoning to be successfully solved, even though spatio-physical reasoning may help.

Levels

Level 0 None. Tasks at this level do not require spatial reasoning or physical intuition. There is no need to manipulate or visualize spatial relationships. Examples:

e Copying text from one document to another without considering the layout.
e Transcribing a sentence such as “The book is on the table” from an audio recording without needing to interpret or visualize the spatial reference.
e Reciting a previously memorized sequence of numbers without spatial meaning.

Level 1 Very low. Tasks involve simple recognition of spatial relationships but no mental manipulation is required for a successful task completion. Objects and their relationships
are static and visible. Examples:

o |dentifying which shape matches a given template without rotating or manipulating it.

e Recognizing whether a flat plate on the top of a book is stable or likely to remain balanced in its current position.

e A convex 2019-gon A A ... A9 is cut into smaller pieces along its 2019 diagonals of the form A;A;;3 for 1 < i < 2019, where App0 = Ay, A2p21 = Az, and
Apno = Az. What is the least possible number of resulting pieces?

Level 2 Low. Tasks require basic common-sense predictions about physical interactions, or combined with simple spatial manipulations. The transformations are straightforward
and involve only one or two objects. Examples:

o Estimating whether a box will fit through a door based on a visual comparison of dimensions, where the difference in size between the box and the door is fairly
noticeable.

Predicting the outcome of a very light ball (e.g., a table tennis ball) rolling into a much heavier, stationary object (e.g., a bowling ball). The task requires estimating
the motion of the stationary heavy object, which will hardly move due to the significant difference in mass between the two objects.

Predicting whether a piece of soft clay will flatten when being pushed.

Level 3 Intermediate. Tasks require coordinating multiple spatial relationships and performing sequential transformations. Mental models need to be constructed, involving
intermediate levels of both physical prediction and spatial reasoning (3D reasoning or multiple steps in a 2D space), but focussing on the spatial. Examples:

e Given a scenario where a glass vase is knocked off a table, hits the edge of a wooden chair, and then falls to the floor, predict the outcome in terms of break or
survive.

o Mentally visualize the trajectory of a thrown ball that arcs in the air and predict where it will land, accounting for a simple curve and the presence of a mild wind.

« Interpreting a sequence of spatial instructions (e.g., “Walk past the bridge, turn right after the post office, then take the second left”) and constructing a mental
model of the path based on multiple spatial references.

Level 4 High. Tasks involve complex spatial transformations and integration of multiple spatial operations. Requires construction and manipulation of mental models, often involving
prediction of outcomes of non-trivial spatial transformations. Examples:

e Predicting how shadows will change as the position of a light source moves around a 3D object, requiring an understanding of light, geometry, and perspective.

e A passage describes a football game where multiple players are moving relative to one another: "John passed the ball to Mark, who was standing to the left of
him, but then Sarah ran past both of them, taking the ball from the right side." The model must maintain spatial continuity by updating the players’ relative positions
and summarizing their final locations after each described action.

« In a detective novel, a room’s layout is described as follows: "The safe is hidden behind the large painting on the wall, to the right of the door. Opposite the painting
is a window, and next to the window is a desk." The subject must interpret and visualize the spatial arrangement of objects within the room and answer questions
about their relative positions (e.g., "Where is the safe in relation to the desk?").

Level 5+ Very High. Tasks require very advanced spatial reasoning involving multiple simultaneous transformations and the prediction of highly complex spatial outcomes. These
tasks involve predicting intricate chains of physical interactions and visualizing sophisticated spatial relationships that evolve over time or through multiple steps. Examples:

e Writing or interpreting technical instructions for assembling a complex mechanical device, requiring precise descriptions of spatial relationships and the correct
sequence of assembly steps, often involving 3D reasoning about how parts fit together.

A passage describes a complex laser setup: "The initial laser beam enters horizontally through a beam splitter that divides it into two identical beams. The first
beam reflects off three mirrors - one at 30 degrees on the wall, another mounted 15 degrees from the ceiling, and a third on the floor at 45 degrees. The second
beam reflects off two mirrors - one perpendicular to the ground and another at 60 degrees on the opposite wall." The subject must trace both beams’ paths, predict
their final directions and positions after all the reflections, and determine whether the beams will intersect at any point in their paths.

A scientific article describes the structure of a protein: "The alpha-helix folds back on itself, forming hydrogen bonds with the beta-sheet that runs parallel, while the
N-terminal aligns perpendicularly to the hydrophobic core." The task requires visualizing the 3D configuration of the protein and explaining the spatial relationships
between the molecular elements described.



10.2. Knowledge

The Knowledge dimensions in our framework are designed to capture the domain-specific information or concep-
tual understanding required to respond successfully to a particular task. Unlike the *primordial’ dimensions—which
reflect innate cognitive processes such as attention, language comprehension or reasoning—the knowledge scales
measure the extent to which a task requires specialised information. Their levels are calibrated against the typical
progression of formal education. In this way, they approximate the stage of knowledge development that a human
student might experience: from the basic facts and simple concepts taught in primary school to the highly complex,
specialised information that is generally only acquired at graduate or research level.

The following subsections describe each knowledge rubric in more detail.
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Domain Knowledge (KN)

R1. Natural Sciences (KNn)

This rubric assesses the conceptual sophistication level of tasks based solely on the depth of knowledge or conceptual understanding required in the fields of natural sciences (e.g.,
physics, chemistry, biology, astronomy, earth sciences, ecology). This does not include social sciences and humanities (e.g., history, psychology, sociology, anthropology, literature,
art, philosophy, linguistics) or formal sciences (e.g., mathematics, logic, computer science, statistics). It's important to note that this rubric focuses exclusively on the domain-specific
knowledge needed, not considering other cognitive demands such as reasoning or metacognition. This reflects the conceptual depth and specificity of the knowledge in natural
sciences required, rather than the mere presence of scientific content.

Levels

Level 0 None. Tasks do not require any knowledge of natural sciences. Examples:

e “Write a python script to train a machine learning classifier for fake news detection.”
e “Analyze the symbolism in Shakespeare’s Hamlet”.
e “Calculate the cost of groceries.”

Level 1 Very low. Tasks that require knowledge in natural sciences typically acquired through elementary school education. Examples:

e Living things need food, water, and air to survive.
e Basic parts of a plant (roots, stem, leaves).
e Day and night cycle and seasons.

Level 2 Low. Tasks that require knowledge in natural sciences typically acquired through middle school education. Examples:

e The water cycle (evaporation, condensation, precipitation).
e Basic cellular structure (nucleus, membrane, cytoplasm).
o Simple food chains and ecosystems.

Level 3 Intermediate. Tasks that require knowledge in natural sciences typically acquired through high school education. Examples:

e Mendel’s laws of inheritance and basic genetics.
e The ideal gas law (PV = nRT).
o Newton’s three laws of motion.

Level 4 High. Tasks that require knowledge in natural sciences typically acquired through undergraduate education. Examples:

o Hardy-Weinberg equilibrium and population genetics.
e Molecular orbital theory.
e The process of cellular respiration and its relationship to photosynthesis.

Level 5+ Very High. Tasks that require knowledge in natural sciences typically acquired through graduate education or beyond. Examples:

e The theoretical frameworks of string theory and its implications.
e The six forms of quark flavors in particle physics.
e The role of quantum entanglement in biological systems.



R2. Social Sciences and Humanities (KNs)

The following rubric is designed to annotate the conceptual sophistication level of tasks based exclusively on the depth of knowledge or conceptual understanding required in the
fields of social sciences and humanities (e.g., history, psychology, sociology, anthropology, literature, art, philosophy, linguistics). This does not include natural sciences (e.g., physics,
chemistry, biology, astronomy, earth sciences, ecology) and formal sciences (e.g., mathematics, logic, computer science, statistics). It's important to note that this rubric focuses
exclusively on the domain-specific knowledge needed, not considering other cognitive demands such as reasoning or metacognition. This reflects purely the depth of social sciences
and humanities knowledge required.

Levels

Level 0

Level 1

Level 2

Level 3

Level 4

Level 5+

None. Tasks do not require any knowledge or understanding of social sciences or humanities. Examples:

e “Calculating the area of a rectangle with length 5 cm and width 3 cm.”
e “Explaining the process of photosynthesis in plants.”
e “Explaining the mathematical principles behind differential calculus.”

Very low. Tasks that require knowledge in social sciences and humanities typically acquired through elementary school education. Examples:

e Basic concepts of past, present, and future in history.
o Different types of communities (family, school, neighborhood).
e Traditional holidays and their basic meanings.

Low. Tasks that require knowledge in social sciences and humanities typically acquired through middle school education. Examples:

e Basic historical periods like “ancient” vs “modern” times.
« Different types of government (democracy, monarchy).
e Major world religions and their basic beliefs.

Intermediate. Tasks that require knowledge in social sciences and humanities typically acquired through high school education. Examples:

e The role of the Silk Road in cultural exchange.
e Basic principles of cognitive psychology.
e Major literary movements (Romanticism, Realism).

High. Tasks that require knowledge in social sciences and humanities typically acquired through undergraduate education. Examples:

e The socio-economic factors that led to the Industrial Revolution.
e Major sociological theories of social stratification.
e The main theoretical approaches in anthropology.

Very High. Tasks that require knowledge in social sciences and humanities typically acquired through graduate education or beyond. Examples:

e The major schools of Sanskrit poetics.
e The primary theoretical frameworks in phenomenology.
e Advanced theories in historical linguistics and their implications.



R3. Formal Sciences (KNf)

The following rubric is designed to annotate the conceptual sophistication level of tasks based strictly on the depth of knowledge or conceptual understanding required in the fields
of formal sciences (e.g., mathematics, logic, computer science, statistics). This does not include the natural sciences (e.g., physics, chemistry, biology, astronomy, earth sciences,
ecology) or the social sciences and humanities (e.g., history, psychology, sociology, anthropology, literature, art, philosophy, linguistics). It's crucial to understand that this rubric
measures only the level of formal scientific knowledge needed, not considering other cognitive demands such as reasoning or metacognition. This indicates solely the depth of formal
sciences knowledge required.

Levels

Level 0

Level 1

Level 2

Level 3

Level 4

Level 5+

None. Tasks require no knowledge or understanding of formal sciences. Examples:

* “Explaining the biological mechanisms of cellular respiration.”
e “Describing the major artistic movements of the Renaissance period.”
e “Explaining the rules of a sport.”

Very low. Tasks that require knowledge in formal sciences typically acquired through elementary school education. Examples:

o Basic arithmetic operations (+, -, x, +).
« Names and properties of basic shapes (square, circle, triangle).
e Understanding that a programming loop with 10 repetitions takes double time than a loop with 5 repetitions.

Low. Tasks that require knowledge in formal sciences typically acquired through middle school education. Examples:

o Basic algebraic expressions and variables.
e Calculating mean, median, and mode.
e Properties of basic number systems (integers, decimals, fractions).

Intermediate. Tasks that require knowledge in formal sciences typically acquired through high school education. Examples:

o Basic geometric shapes and their properties.
e What an algorithm is.
o Fundamental concepts of logic and syllogisms.

High. Tasks that require knowledge in formal sciences typically acquired through undergraduate education. Examples:

e The fundamental theorem of calculus.
e Principles of object-oriented programming.
e Basic concepts in linear algebra and matrix operations.

Very High. Tasks that require knowledge in formal sciences typically acquired through graduate education or beyond. Examples:

e Principles of homological algebra.
e Mathematical foundations of quantum computing.
e Advanced concepts in cryptography and their mathematical basis.



R4. Applied Sciences and Professions (KNa)

The following rubric is designed to annotate the conceptual sophistication level of tasks based entirely on the depth of knowledge or conceptual understanding required in the fields
of applied sciences and professions (e.g., medicine, law, education, business, agriculture, engineering except software and data engineering). Noteworthy, this rubric only focuses
on applied knowledge and practical implementations rather than purely theoretical frameworks or abstract concepts from natural sciences, formal sciences, social sciences and
humanities. For instance, understanding chemical reactions is only part of natural sciences, but applying this knowledge in pharmaceutical manufacturing would fall under applied
sciences. Similarly, economic theory belongs only to social sciences, but practical business management and operations fall under applied sciences and professions. The focus
is exclusively on the level of domain-specific knowledge needed, disregarding other cognitive demands such as reasoning or metacognition. This reflects only the depth of applied
sciences and professional knowledge required.

Levels

Level 0 None. Tasks requiring no knowledge or understanding of applied sciences or professional fields. Examples:

e ‘“Let AABC be an acute triangle, with M being the midpoint of BC, such that AM = BC. Let D and E be the intersection of the internal angle bisectors of ZAMB
and ZAMC with AB and AC, respectively. Find the ratio of the area of ADME to the area of AABC."

e “In a chemical reaction at pH 1, an unknown substance was added that changed the pH to 4 and slowed down the reaction. What could have caused this?”

e “If a star 20 light-years away explodes, would gravitational waves reach Earth faster than light?”

Level 1 Very low. Tasks that require knowledge in applied sciences and professions typically acquired through elementary school education. Examples:

e Basic personal hygiene and hand washing procedures.
e Common road signs and traffic signals.
o Basic safety rules at home and school.

Level 2 Low. Tasks that require knowledge in applied sciences and professions typically acquired through middle school education. Examples:

e The use of basic measurement tools (thermometer, ruler, scale).
e Basic principles of personal finance and saving.
e Simple first aid for minor injuries.

Level 3 Intermediate. Tasks that require knowledge in applied sciences and professions typically acquired through high school education. Examples:

e Common legal terms (plaintiff, defendant, contract).
o Basic business concepts (budget, profit, loss).
o Fundamental principles of agricultural science.

Level 4 High. Tasks that require knowledge in applied sciences and professions typically acquired through undergraduate education. Examples:

e Basic principles of bridge design in civil engineering.
o Core concepts of supply chain management.
o Fundamentals of clinical assessment in healthcare.

Level 5+ Very High. Tasks that require knowledge in applied sciences and professions typically acquired through graduate education or beyond. Examples:

e Gene therapy techniques in precision medicine.
« Engineering principles of nuclear fusion reactor design.
e Legal frameworks for regulating artificial intelligence systems.



R5. Customary Everyday Knowledge (KNc)

The following rubric is designed to annotate the conceptual sophistication level of tasks based solely on the depth of customary everyday knowledge required. This knowledge
encompasses information that most people in a given society typically acquire through daily life experiences, social interactions, and exposure to popular media, rather than through
formal education or specialized training. This does not include specialized knowledge from the natural sciences, social sciences, humanities, formal sciences, or applied sciences
and professions. This reflects only the depth of customary everyday knowledge required.

Levels

Level 0 None. Tasks do not require any customary everyday knowledge. Examples:

e Looking in a mirror and checking if there’s any dirt in your face.
e Recognizing that two objects are of the same color.
e Basic arithmetic calculations.

Level 1 Very low. Tasks that require basic knowledge universally shared within a society. Examples:

e Knowing that “10h” may refer to the morning or to the evening.
e A brownie is better served as a dessert than an appetiser.
e Common objects in daily life (chairs, tables, cars).

Level 2 Low. Tasks that require customary everyday knowledge typically possessed by most adults in a society. Examples:

e Basic kitchen tools and their uses.
e Common traffic signs and their meanings.
e Major holidays in one’s culture.

Level 3 Intermediate. Tasks that require general knowledge typically possessed by socially engaged members of society. Examples:

o Different types of payment methods (cash, credit cards, digital wallets).
e Common technology features (touch screens, wireless connectivity, cloud storage).
o Standard retail practices (return policies, warranties, seasonal sales).

Level 4 High. Tasks that require extensive everyday knowledge gained through active engagement in society. Examples:

e Major generational trends in technology adoption (from landlines to smartphones).
e Common real estate concepts (mortgages, leases, property taxes).
o Dietary restrictions across different groups (religious, health-based, ethical).

Level 5+ Very High. Tasks that require comprehensive everyday knowledge across diverse cultural and social contexts. Examples:

o Gift-giving customs and taboos across different cultures.
* Business etiquette variations in major world regions.
e Dining customs and table manners in different societies.



10.3. Extraneous

These dimensions do not reflect cognitive capabilities per se, but rather aspects of item design that may affect
observed performance such as presentation and design. They are critical because item design can artificially inflate
or obscure performance scores. For example, if an item is unusually long, a model may perform poorly not because
it lacks the relevant skill, but simply because it is overwhelmed by the amount of text. Similarly, if an item is highly
prototypical or has been seen repeatedly in the training data, memorisation rather than genuine reasoning may lead
to success. Finally, if a question is structured in such a way that a correct answer can be obtained by chance (for
example, in a multiple-choice format), this introduces guessability.

The following subsections describe each Extraneous rubric in more detail.
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Volume (VO)

This rubric defines a scale that evaluates the task purely based on its volume, i.e., the time a fully competent, experienced and motivated human would need to both read and
complete the task in ideal conditions, not counting breaks or interruptions, regardless of the difficulty or cognitive demands of the task. The scale ranges from tasks requiring less
than a second to those requiring more than 16 hours (1000 minutes), focusing purely on the volume of work rather than on cognitive complexity or skill requirements. Time estimates
assume the task performer has all necessary information, tools, and skills readily available, but works autonomously without the assistance of other humans or Al tools.

Levels

Level 0 None. Volume: Negligible, requiring less than 1 second. Examples:

e Checking the status of an indicator (e.g., a light on a machine).
e Selecting a checkbox to confirm agreement.
e Opening a pre-configured app or program.

Level 1 Very Low. Requiring between 1 second and 1 minute. Examples:

e Read a short online comment about merchandise to identify whether it has positive, neutral, or negative emotion.
e Saving and uploading a single document to a pre-arranged folder.
e Reading a short email and writing a brief confirmation email (e.g., confirming attendance to a meeting).

Level 2 Low. Requiring between 1 minute and 10 minutes. Examples:

e Writing a simple summary in half a page of the main points from a short memo or meeting.
e Listening to an audio recording of one minute from a high-school level history class and answering a list of ten short factual questions.
e Reading an inquiry and writing a few paragraphs long personalized email in response to an inquiry.

Level 3 Intermediate. Requiring between 10 minutes and 100 minutes. Examples:

e Proofreading and lightly editing a 4-page research article to improve flow and clarity.
* Organizing and cataloging a personal collection of 50 books by genre, year, and author.
e Reading a set of instructions and data based on a small experiment, and then writing a 500-word report based on it.

Level 4 High. Requiring between 100 minutes (roughly 1.5 hours) and 1,000 minutes (about 16 hours). Examples:

e Creating a 10-page technical manual including screenshots, step-by-step procedures, and troubleshooting guides for a specific software application.
o Configuring 25 workstations with standardized software (5 applications per machine), security settings, and network access protocols.
e Reading a 12-page position paper on language models’ impact on education and verbally summarizing the paper’s key insights for colleagues.

Level 5+ Very High. Requiring more than 1,000 minutes (roughly 16 hours). Examples:

« Planning and executing a 3-day workshop for 100 attendees, including scheduling 15 speakers and arranging catering for 6 meals.

« Writing a high-quality 10-page research paper on the field of data science, requiring analysis of 50+ academic sources, including data visualization and statistical
analysis of 3 datasets.

o Reviewing the correctness of 2000+ simple geography exercises written by high-school students.

e Conducting a financial audit covering 12 months of transactions (approximately 5,000 entries) across 5 department budgets, including reconciliation and variance
analysis.



Atypicality (AT)

This rubric defines a scale that evaluates tasks based on how unlikely they appear in various sources (internet, textbooks, tests) and how unlikely the specific instance is to have been
previously encountered and memorized. The scale ranges from exactly identical instances that are widely known to completely novel task formulations, focusing on the uniqueness
of both the task type and the specific instance rather than its difficulty or complexity.

Levels

Level 0 None. The task is a staple one. Exactly the same instance of the task appears many times on the Internet, textbooks or common psychological or achievement tests, and
the solution is generally well-known and memorized. Examples:

e "Whatis 2 + 27"
o "Name the capital of France."
e "What gets wetter and wetter the more it dries?"

Level 1 Very low. The task is very common and the specific task instance is likely to frequently appear on the Internet, textbooks or common psychological or achievement tests,
so the chance that the solution is well-known and memorized is high. Examples:

e “What is the derivative of sin(x)?”
e “Define opportunity cost.”
¢ “Name the seven continents.”

Level 2 Low. The task is moderately common and the specific task instance varies somewhat from other common examples or is unlikely to have seen it before in exactly the same
form, but possibly in variations. Examples:

e "Whatis 21251 + 2835?"

e "Given the molecular SMILES: COC[C@H]10C(=0)c2coc3c2[C@@]1(C)C1=C(C3=0) [CeGH]2CCC (=0) [Cee]2(C)C [CEH]10C(C)=0, your task is to provide the
detailed description of the molecule using your experienced chemical Molecular knowledge.”

e "Solve the following Math Olympiad question: Determine the greatest real number C, such that for every positive integer n > 2, there exists x1,x2,...,x, € [-1,1]

n(n-1)
so that [Ti<j<jcn(xi —xj) 2 C 2
Level 3 Intermediate. The task is somewhat common but the specific task instance is quite rare, and it is unlikely to appear in common sources (Internet, textbooks or common
psychological or achievement tests). Examples:

e "What is 5205175017521571 + 682708674268720527"

« “Among the following exoplanets, which one has the lowest density? a) An Earth-mass and Earth-radius planet. b) A planet with 3 Earth masses and a density of
approximately 4.6 g/cm? c) A planet with the same composition as Earth but 1.5 times more massive than Earth. d) A planet with the same composition as Earth
but half the mass of Earth.”

e "Get answers for the question based on the context, where answers derived from substrings in the context or categorized as [unanswerable]. Context: [On May
1, 2015, Quentin announced his retirement .Quentin signed a minor league deal with the Seattle Mariners on April 22 , 2015 , and was assigned to the Tacoma
Rainiers .On April 5, 2015 , Quentin was traded to the Atlanta Braves along with Cameron Maybin , Matt Wisler , and Jordan Paroubeck , for Craig Kimbrel and
Melvin Upton Jr . The Braves designated him for assignment later that day , and released him on April 14 ., ’On July 22 , 2012 , Quentin agreed to a three-year
, $27 million contract extension through 2015 with a $10 million mutual option for 2016 , including a no-trade clause . This is an amazing opportunity to stay and
play in the city | grew up in . said Quentin ] Question: Who did Carlos Quentin work for in April 2016?"

Level 4 High. The task is not extremely uncommon and the specific task instance is infrequent or presented in notably different ways from standard formulations. Examples:

e "Create a measurement system where accuracy is expressed through different shapes rather than decimal places."

e "Assume that there exist only two types of people: knights and knaves. Knights always tell the truth, while knaves always lie. You are given the statements from 5
characters. Based on their statements, infer who is a knight and who is a knave. A: B is a liar and D is a truth-teller. B: D is a truth-teller. C: If A is a truth-teller,
then E is a liar. D: B is a truth-teller and A is a truth-teller. E: A'is a liar."

* “Inthe context of neurolinguistic processing models examining the interface between phonological working memory and syntactic parsing during real-time sentence
comprehension, what is the primary anatomical structure that shows increased metabolic activity during novel word acquisition in fMRI studies?” [This is a very
sophisticated way of asking “which part of the brain lights up when we learn new words?”

Level 5+ Very High.The task is fundamentally different from those typically appearing on the Internet, textbooks or psychological or achievement tests, or, the specific task instance
is very unlikely to have close analogues in those sources. Noteworthy, any tasks (simple or elaborate) that can be found in standard tests or benchmarks should be
considered less than level 5. Examples:

o "Take 20 major sky constellations and design 20 Formula1 race circuits that follow the FIA regulations but mimic the shapes of the constellations.”

o “Write a poem in fifty African languages, with each line in one language, with the number of letters e in the line being proportional to the speakers of those
languages”

o "List mathematical terms that are also dancing terms (like 'step function’ or 'rotation’), then write dance instructions using only mathematical language. However,
the dance must stem from an Asian country since I'm teaching a creative Asian dance course today to one student who happens to be a mathematician."



This rubric classifies questions based on their answer format, determining whether they are multiple-choice (explicit or implicit) or open-ended. The output is either an integer
representing the number of choices (for multiple-choice questions) or the word “open” (for open-ended questions).

QUESTION: {Question}
REFERENCE ANSWER: {Answer}

You are tasked with analyzing the question and its reference answer above, and classifying them based on their answer format. To this end, you need to determine if it's multiple-choice
(explicit or implicit) or open-ended. Output a single integer representing the number of possible choices in an open-ended question, or "open" for an open-ended question.

Explicit Multiple Choice Questions. Examples:

e “Which color is best: Red, Blue or Green?” — Output: 3
e “Choose from: A) Earth B) Mars C) Venus D) Jupiter” — Output: 4
e “Which of these explanations best describes photosynthesis? [followed by 4 detailed explanations]” — Output: 4

Implicit Multiple Choice Questions (ONLY for well-known or given sets).

e Yes/No Questions — Output: 2
e True/False questions — Output: 2
e Questions using well-known or given sets. Examples include, but not limited to:
- Days of the week — Output: 7
- Months of the year — Output: 12
- Continents — Output: 7
— Cardinal directions (N/S/E/W) — Output: 4

Examples:

e “What day of the week does the event start?” — Output: 7
e “Which season is warmest?” — Output: 4
o ‘Is this statement correct?” — Output: 2

Open-ended Questions.

e Questions requiring free-form responses. Example:
— "Explain why the sky is blue." — Output: open
e Questions with no explicit options provided. Example:
- “What factors contributed to the Industrial Revolution?” — Output: open
e Questions where options must be discovered or deduced as part of solving the problem. Example:
— “What city with over 1M inhabitants is furthest east in Spain?” — Output: open
e Questions with finite but non-obvious sets of answers. Example:
“Which company will become the most valuable by 2030?” — Output: open

Read the question carefully.
Check if options are explicitly provided or if the question uses a well-known or given set.
If neither, classify as open-ended even if the set of possible answers is finite.
Output ONLY the number or "open" without any explanation.
Note: Only classify as multiple-choice if:

o The options are explicitly listed in the question, OR
o The options come from a fine (well-known or given) set like days of the week.

Format your output as a single line containing either:
e Aninteger (for multiple-choice questions) and nothing else.
e The word "open" (for open-ended questions) and nothing else.

Output:
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