Mixer: Mixed-initiative Data Retrieval and Integration
by Example

Steven Gardiner, Anthony Tomasic, John Zimmerman, Rafae Aziz, and Kathryn
Rivard

Carnegie Mellon School of Computer Science, 5000 Forbes Ave Pittsburgh PA 15213
{sgardine, tomasic, johnz, raziz, krivard } @cs.cmu.edu

Abstract. Office administrators are frequently asked to create ad hoc reports
based on web accessible data. The web contains the desired data but does not
allow efficient access in the way the administrator needs, prompting a tedious
and labor-intensive task of retrieving and integrating the required data. Mixer
is a programming-by-demonstration (PBD) tool empowering administrators to
construct ad hoc reports from diverse web sources without tedious piecemeal
labor. Mixer's design builds on the exploration into end user conceptualization
of data retrieval tasks from our previous Wizard-of-Oz study [39], and
incorporates insights from mixed-initiative researchers into collaboration
between end users and software agents. This paper justifies the design
decisions that drive Mixer, focusing on general lessons for designers of
programming-by-demonstration systems targeting nonprogrammers. We
evaluate Mixer by performing a user study showing that administrators are able
to accomplish programming tasks without needing to understand programming
concepts for data retrieval and integration.

Keywords: programming by demonstration, end user programming, mixed
initiative, data integration

Introduction

As the size and richness of the web has steadily increased over the last decade, users
have ratcheted up their expectations for the scope of information easily available from
the web. Web interfaces, in contrast, usually permit access to the information they
expose in a highly constrained manner. The gap between the form of the information
required and the form provided by the deployed interfaces is bridged in practice by
human intelligence. In particular, office workers in an administrative capacity are
regularly assigned mundane, repetitive data integration tasks, entailing the gathering
of information from several sources into an ad hoc report, often in response to an
email [34]. Administrators do not consider these tasks difficult, but they do consider
them very tedious. The repetitive and procedural structure of the tasks makes them
ripe for automation; however, the actions taken in response to the retrieved



information generally require human judgment. This combination of automation and
human judgment invites a mixed-initiative approach that weds the administrator's
understanding of the desired report with a programmatic agent actually performing
the bulk of the mundane retrieval.

As an example, suppose a university dean wishes to investigate previous
collaborations between her university and a certain research lab, and further that she
has assigned her assistant the task of finding all professors in the university who have
published a paper with someone from the lab. The straightforward solution is to look
up in turn each professor’s publications in a digital library and store all of their
collaborators from the lab in some intermediate location, such as a column of a
spreadsheet. This solution, while effective, illustrates well the tedium involved, as it
requires the administrator to perform the same series of clicks and copies and pastes,
each time with different input, until the output report is complete.

The tedious, repetitive nature of the tasks evokes the concept of programming by
demonstration (PBD). The application of PBD to administrative data integration tasks
follows from the insight that once the user has shown how to look up a single
example, the system has sufficient information about the procedure to look up the rest
of the examples. In an effort to realize the promise of PBD in facilitating
administrative data integration tasks, we developed Mixer, a Mixed-Initiative PBD
system that allows users to train an agent to perform the tasks. Our current
implementation builds on our previous Wizard-of-Oz study, which demonstrates the
effectiveness of a spreadsheet-like user-created form as a medium of communication
between a human user and a simulated computer agent. Users were quite successful in
using the mocked-up system, but they struggled with the following issues: (1)
specifying 1-to-many relationships in a manner useable by the agent, (2) specifying
precision in the retrieved report, and (3) selecting meaningful segments of text on the
page. Mixer as presented here addresses these shortcomings, and also incorporates
insights from other explorations of web PBD [20, 22]. Mixer presents several
innovations over previous approaches. First, Mixer presents a unified modeless
interface for integrating data, whether that data come from one or several data
sources. Additionally, Mixer leverages the insights of Mixed-Initiative design to
facilitate collaboration between the user and the agent to accomplish the user's goal.

To evaluate our design decisions, we conducted an evaluation with real
administrators. The administrators were asked to retrieve multiple items from a single
data source and to link information across multiple data sources. The evaluation
results show that: (i) Using the Mixer table based interface, administrators can
conceive of, create, and use forms that effectively communicate to the Mixer agent
both the information they want and the information the agent needs to automate the
task; and (ii) administrators recognized the value of automating this type of mundane
task and indicated they would incorporate a mixed-initiative tool like Mixer into their
work practices.

The remainder of this paper is organized as follows. First, we describe the design
of Mixer. We then describe the study performed and the results obtained. Next, we
discuss the implications of the present study. Lastly, we situate this work within the
related work in the literature, and conclude.



1. Orange highlight indicate what

urminomww B item can be selected. —

& -c & (& npsporafmoy GUIDE&CAD=140595238.CFT gy JED »
© Footing i bumae-robot converstions | e -

~ e
ACM DIGITAL |

LIBRARY Intructions
1 Copy toMr e woron
FRaTohoT 5 2

Eaotingin ' how robots B 3. Use the “Fill Table" button to instruct MIXER to fill the *+-
cues B
Full Text: BppF ¥ Buy this A undo column fill table

Authors:  Bilge Mutly  Carmagie Mallon Univarsity, Pitsburgh, PA, USA cameet

Toshivuki Shiwa ATR, Kyoto, Japan Footing in human-robet con

Takavuki Kanda ATR. Kyoto, Japan
Hiroshi Ishiguro Osaka University, Osaka, Japan Nonverbal leskage n obots:
Norihiro Hagita

R _— 2. selected item fills in
e ‘" first column.

Proceeding

Gl Py «G‘“”‘”‘ 3. Selected item fills in first cell
B  Of second column. Mixer adds

Feedbag b DIGITAL i
ACM&LIERARY coauthors in subsequent cells.

curng con FoOING N how robots.
capacity)1 CUeS
its conver eyl Text:  Wpor

‘undo column

three coné | authors: ‘Carmegie Mallon Univasiy, Pisbursh, PA, USA = o suthor affation
nder Toshivuki Shina ATR, Koto, Japas Footing i humen-robot cor Comegie Melon Univrsy,

Takavuki Kanda ATR, Koto, Jspan

Hiroshi IShiguro  Osaic Univarsiy, Osak, Japan

Norhiro Hagita

AT, Kyoto, Japan

Done ATR, Kyoto,Japan

ATR, Kyote

4. Select “fill table” button
to execute Mixer program. i

TSBN: 978-1-60558-404-1  or>

@ Bigem. profie page - Mol Frefox = s |

oot e £ e O Gooimat Toc e
» C 4AY & ntp/portal.acm.org/author_g A - & - p

Abstact | 4 6 ige Mtk - AcM author prfi page | e =
o] acm i PIGITAL s
i comerd ACM
e LIBRARY Insrucions
E— 1 and *Copy to Mixer the workspace
tres condl - _

Dene —
[oene JleunText: oo ¢ouy tis aticte Eponing e

Authors: Carnagie Mallon Univarsty, Bitsburah, A, USA
e il table
Takavuki Kanda ATR. Kyeto, Japan cancel

Hiroshi Ishiquro osaka Universy, Osaka, Jspan
Norhiro Hagita  ATR, Kysto, Jspan

Takayuki Kanda ATR, Kyoto,Japan
Published in: Hiroshilshiguro Osaka University, Osaka, Jap

Noriro Hagita

5. Select “export sheet” button
to export data to a spreadsheet —
program. '

s | Bilge Mutis

Osaka University, Osaka, Jap

ATR, Kyeto, Japan
beiract | putiors ] [[Raberences | [.Crmd byl [moex Terme | [[Puttcation Designing gaze behavior for [ Jodi Fo Camegie Mellon Universty

During conversations, speakers establish their and others' participant roles (wh Jessca Hodgins Camegie Mellon Universty
capacity)--or “footing" as termed by Goffman-using gaze cues. In this paper, v
its conversational partners using these cues. We designed a set of gaze behav.
addressee, bystander, and overhearer, We evaluated our design in a controlied
three conditions, the robot signaled to two subjects, only by means of gaze, ti
bystander, or (3) an addressee and an overhearer. Behavioral measures showe ~

Bilge Mutiu Camegie Mellon University

The design of gaze behavior | Bige Mutlu Comegie Mell

Done

Figure 1: A user interacting with Mixer to extract the coauthors of a researcher
based on the researcher’s papers on the ACM Digital Library

Design

At a high-level, interaction with Mixer requires the user to construct the first row of a
table, and in doing so, the user demonstrates to the agent what information they want



and where this information can be found. When this row is complete, the user releases
the agent to follow the pattern until the retrieval is complete. If the user desires a
subset of this information, they can export the resulting table to a spreadsheet and use
the spreadsheet to make the subset they desire selectable. Below we detail an
example, depicted in Figure 1, of how the interaction works. In the example, the user
looks up the names and affiliations of the coauthors of a particular researcher using an
online interface which allows accessing this information for one publication at a time.

Users begin using Mixer by navigating their browser to the first page they wish to
retrieve information from (referred to as the target page). In this example the page
contains a listing of the publications of the researcher, with a brief description of each
publication and a link to a detailed record of the publication. Once there, the user
clicks on the Mixer button appearing within the browser’s chrome. This click causes
two actions. First, the Mixer workspace (referred to as workspace) appears in a frame
to the right of the target page. Second, Mixer augments the target page, highlighting
any element the agent can accept as an input in orange.

To add an element to the workspace, the user right-clicks the element and selects
"Copy to Mixer" in a context menu. In response, Mixer constructs a new column in
the workspace, gives it a heading, fills in the first row with the element the user
selected, and fills in the remaining rows with all elements that match the user’s
selection (Figure 1A). In this case the user selects the title of the first publication on
the list and the agent adds the title "paper title", adds the user-selected publication,
and adds all of the remaining publications to the column. The cell at the top of the
filled-in column has a white background, indicating a human selection while the cells
below have an orange background, indicating that the agent selected these elements.
In this example, the user only needs the publication title from the first page; however,
if the user required additional elements from this page, right-clicking and selecting
"Copy to Mixer" would cause the agent to create additional columns. Earlier Mixer
interface designs allowed users to simply copy and paste elements from the target
page to the workspace. However, we observed that people had trouble understanding
what was "legally" selectable since they could never see the underlying data scheme.
In addition, they had trouble copying and pasting text that appeared as a link. In the
current design, the highlighted elements on the target page are intended to clarify
what can be selected and the right-click action allows users to add an element that is a
link, without navigating away from the target page.

In our previously reported evaluation of the Mixer interaction design, we noted that
some participants struggled to create an effective table. Using the example of the
publications, many would copy and paste the first publication title into the top of the
first column and then they would copy and paste the second title on the list to the top
of the second column. To prevent users from making this mistake, Mixer
automatically fills in the first column as soon as the first element is selected.

Now that the user has a column with all of the publication titles, the user next
needs to demonstrate that they also want authors to go with each publication. To
advance the task, the user navigates through the publication link causing the target
page to change from the publication listing to the publication detail page.

Mixer detects that the user’s action depends on the contents of a cell in the
workspace, i.e. the link corresponds to the first publication. Accordingly, Mixer
begins an implicit loop over all publications in the column. An additional wrinkle



which does not appear in the demonstrated task, is when a user must type input from
the workspace into a query form on a separate page. In such cases, Mixer prevents
direct typing because the agent needs to be shown an explicit connection between the
contents of a cell in the workspace and the input to a query. When a cell’s contents
are copied to the clipboard and then pasted into a form’s widget, Mixer is able to
deduce the connection. When the cell’s contents are simply typed into the widget,
however, Mixer cannot be certain that the query input in fact comes from the
workspace entry rather than from elsewhere in the page; to avoid this problem, Mixer
issues a warning to the user when directly typing into a query form. In a more
extreme case, the administrator might modify the contents (e.g. stripping off the first
name and using only the last name), making the matching of the contents to the
workspace quite difficult. This tension between re-using a variable by value and by
reference has a long history in PBD, see e.g. the discussion of distinguishing
constants from variables in Myers [26].

Mixer augments the publication detail page: selectable elements are highlighted in
orange. These elements include the publication’s authors’ names, as well as the venue
where the publication appeared (Figure 1B). The user right-clicks the author’s name
and selects "Add to Mixer." In response, Mixer creates a new column, adds the title
"author name", fills in the first row with the selected author name, fills in subsequent
cells with additional coauthor names available from the current page, and fills in the
remaining rows with a dashed line, indicating that the agent thinks the user wants this
information for subsequent publications. Similarly, the user adds “author affiliation”
information to the table from the same page.

To release the agent to complete the table, the administrator clicks the "Fill Table"
button to the right of the last column. In response, Mixer infers and executes a
program. In this example the program contains a loop over all publications in the
publication listing. Mixer iterates over each publication, one by one. For each
publication, Mixer navigates through the link using exactly the same action sequence
which the administrator demonstrated, modified only to correspond to the present
publication. As each detail page is visited and its result integrated, the browser view
shows exactly what is happening, giving the administrator confidence that the result is
the same as if the task were performed manually. When the table is complete, Mixer
plays a chime, letting the user know the agent is finished (Figure 1C).

Administrators frequently want to collect information about a subset of items that
meet some criterion, for example the students who were currently failing a particular
course. Since administrators are familiar with spreadsheets, we postulated that they
would be able to conceptualize the filtering task as composed of the subtasks of
retrieving the desired information about the whole group, then sorting on the selection
attribute and cutting out all nonqualifying rows. This functionality is present and
familiar in modern spreadsheets, so Mixer does not re-implement it, but rather expects
the user to use a separate spreadsheet tool (our experiments used Google Docs).

Our previous simulation of the Mixer interface illuminated the way for the present
implementation; however, as noted by Sundstrom et al [32], the Wizard-of-Oz
methodology only allowed a certain level of familiarity with the algorithmic material.
The actual implementation explored some new design potential and constraints. One
notable example is that the implementation must take into consideration the time
taken for the actual retrieval, balancing the time consumed by the network latency



inherent in retrieving information from the web with the user's valuable time and
attention. The implemented system, unlike the Wizard-of-Oz mockup, does not begin
with access to the retrieved data. Instead the user must wait while Mixer replays the
demonstrated actions necessary for retrieval. The present design replays the actions in
front of the user's eyes; this furthers communication between the user and the agent in
that the user understands what is happening and why it is taking time.

Relatedly, the present design fills in as much of the table as it can as soon as the
user selects a piece of data for inclusion. This refinement allows Mixer to
communicate more effectively its understanding of the table as the table is
constructed. We thereby lessen some of the issues participants encountered with our
previous design, as to how to construct the table.

Additionally, constructing the table as soon as data is available allows more
efficient use of the user's time. Specifically, in the previous design users engaged a
tool we called the "resolver" to help specify if they wanted a single element, a subset
of element, or all elements within a column. In an actually executing system,
however, this means the user must make resolver decisions periodically throughout
the retrieval process, with lags of unknown length between decisions. In addition, in
designing the resolver tool we struggled to find a way for users to precisely specify
what they specifically wanted that did not feel like programming. The current design
takes a different tack. It drives users to collect a complete set of data, and then allows
them to export the table they have made to a spreadsheet, where they can use the
familiar tools of spreadsheets to sort and perform calculations. This design choice
gains significant ease of use at the cost of making precision more laborious.

Two other changes from the previous design bear mention. First, whereas the
previous design presented the user with the target page and invited her to select any
page element, the current design instead pre-highlights the selectable elements on the
page. This clearly communicates to the user which actions Mixer will understand, but
decreases the ability of a user to apply Mixer to novel pages. Second, we constrain the
user to copy and paste data from the workspace into a query page, rather than typing.

Wrappers

Mixer augments the target page with orange highlights to indicate selectable
elements. The agent performs this augmentation by applying a wrapper to the page. A
wrapper is a small piece of code that identifies the types and location of data within
the page. Each time a new web page is visited, Mixer consults a database of wrappers,
selects the most appropriate wrapper for the page, and applies the wrapper to the
page. Based on the application of the wrapper to the page, Mixer highlights the
wrapped data on the page, as shown in Figure 1, and adds the appropriate user
interaction bindings. The use of wrappers represents a departure from the previous
Mixer interface. The wrapper directly encodes the hierarchical relationship among the
potential columns, allowing the agent to automatically fill in the first column as soon
as the first element has been selected.

An obvious bottleneck for the applicability of Mixer is the coverage of its database
of wrappers, raising the question of how this database would be populated. The
present work makes the simplifying assumption that the database is pre-populated



with all necessary wrappers. For real world usage, several possibilities exist. First, IT
shops who are interested in offering Mixer capability to their customers might code
wrappers for their internal websites and distribute a version of Mixer with access to
those wrappers. Alternately, a crowd of third-party developers might contribute
wrappers for web pages to an internet-wide repository for use internet-wide, as is
done with public GreaseMonkey [6] or CoScripter [20] scripts. An extension of this
approach is to deploy tools (e.g. Mash Maker [13] or reform [35]) enabling end users
to participate in this crowd-sourcing construction of the wrapper repository. Mash
Maker [13] maintains exactly such a repository of wrappers contributed by end users.
The Accessibilities Commons [17] maintains a similar database of web accessibility
enhancements, designed to crowd-source a solution to the accessibility problem.

More formally, a wrapper overlays a relation, i.e. a list of one or more tuples, over
the page. The wrapper specifies the type of the tuple as an unordered list of text fields
and subrelations (with tuples specified in the same way'). Each tuple and "leaf" field
is located with an XPath expression [7], interpreted relative to its parent tuples; thus
the addressing is similar to that in the Accessibilities Commons [17]. To minimally
overcome the limitations of identifying fields with DOM elements (see e.g.
Dontcheva et al [12]), fields may optionally refer to a regular expression matching
some of the tokens within the chosen element. Thus the Mixer wrapper formalism is
sufficiently expressive to wrap pages with a uniformly repeating tuple-type where
tuples and fields are contiguous within DOM elements. Partly as a tradeoff for this
expressivity, Mixer wrappers are nontrivial to specify; thus the sheer number of
wrappers required for widespread Mixer usage seems to present a more limiting
bottleneck than the limitations of the expressivity of the wrapper formalism.

Mixer Program Induction

Generally, program induction is the task of constructing a program based on a small
number of example executions of the program. Mixer performs program induction by
observing the browser actions as the user performs the demonstration, and forming a
program which will be executed when the user asks to complete the table.

In order to reduce the prohibitively large search space [19] of programs consistent
with the demonstration, Mixer leverages relatively strong assumptions about the
Mixer domain to decompose the induction problem into several smaller sub-
problems?. The assumptions about the domain are:

* Universality: All loops are repeated over all instances in their scope

* Quantification: All loops are scoped over the values in a workspace column

¢ Task Focus: Only actions which change the workspace can affect the program

The learning mechanism records all browser actions in a log of actions. The log
contains the user’s actions without modification or generalization of any kind. Parallel
to the log, Mixer constructs the program, which represents the best guess about the
repeatable procedure whose output the user desires. The instruction set contained in

! The allowance for subrelations expands the expressivity of Mixer wrappers to nested tables,
also known as non-first normal form relations (see e.g. [38])
2 This decomposition was chosen to be amenable to Machine Learning classification.



the program are the same as the browser actions contained in the log, with the
addition of parameterized versions of each action as well as a looping foreach
structure. Additionally, a program begins with a preamble which loads the starting
page where the replayed browsing actions will commence.

The learning mechanism appends each observed browser action to an accumulated
list of steps. The first sub-problem is to classify a given sequence of steps as to
whether it forms a complete unit of action, which should affect the program in some
way. The Mixer implementation presented here uses a simple heuristic, considering
only step sequences terminated by a step inserting new content into the workspace.

Given that a unit does affect the program, Mixer next decides how it does so. The
sequence of steps in the unit is decomposed into the transition, the query, and the
selection. The query determines how data from previous columns drives widgets to
perform the web lookup, and the selection selects information to be inserted into the
workspace; the transition contains any preparatory steps which are not data-
dependent®. The steps in the transition are simply appended to the program at the
current insertion point, and afterward a new loop is appended, quantified over the
entity type used by the query. The steps of the query are parameterized to depend on
data from columns in the workspace, then appended inside the new loop. Finally, the
insertion point is advanced to the current end of the loop. The current implementation
of Mixer makes no effort to track previous positions of the insertion point; as a
consequence the “undo” operation only functions back to the insertion point. Beyond
the insertion point, the user cannot effect any changes to the underlying program, so
in case of error must restart the session.

The selection is converted into a single atomic command for extracting all content
from the visited page. While inserting new content into the workspace always appears
to the user to change the workspace, only the first piece of data taken from a visited
page actually affects the underlying program. The workspace, meanwhile, contains all
the data from the page but only displays the pieces the user has demonstrated so far.
Upon demonstration of the addition of subsequent pieces of information to the
workspace, the program is unchanged; only the visibility flag for the affected column
is toggled. This low-level distinction is made invisible to the user.

Evaluation

We recruited administrators to perform a user study aimed at substantiating the
following hypotheses:
e HI: Mixer’s table-based workspace interface provides an effective method of
communication between the human and the agent for data integration tasks:
* Administrators can conceive of and express information demands through
designing and demonstrating the form of the information in the workspace.

3 The transition would contain interactions with widgets of a form which are universal to the
tuple, but not to any particular value of a field. For example, checking a checkbox choosing to
search for people rather than, say, departments, would be included in the transition; the query
would continue by specifying which person to search for.



* Administrators can make sense of, and work with, information retrieved in
collaboration with an agent and presented in the workspace.

¢ H2: Administrators will recognize the benefit of automated data integration and

would be interested in using this interface for their work.

In order to test these hypotheses we culled administrative tasks from the
suggestions of participants in our previous Wizard-of-Oz study of the Mixer
interface [39]. To accommodate privacy concerns, we shifted the tasks to different
real-world domains, where we selected isomorphic tasks which pilot participants
demonstrated could realistically complete within a 90 minute experiment. Because
Mixer is not intended as a walk-up-and-use system, participants were provided with a
grounding introductory spiel and an experimenter-directed training task. After the
completion of those tasks, the participants were asked to think-aloud while
completing the remaining experimental tasks. The experimenter provided no
assistance to the participants during the completion of the tasks.

We recruited N=12 administrator volunteers for an experimental session lasting
about 90 minutes. They were paid $15/hour for their time. Volunteers were asked if
they had experience with programming, and those who did were disqualified from
participation. We began by introducing the tool and acquainting the users with its
goals and concepts. The experimenter then introduced participants to the concept of
the thinkaloud experimental setup.

Next users completed a preliminary survey detailing their background level of
computer usage and expertise. To ensure that users understood the task we asked
them to take three minutes to complete as much of a task as they could manually,
specifically by copying and pasting directly from the Association for Computing
Machinery (ACM) website into a spreadsheet.

Then, to illustrate the use of the system, the participant performed a representative
Mixer task with minute direction from the experimenter. The training task was:

¢ Task 0: Find all researchers from Institution X who published in the latest

conference of Conference Z

Then, one by one, we asked them to respond to messages in a pre-loaded email
account. Each message contained a request from a contrived boss for the completion
of an experimental task; users indicated completion of the task by replying to the
email with their best attempt at the answer. During the completion of the tasks, the
participants’ actions and audio were recorded using Camtasia for later analysis.

¢ Task 1: Find all researchers from Institution Y who published in the latest

conference of Conference W

¢ Task 2: Find all coauthors of Researcher R in the last three years

¢ Task 3: Find email addresses for all members of Club C

¢ Task 4: Find all coauthors of Researcher S in the last three years

The tasks were mostly from the ACM domain in order to minimize the amount of
domain knowledge presupposed or learned in-experiment on the part of the
participant. Task 1 was chosen as an isomorph of the demonstration task to cement
the participant’s understanding of the process of extracting a subset, then using
spreadsheet functionality to select the appropriate subset. Task 2 has the same form,
but the web interactions are novel, sometimes changing which pieces of information
require a new server response. Task 4 is a repeat of Task 2 with different parameters,
but introduces a minor complicated factor that Researcher S’s first paper is published



alone (i.e. the only coauthor is the first author). Task 3 is completely novel in the
sense that the output of one website is used as the input of another. Participants were
not instructed how to use Mixer to combine data from multiple websites, nor were
they alerted that Task 3 had any characteristic different from the rest.

Additionally, Tasks 2 and 4 had two different solution paths. The ACM listing of
an author’s publications lists all publications with links to pages about the individual
papers; alongside the link is a listing of metadata about the paper including authors
and publication date. Thus the problem may be solved within a single page, since all
needed information is present in the page. Alternately, the problem can be solved by
extracting the required metadata from each publication’s page in turn.

Following completion of the tasks, participants answered a post-study
questionnaire containing the TAM3 [37] (Technology Acceptance Model 3)
instrument. TAM3 measures a new technology’s perceived usefulness and perceived
ease of use. Previous research shows a strong relationship between these two
perceptions and eventual system use. TAM3 responses were made on a 7-point Likert
scale (1 = "extremely unlikely to use," 4 = "neither," 7 = "extremely likely to use").

Findings

After the participant had correctly communicated the desired behavior to Mixer,
Mixer turned control back over with a filled table of data. In 42 (about 88%) of the
tasks the participant was able to correctly filter the data and direct the completed form
to the experiment’s simulated boss. In one case, a participant was unable to do so for
Task 1 and gave up; that same participant was able to correctly marshal the data in the
subsequent tasks. In four cases, participants needed one or two more attempts to
effect the correct answer. In one case, a participant needed five attempts.

Our 12 participants successfully completed all tasks. They eventually constructed
all of the necessary tables with the agent’s help. Because the experiment required the
participants to thinkaloud as they worked, the amount of time participants took to
accomplish the task is not meaningful; instead, we record the number of attempts they
made before they were able to productively turn control over to Mixer. We counted
an attempt every time the participant started over with a fresh workspace during the
completion of a task. All participants’ number of attempts are presented in Figure 2.

Participants exhibited some difficulty constructing a workspace table containing all
of the information required to complete the task. 17 task attempts failed due to
missing query attributes, for example by failing to include students’ names when only
email addresses were strictly required. Two participants successfully extracted a
spreadsheet, only to find that missing selection attributes precluded them from sorting
and filtering down to the correct answer. They immediately re-demonstrated the
correct workspace without error.

Two participants constructed a table without an attribute explicitly requested, then
corrected their oversight. Of the overlooked attributes of all categories, only one
instance occurred in the final task. Several participants appeared to struggle with
Mixer’s expectation that the user would only provide information in the first row,



leaving Mixer in charge of filling subsequent rows. Three participants, all in Task 3,
tried to continue filling subsequent rows before clicking on “Fill Table.”

Two participants, again in Task 3, attempted to search multiple email addresses at
once by pasting all the names, separated by spaces, into the search box; in response,
the directory application returned no results and the participants started over. One
participant attempted to explicitly select a column of attributes from the target page.

Another common breakdown occurred with respect to participants’ decision to
invoke the program by pressing the “Fill Table” button. One participant chose to
restart Task 1 after exporting a table with unfilled cells, i.e. failing to invoke the
program at all. Four participants discovered a solution to Task 2 that did not require
the use of the “Fill Table” button to complete the task. They then expressed confusion
that the “Fill Table” button was inactive. Two of the confused participants
precipitously restarted after encountering the confusion. All four participants used the
same approach on Task 4 and did not hesitate to complete the task without using the
“Fill Table” button. Three additional users discovered this approach while completing
Task 4. Each expressed confusion that the invocation button had no effect, but all
pressed onward and successfully completed the task.

Eight participants encountered the dialog box warning against typing in a query
field. One successfully circumvented the dialog, typing in the information and thereby
causing the task attempt to fail. One user attempted to select data not recognized by
the wrapper and send it to Mixer.

Figure 3 shows participants’ responses to the TAM instrument. The Cronbach
alpha scores, all above 0.8, indicate that the scores are internally reliable, in the sense
that answers to multiple questions seem to measure the same underlying construct.

Many users expressed pleasant surprise at the capabilities of Mixer, using
adjectives like “cool”, “awesome”, and “brilliant.” One user said “I want this
program. Even if it can’t find everybody” and another asked “When can I get this?”
All of these laudatory quotes came immediately after the user was able to successfully
complete Task 3. Two users praised the visibility of Mixer’s practice of showing each
visited page as the table is filled. Two participants expressed displeasure at the use of
Google Docs for the spreadsheet export; they claimed to be more proficient with
Microsoft Excel. During the closing interview, several participants inquired when
Mixer would be available to them for their jobs.

Task |  Task2  Task3  Task 4 ENJ OUT PU PEOU BI

Figure 2. Number of attempts to construct Figure 3. Participants’ ratings of Mixer
the correct workspace along TAM constructs



Discussion

Administrators could successfully use Mixer to automate tedious information retrieval
tasks. They were successful at creating the first row of a table as a way of
communicating to an agent the information they wanted. At first, many administrators
struggled to complete a task. Sometimes this was caused by software bugs in Mixer,
and sometimes it was caused by participants struggling to conceive of tables the agent
could act upon. The agent often needs more context (additional columns) to complete
an action than the administrator strictly needs to complete their task. Administrators
struggled with including this context, indicating that, initially, they had trouble seeing
the problem from the agent’s perspective. However, the reduction in the number of
attempts needed to successfully complete a task from the first task to the fourth task
(Figure 2) provides some evidence that administrators can quickly learn to conceive
of the tables in a way that allows the agent to assist them with their task.

Mixer supports two types of tasks: repeated retrieval from within a single data
source, and retrieval from across more than one data source. We expected that
working with more than one data source would be more difficult, but we did not see
evidence for this. A comparison of the number of attempts made on Task 3, which
required participants to connect two data sources, to the other three tasks that all use a
single data source (Figure 2) does not indicate that participants found the multiple
data-source task more difficult. In addition, we see nothing in the utterances during
the thinkaloud to indicate that participants made any kind of distinction between these
tasks. Though administrators struggled with the fact that Mixer requires copying and
pasting into forms instead of typing, they did not seem to find demonstrating a link
between data sources challenging. This finding is especially interesting in the light
that, as indicated above, participants were not supplied with any hints to how to effect
a link between multiple data sources.

The use of wrappers to augment the target page with a highlight indicating a
legally selectable element provides a design advance. The highlights were intended to
help users understand the limitations of the agent’s communication ability and to help
negotiate the problem space between human and agent. In our previous iterations of
the interface, we allowed users to copy and paste from the target page directly into the
workspace table, and this often lead to breakdowns. Participants seemed to have no
trouble understanding how to use these highlights and never expressed any utterances
or opinions that this limited their ability to use Mixer to automate their work. We
think this technique could be used in many other mixed-initiative interfaces, where
users struggle to understand the scope of what the agent can do.

Mixer’s interaction design specifically avoids the challenge of precise
specification: the need to communicate that the user wants only a subset from within a
larger set of data. Instead, the agent retrieves the larger set and encourages users to
use a spreadsheet to filter down to the precise information. The fact that participants
were able to correctly do so using a spreadsheet corroborates the notion that end users
can conceive of the task as a nested table, and furthermore that the unnesting of the
table into a spreadsheet table is an intuitive concept for administrators.

TAM produced very high ratings for Mixer for Perceived Ease of Use, Perceived
Usefulness, and Behavioral Intention (to use). Scores of 6 or above on a seven-point



scale give us confidence that administrators recognize the value of automating their
tedious information retrieval tasks and that they would likely use Mixer in their work.
Additionally, users gave a high TAM score to the quality of Mixer’s output. This may
be due in part to Mixer showing exactly which pages contributed to the result as it
filled in the table. Several participants singled out this aspect independently for praise.

Mixer’s interaction design specifically deemphasizes and to a certain extent even
hides the fact that users are engaged in a programming task when they construct the
first row of the table. This is a radical departure from most work in the web PBD
community. We speculate that systems that similarly deemphasize the programming
aspect of the task will generally be more likely to succeed with nonprogrammers.
Much more work would need to be done to rigorously evaluate this speculation,
though the fact that administrators with no programming experience could
successfully use Mixer and their high TAM scores reflect positively, as does the fact
that nonprogrammers have struggled with other PBD systems. In the same vein, more
work would need to be done to show that the administrators’ resistance to
programming stems from the sense that the work is perceived to fall outside the scope
of what their job should be. We can suggest that this is a rich direction for further
research on PBD interfaces.

In terms of PBD, Mixer embraces the notion that administrators would be
disinclined to use a tool that feels like programming. The most obvious Mixer design
decision in this line is that the user does not see the program as lines of code, nor as
an equivalent data-flow representation of the procedure. A more subtle example is the
way Mixer enforces copying and pasting as, from the user’s perspective, an arbitrary
constraint, rather than asking the user to understand the programming concept of
using a variable as opposed to its value. Consequently, in terms of PBD systems,
Mixer is near one extreme of the spectrum, ranging from those that expect the user to
construct an explicit model of the program as a sequence of low-level actions, to
those that do not. The success of our participants in using Mixer, as well as their
recognition of its relevance and applicability to their jobs, seems to lend credence to
this notion: the less end users feel like they are engaging in “programming” while
using a PBD system, the less likely they seem to be to eschew the system as unrelated
to their realm of responsibility.

Related Work

Nardi [27] notes the widespread use of sophisticated forms in human-human
interaction, and the surprising facility of nontechnical people in rapidly learning and
making use of them. She also observes that users can more readily assimilate new
formal representations when they have a preexisting interest or job-related
requirement to do so. Rode et al [31] note the same phenomenon. They note the
similarity between ovens and VCRs in terms of programming. Abstractly, both
devices allow users to instruct a device to turn on at a specified time and run for a
specified duration, and to set the state of a specific feature: the channel of the VCR
and the temperature of the oven. Surprisingly, despite the indistinguishability of the
tasks at the abstract level, they found a pronounced gender difference in users’



abilities to perform the tasks. Women, who generally exert more control over the
kitchen, had more success programming ovens, and conversely, men, who generally
exert more control over entertainment devices in the home, had more success
programming VCRs. These research results lead us to speculate that one reason office
workers have not readily accepted PBD systems is that they cast the task as
"programming": a type of work that generally falls outside the common social role
description for an administrator. Mixer addresses this by specifically disguising the
fact that the administrator is programming when interacting with the tool.

Malone et al note the potential of semi-structured forms as a means of expressing
human practice and intention in a manner that is amenable to agent assistance [23].
Their work focuses on structuring email conversations so that agents can assist in the
coordination of human activities, essentially providing a mechanism for the agent to
eavesdrop on the human communication. VIO [40] complements Malone by
providing the reverse: a form mechanism whereby users are given insight into the
actions of the agent, and hence the opportunity to identify and repair agent errors.

Nardi and Miller [28] build on the work of Lewis and Olson [21] in singling out
spreadsheets, which can be viewed as frameworks for the creation of ad hoc forms, as
an emblematic context where people routinely "program", in the sense that they
induce nontrivial computational behavior. Nardi and Miller delineate several specific
aspects of spreadsheets which render them particularly acceptable to end user
interviewees. First, the computational paradigm of spreadsheets matches the way the
end user conceptualizes the task; Norman [29] characterizes this alignment as
bridging the "Gulf of Execution" between the user's conceptualization of the goal and
the system's formalism. In particular, the high-level functions provided by the
spreadsheet shield the user from the difficult task of "synthesizing" the desired
functionality from simpler primitives. Secondly, spreadsheets compactly represent the
entire task in a single tabular view, often on a single screen.

Our previous Wizard-of-Oz study of Mixer demonstrated that these advantages of
spreadsheets apply to administrators approaching data integration tasks, specifically
pointing out the conceptual alignment between user and agent as well as the unified
nature of the shared table representation. Several other systems settle on a similar
tabular interface between the user and an observing PBD web data integration agent.
Vegemite [22] asks the user to create a set of "VegeTables," each of which
corresponds to a script for combining two websites. Karma [36], Dontcheva et al [11]
and Mashroom [38] build separate tables for each extracted website; additionally,
Mashroom explicitly uses nested tables (specifically with an eye towards
comprehensibility by end users). Each of these systems asks the user to explicitly
"merge" extractions from different websites into a coherent table. In contrast, Mixer
encourages the user to construct the single, unified table that seems to match her
underlying conceptualization of the task. This spares the user the confusion inherent
in synthesizing, or merging, the results of the various subtasks together. As a
consequence, Mixer enables users to construct integration tasks over one website, or
over several websites, without necessarily observing the distinction.

Mixed-initiative research focuses on advancing methods for collaboration between
computer agents and people where each party has its own knowledge, ways of
reasoning, and abilities to understand and act in order to advance toward a common



goal [1, 14]. Many issues remain to be answered, including several interrelated needs
with respect to interaction between agent assistants and people [33]:

¢ Awareness: knowledge of problem and goal must be shared by human and agent

¢ Task: roles and responsibilities must be shared between human and agent

¢ Communication: both human and agent must be able to express knowledge and

needs.

PBD interfaces present a particular challenge with respect to the awareness issue:
the user and the system have a fundamental mismatch with respect to the goal of the
interaction. The central goal of a PBD system is to infer a program from the user’s
actions; for the user the construction of the program is subsidiary, at best, to the goal
of completing some task. As noted above, Rode et al [31] observe that users are far
less successful in performing programming tasks outside their perceived area of
responsibility. Consequently, Mixer explicitly attempts to avoid presenting the user
with tasks that feel like programming.

The task issue concerns the division of action between humans and agents. The
principal actions of a PBD session [18] are program demonstration (or creation),
program invocation, and program execution. Mixer incrementally constructs a
program by observing all actions taken within the browser, from the time that the user
invokes Mixer to the time that the user presses a button to invoke the demonstrated
program. Mixer then executes the program. Thus Mixer presents a strong distinction
between user actions (before invocation) and system actions (after invocation). This
separation of activity is stricter in Mixer than in some PBD systems, such as
Eager [8], which assist the user in deciding when to invoke the observed behavior.

The communication issue arises in a couple of ways from what Cypher [9] calls the
classic challenges of PBD: (1) inferring the user’s intent; and (2) presenting the
created program to the user. The first challenge concerns the user communicating
with the system via the demonstrated actions, and the second challenge concerns the
system communicating the recorded action sequence to the user.

The first challenge arises because the user’s actions usually insufficiently delineate
a unique program, a point illustrated by Lau et al with an explicit version space
argument [19]. PLOW [2] receives richer input from the user by eliciting and utilizing
natural language explanations for the user’s actions. Wrangler [16] asks the user to
select after each action the statement in the implementation language corresponding
to the level of generalization required. Rather than eliciting additional input from the
user, Mixer overcomes the problem by exploiting rather strong simplifying
assumptions about the types of problems Mixer is expected to solve.

The user has the responsibility to demonstrate their knowledge of a single row of
the table, and Mixer assumes full responsibility for inferring the best possible
procedure from that demonstration. Although the user need not understand the
workings (or even the existence) of the program, the user does need to be aware that
the agent is observing; in other words, the user is expected to take an “intentional
stance” [10, 24] with respect to showing Mixer how to perform the desired task.
Mixer asks the user to intentionally demonstrate similar information to that detected
automatically by TX2 [4].

As to the second challenge, Modugno and Myers [25] further delineate the
communication role played by the program in PBD systems, as a list of opportunities
presented to the user:



1. the user can confirm that the program will behave as desired;

2. the user can correct or generalize the program; and

3. the user can store all or part of the program for later use or modification.

Mixer provides limited information about the inferred program through the
intermediate depiction of the workspace, giving the user implicit confirmation
responsibility as well as some ability to correct unexpected columns in the workspace.

Although many PBD systems outside the web context communicate the program in
forms other than as lines of code, the code approach is the most common in web PBD
systems. Chickenfoot [5] records web actions as general JavaScript. CoScripter [20]
chooses a slightly more user-friendly approach, representing the program in a
“sloppy” or natural programming language. Query-by-Example and Office-by-
Example [41] utilize a form as a shared communication structure, but require a user to
understand and specify programmatic variable structure within the forms. Mixer uses
a single nested table form as the principal communication medium between the
human and the agent, which diminishes the variety of programs Mixer can produce
but dramatically simplifies the user’s interaction with the system.

Over the last few years there has been a great amount of research interest in
streamlining the process of creating web mashups [3]. By focusing on ad hoc reports
rather than mashups (i.e. the output rather than the program), Mixer differs
philosophically from many mashup projects; in particular, Mixer aims to allow users
to conceptualize data integration problems uniformly, whether or not some pieces of
information lie across web server boundaries. Whereas mashup systems emphasize
reusability and generality, Mixer focuses on how administrators can retrieve and
integrate the types of data they need for their jobs.

Nevertheless, Mixer shares some overlap with mashup systems in that Mixer
presents a user-friendly solution to the source modeling and data integration
problems, with particular attention to the database joins. Thus, Mixer could coexist in
a mashup ecosystem with user-appropriate solutions to wrapper generation (e.g.
reform [35] or the summaries of Dontcheva et al [12]) or data cleaning (e.g. Potters
Wheel [30] or Potluck [15]). Mash Maker [13] provides a representative mashup
ecosystem, distinguishing between end user-specified wrappers and developer-
provided widgets, which combine and visualize the wrapped data. In this perspective,
Mixer presents a mechanism for nonprogrammers to create useful widgets without
developer intervention.

Conclusion

Mixer advances mixed-initiative PBD interaction through a novel user-constructed
nested table communication method that allows users to declare the outcome they
want while implicitly demonstrating how the agent should programmatically perform
the task. Mixer specifically allows administrators to automate repetitive web data
retrieval and integration tasks they find to be tedious to perform. Our evaluation of
the system shows specifying the table to be an effective method for people and the
agent to communicate their varying knowledge and needs. The evaluation also reveals
a strong likelihood that administrators would use Mixer if it were available to them.



The interaction presented in Mixer represents a transition in how office workers
engage in computing. Instead of forcing workers to rely on their ability to adapt to the
design of IT systems, Mixer empowers workers to leverage their expertise in web data
retrieval to train agents to undertake tedious information integration tasks for them.

This work is supported by grant number H133E080019 from the United States
Department of Education through the National Institute on Disability and
Rehabilitation Research.

References

1. Mixed-Initiative Interaction. In: IEEE Intelligent Systems, vol. 14, pp. 14-23, 1999.

2. Allen, J., Chambers, N., Ferguson, G., Galescu, L., Jung, H., and Taysom, W.: PLOW: A
Collaborative Task Learning Agent. In: AAAI, 2007, pp. 22-26.

3. Beemer, B., and Gregg, D.: Mashups: A Literature Review and Classification Framework.
In: Future Internet, vol. 1, no. 1, pp. 59-87, 2009.

4. Bigham, J. P., Kaminsky, R. S., and Nichols, J.: Mining web interactions to automatically

create mash-ups. In: UIST, 2009, pp. 203-212.

. Bolin, M., “End-User Programming for the Web,” Masters Thesis, MIT, 2005.

. Boodman, A. "Greasemonkey," http://www .greasespot.net/.

. Clark, J., and DeRose, S., XML Path Language (XPath) Version 1.0, W3C, 1999.

. Cypher, A.: Eager: Programming Repetitive Tasks by Demonstration. In: Watch what I do:

programming by demonstration, MIT Press, 1993, pp. 205-217.

9. Cypher, A.: End User Programming on the Web. In: No Code Required: Giving Users Tools
to Transform the Web, Morgan Kaufmann, 2010, pp. 3-22.

10.Dennett, D. C., The Intentional Stance, Cambridge, MA: The MIT Press, 1987.

11.Dontcheva, M., Drucker, S. M., Salesin, D., and Cohen, M. F.: Relations, cards, and search
templates: user-guided web data integration and layout. In: UIST, 2007, pp. 61-70.

12.Dontcheva, M., Drucker, S. M., Wade, G., Salesin, D., and Cohen, M. F.: Summarizing
personal web browsing sessions. In: UIST, 2006, pp. 115-124.

13.Ennals, R., Brewer, E., Garofalakis, M., Shadle, M., and Gandhi, P.: Intel Mash Maker: join
the web. In: SIGMOD Rec., vol. 36, no. 4, pp. 27-33,2007.

14.Horvitz, E.: Reflections on Challenges and Promises of Mixed-Initiative Interaction. In: Al
Magazine, vol. 28, no. 2,2007.

15.Huynh, D., Miller, R., and Karger, D.: Potluck: Data Mash-Up Tool for Casual Users. In:
The Semantic Web, Springer Berlin / Heidelberg, 2007, pp. 239-252.

16.Kandel, S., Paepcke, A., Hellerstein, J., and Heer, J.: Wrangler: Interactive Visual
Specification of Data Transformation Scripts. In: CHI, 2011.

17.Kawanaka, S., Borodin, Y., Bigham, J. P., Lunn, D., Takagi, H., and Asakawa, C.:
Accessibility commons: a metadata infrastructure for web accessibility. In: Assets, 2008,
pp- 153-160.

18.Kosbie, D. S., and Myers, B. A.: PBD Invocation Techniques: A Review and Proposal. In:
Watch what I do: programming by demonstration, MIT Press, 1993, pp. 415-422.

19.Lau, T., Wolfman, S. A., Domingos, P., and Weld, D. S.: Programming by Demonstration
Using Version Space Algebra. In: Mach. Learn., vol. 53, no. 1-2, pp. 111-156, 2003.

20.Leshed, G., Haber, E. M., Matthews, T., and Lau, T. A.: CoScripter: automating & sharing
how-to knowledge in the enterprise. In: CHI, 2008, pp. 1719-1728.

21.Lewis, C., and Olson, G.: Can principles of cognition lower the barriers to programming?
In: Empirical studies of programmers: second workshop, Ablex, 1987, pp. 248-263.

22.Lin, J., Wong, J., Nichols, J., Cypher, A., and Lau, T. A.: End-user programming of
mashups with vegemite. In: IUI, 2009, pp. 97-106.

[c IR e WV



23.Malone, T. W., Grant, K. R., Lai, K.-Y., Rao, R., and Rosenblitt, D.: Semistructured
Messages Are Surprisingly Useful for Computer-Supported Coordination. In: ACM Trans.
Inf. Syst., vol. 5,no0. 2, pp. 115-131, 1987.

24 Maulsby, D., and Witten, I. H.: Metamouse: An Instructible Agent for PBD. In: Watch what
I do: programming by demonstration, MIT Press, 1993, pp. 155-181.

25.Modugno, F., and Myers, B.: Graphical Representation and Feedback in a PBD System. In:
Watch what I do: programming by demonstration, MIT Press, 1993, pp. 415-422.

26.Myers, B. A.: Peridot: Creating User Interfaces by Demonstration. In: Watch what I do:
programming by demonstration, MIT Press, 1993, pp. 125-154.

27.Nardi, B. A., A small matter of programming: perspectives on end user computing: MIT
Press, 1993.

28.Nardi, B. A., and Miller, J. R., The Spreadsheet Interface: A Basis for End User
Programming, HP Laboratories, 1990.

29.Norman, D. A.: Cognitive Engineering. In: User centered system design: new perspectives
on human-computer interaction, Lawrence Erlbaum Associates, 1986, pp. 31-61.

30.Raman, V., and Hellerstein, J. M.: Potter's Wheel: An Interactive Data Cleaning System. In:
The VLDB Journal, 2001, pp. 381-390.

31.Rode, J. A., Toye, E. F., and Blackwell, A. F.: The fuzzy felt ethnography--understanding
the programming patterns of domestic appliances. In: Personal and Ubiquitous Computing,
vol. 8,no. 3, pp. 161-176,2004.

32.Sundstrom, P., Taylor, A. S., Grufberg, K., Wirstrom, N., Belenguer, J. S., and Lundén, M.:
Inspirational Bits: Towards a shared understanding of the digital material. In: CHI, 2011.

33.Tecuci, G., Boicu, M., and Cox, M.: Seven Aspects of Mixed-Initiative Reasoning: An
Introduction to this Special Issue on Mixed-Initiative Assistants. In: Al Magazine, vol. 28,
no. 2,2007.

34.Tomasic, A., Zimmerman, J., Hargraves, 1., and McMullen, R.: User Constructed Data
Integration via Mixed-Initiative Design. In: Interaction Challenges for Intelligent Assistants,
2007, pp. 122-123.

35.Toomim, M., Drucker, S. M., Dontcheva, M., Rahimi, A., Thomson, B., and Landay, J. A.:
Attaching UI enhancements to websites with end users. In: CHI, 2009, pp. 1859-1868.

36.Tuchinda, R., Szekely, P., and Knoblock, C. A.: Building Mashups by example. In: IUI,
2008, pp. 139-148.

37.Venkatesh, Viswanath, Bala, and Hillol: Technology Acceptance Model 3 and a Research
Agenda on Interventions. In: Decision Sciences, vol. 39, no. 2, pp. 273-315, May, 2008.

38.Wang, G., Yang, S., and Han, Y.: Mashroom: end-user mashup programming using nested
tables. In: WWW, 2009, pp. 861-870.

39.Zimmerman, J., Rivard, K., Hargraves, 1., Tomasic, A., and Mohnkern, K.: User-created
Forms as an Effective Method Of Human-agent Communication. In: CHI 2009, pp. 1869-
1878.

40.Zimmerman, J., Tomasic, A., Simmons, 1., Hargraves, I., Mohnkern, K., Cornwell, J., and
McGuire, R. M.: VIO: a mixed-initiative approach to learning and automating procedural
update tasks. In: CHI, 2007, pp. 1445-1454.

41.Zloof, M. M.: QBE/OBE: A Language for Office and Business Automation. In: IEEE
Computer, vol. 14, no. 5, pp. 13-22, 1981.



