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Scope and applicability of game theory

ÅStrategic multiagentinteractions occur in all fields

ïEconomics and business: bidding in auctions, offers in 

negotiations

ïPolitical science/law: fair division of resources, e.g., divorce 

settlements

ïBiology/medicine: robust diabetes management (robustness 

against ñadversarialò selection of parameters in MDP)

ïComputer science: theory, AI, PL, systems; national security 

(e.g., deploying officers to protect ports), cybersecurity (e.g., 

determining optimal thresholds against phishing attacks), 

internet phenomena (e.g., ad auctions)
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Game theory background

ÅPlayers

ÅActions (aka pure strategies)

ÅStrategy profile: e.g., (R,p)

ÅUtility function: e.g., u1(R,p) = -1, u2(R,p) = 1

rock paper scissors

Rock 0,0 -1, 1 1, -1

Paper 1,-1 0, 0 -1,1

Scissors -1,1 1,-1 0,0
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Zero-sum game

ÅSum of payoffs is zero at each strategy profile: 

e.g., u1(R,p) + u2(R,p) = 0

ÅModels purely adversarial settings

rock paper scissors

Rock 0,0 -1, 1 1, -1

Paper 1,-1 0, 0 -1,1

Scissors -1,1 1,-1 0,0
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Mixed strategies

ÅProbability distributions over pure strategies

ÅE.g., R with prob. 0.6, P with prob. 0.3, S with 

prob. 0.1
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Best response (aka nemesis)

ÅAny strategy that maximizes payoff against 

opponentôs strategy

ÅIf P2 plays (0.6, 0.3, 0.1) for r,p,s, then a best 

response for P1 is to play P with probability 1
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Nash equilibrium

ÅStrategy profile where all players 

simultaneously play a best response

ÅStandard solution concept in game theory

ïGuaranteed to always exist in finite games [Nash 

1950]

ÅIn Rock-Paper-Scissors, the unique equilibrium 

is for both players to select each pure strategy 

with probability 1/3 
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Minimax Theorem

ÅMinimax theorem: For every two-player zero-sum 

game, there exists a value v* and a mixed strategy 

profile ů* such that:

a. P1 guarantees a payoff of at least v* in the worst case by 

playing ů*1 

b. P2 guarantees a payoff of at least -v* in the worst case by 

playing ů*2 

Å v* (= v1) is the valueof the game 

Å All equilibrium strategies for player i guarantee at 

least vi in the worst case

Å For RPS, v* = 0



13

Exploitability

ÅExploitability of a strategy is difference 

between value of the game and performance 

against a best response

ïEvery equilibrium has zero exploitability

ÅAlways playing rock has exploitability 1

ïBest response is to play paper with probability 1
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Nash equilibria in two-player zero-

sum games

ÅZero exploitability ïñunbeatableò

ÅExchangeable

ïIf (a,b) and (c,d) are NE, then (a,d) and (c,b) are too

ÅCan be computed in polynomial time by a linear 

programming (LP) formulation
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Nash equilibria in multiplayer and 

non-zero-sum games
ÅNone of the two-player zero-sum results hold

ÅThere can exist multiple equilibria, each with different 

payoffs to the players

ÅIf one player follows one equilibrium while other 

players follow a different equilibrium, overall profile is 

not guaranteed to be an equilibrium

ÅIf one player plays an equilibrium, he could do worse if 

the opponents deviate from that equilibrium

ÅComputing an equilibrium is PPAD-hard
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Imperfect information

ÅIn many important games, there is information 

that is private to only some agents and not 

available to other agents

ïIn auctions, each bidder may know his own 

valuation and only know the distribution from which 

other agentsô valuations are drawn

ïIn poker, players may not know private cards held 

by other players
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Extensive-form representation
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Extensive-form games

ÅTwo-player zero-sum EFGs can be solved in 

polynomial time by linear programming

ïScales to games with up to 108 states

ÅIterative algorithms (CFR and EGT) have been 

developed for computing an Ů-equilibrium that scale to 

games with 1017 states

ïCFR also applies to multiplayer and general sum games, 

though no significant guarantees in those classes

ï(MC)CFR is self-play algorithm that samples actions down 

tree and updates regrets and average strategies stored at 

every information set 
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Standard paradigm for solving large 

imperfect-information games

Nash equilibriumNash equilibrium

Original game

Abstracted game

Automated abstraction

Custom 

equilibrium-finding 

algorithm

Reverse mapping
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Texas hold óempoker

ÅHuge game of imperfect information

ïMost studied imp-info game in AI community since 2006 

due to AAAI computer poker competition

ïMost attention on 2-player variants (2-player zero-sum)

ïMulti -billion dollar industry (not ñfrivolousò)

ÅLimit Texas hold óemïfixed betting size 

ï~1017 nodes in game tree

ÅNo Limit Texas hold óemïunlimited bet size

ï~10165 nodes in game tree

ïMost active domain in last several years

ïMost popular variant for humans
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No-limit Texas hold óempoker

ÅTwo players have stack and pay blinds (ante)

ÅEach player dealt two private cards

ÅRound of betting (preflop)

ïPlayers can fold, call, bet (any amount up to stack)

ÅThree public cards dealt (flop) and a second round of 

betting

ÅOne more public card and round of betting (turn)

ÅFinal card and round of betting (river)

ÅShowdown
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Game abstraction

ÅNecessary for solving large games

ï2-player no-limit Texas hold óemhas 10165 game states, 

while best solvers ñonlyò scale to games with 1017 states

ÅInformation abstraction: grouping information sets 

together

ÅAction abstraction: discretizing action space

ïE.g., limit bids to be multiples of $10 or $100
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Information abstraction
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Potential-aware abstraction with EMD
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Potential-aware abstraction with EMD

ÅEquity distributions on the turn. Each point is EHS for given 

turn card assuming uniform random river and opponent hand

ÅEMD is 4.519 (vs. 0.559 using comparable units to river EMD)
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Algorithm for potential -aware imperfect-

recall abstraction with EMD

ÅBottom-up pass of the information tree (assume an abstraction for 

final rounds has already been computed using arbitrary approach)

ÅFor each round n

ïLet mn+1
i denote mean of cluster i in An+1

ïFor each pair of round n+1 clusters (i,j ), compute distance dn
i,j

between mn+1
i and mn+1

j using dn+1

ïFor each point xn, create histogram over clusters from An+1

ïCompute abstraction An using EMD with dn
i,j as ground 

distance function

ÅDeveloped fast custom heuristic for approximating EMD in our 

multidimensional setting

ÅBest commercially-available algorithm was far too slow to compute 

abstractions in poker
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Standard paradigm for solving large 

extensive-form games

Nash equilibriumNash equilibrium

Original game

Abstracted game

Automated abstraction

Custom 

equilibrium-finding 

algorithm

Reverse mapping
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Hierarchical abstraction to enable 

distributed equilibrium computation
ÅOn distributed architectures and supercomputers with 

high inter-blade memory access latency, 

straightforward MCCFR parallelization approaches 

lead to impractically slow runtimes 

ïWhen a core does an update at an information set it needs to 

read and write memory with high latency

ïDifferent cores working on same information set may need to 

lock memory, wait for each other, possibly over-write each 

others' parallel work, and work on out-of-sync inputs

ÅOur approach solves the former problem and also helps 

mitigate the latter issue
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High-level approach

ÅTo obtain these benefits, our algorithm creates an 

information abstraction that allows us to assign disjoint 

components of the game tree to different blades so the 

trajectory of each sample only accesses information 

sets located on the same blade.

ïFirst cluster public information at some early point in the 

game (public flop cards in poker), then cluster private 

information separately for each public cluster.

ÅRun modified version of external-sampling MCCFR

ïSamples one pair of preflophands per iteration. For the later 

betting rounds, each blade samples public cards from its 

public cluster and performs MCCFR within each cluster. 
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Hierarchical abstraction algorithm for 

distributed equilibrium computation

ÅFor r = 1 to r*-1, cluster states at round r using Ar

ïAr is arbitrary abstraction algorithm

ïE.g., for preflopround in poker

ÅCluster public states at round r* into C buckets

ïE.g., flop round in poker

ÅFor r = r* to R, c = 1 to C, cluster states at round r that 

have public information states in public bucket c into 

Br buckets using abstraction algorithm Ar
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Algorithm for computing public 

information abstraction

ÅConstruct transition table T

ïT[p][b] stores how often public state p will lead to bucket b of the base 

abstraction A, aggregated over all possible states of private information.

Åfor i = 1 to M-1, j = i+1 to M (M is # of public states)

ïsi,j := 0

ïfor b = 1 to B

Åsi,j += min(T[i][b],T[j][b])

ïdi,j = (V- si,j)/V

ÅCluster public states into C clusters using (custom) clustering 

algorithm L with distance function d

ïdi,j corresponds to fraction of private states not mapped to same bucket of 

A when paired with public info i and j
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Comparison to non-distributed approach
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Tartanian7: champion two-player 

no-limit Texas Hold óemagent

ÅBeat every opponent with statistical significance 

in 2014 AAAI computer poker competition
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Standard paradigm for solving large 

imperfect-information games

Nash equilibriumNash equilibrium

Original game

Abstracted game

Automated abstraction

Custom 

equilibrium-finding 

algorithm

Reverse mapping
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Reverse mapping

ÅAction translation mapping interprets opponentsô 

actions that have been omitted from action abstraction

ïNatural approaches perform very poorly

ïDeveloped new approach that has theoretical justification, 

outperforms prior approaches on several domains, satisfies 

natural axioms, adopted by most strong poker agents

ÅFurther post-processingapproaches

ïAlso important even if we do not perform any action 

abstraction
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Purification and thresholding

ÅThresholding: round action probabilities below c down 

to 0 (then renormalize)

ÅPurification is extreme case where we play maximal-

probability action with probability 1
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Benefits of post-processing techniques

Å1) Failure of equilibrium-finding algorithm to 

fully converge

ïTartanian4 had exploitability of 800 mbb/hand even 

within its abstraction (always folding has 

exploitability of 750 mbb/hand!)
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Benefits of post-processing techniques

Å2) Combat overfittingof equilibrium to the abstraction
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Experiments on no-limit Texas hold óem

ÅPurification outperforms using a threshold of 

0.15

ïDoes better than it against all but one 2010 

competitor, beats it head-to-head, and won bankroll 

competition
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Worst-case exploitability

ÅWe also compared worst-case exploitabilitiesof several variants 

submitted to the 2010 two-player limit Texas hold óemdivision

ïUsing algorithm of Johanson et al. IJCAI-11
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Purification and thresholding

Å4x4 two-player zero-sum matrix games with payoffs 
uniformly at random from [-1,1]

ÅCompute equilibrium F in full game

ÅCompute equilibrium A in abstracted game that omits 
last row and column

ïessentially ñrandomò abstractions

ÅCompare u1(A1, F2) to u1(pur(A1), F2) 

ÅConclusion: Abstraction+purification outperforms 
just abstraction (against full equilibrium) at 95% 
confidence level



42

Purification and thresholding

ÅSome conditions when they perform identically:

1. The abstract equilibrium A is a pure strategy profile

2. The support of A1 is a subset of the support of F1 

Purified average payoff -0.050987 +- 0.00042

Unpurifiedaverage payoff -0.054905 +- 0.00044

# games where purification led to 

improved performance

261569 (17.44%)

# games where purification led to 

worse performance

172164 (11.48%)

# games where purification led to 

no change in performance

1066267 (71.08 %)
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Purification and thresholding

ÅResults depend crucially on the support of the full equilibrium

ÅIf we only consider the set of games that have an equilibrium ů

with a given support, purification improves performance for 

each class except for the following, where the performance is 

statistically indistinguishable:

ïůis the pure strategy profile in which each player plays his 

fourth pure strategy

ïůis a mixed strategy profile in which player 1ôs support 

contains his fourth pure strategy, and player 2ôs support does 

not contain his fourth pure strategy
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New family of post-processing 

techniques
Å2 main ideas: 

ïBundle similar actions

ïAdd preference for conservative actions

ÅFirst separate actions into {fold, call, ñbetò}

ïIf probability of folding exceeds a threshold parameter, fold 

with prob. 1

ïElse, follow purification between fold, call, and ñmeta-

actionò of ñbet.ò

ïIf ñbetò is selected, then follow purification within the 

specific bet actions.

ÅMany variations: threshold parameter, bucketing of 

actions, thresholdingvalue among buckets, etc.
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Post-processing experiments

Hyperborean.iro Slumbot Average Min

No Thresholding +30± 32 +10± 27 +20 +10

Purification +55 ± 27 +19 ± 22 +37 +19

Thresholding-0.15 +35 ± 30 +19 ± 25 +27 +19

New-0.2 +39 ± 26 +103 ± 21 +71 +39
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Brains vs. Artificial Intelligence

ÅApril 24-May 8, 2015 at Rivers Casino in 

Pittsburgh, PA
ïThe competition was organized by Carnegie Mellon 

University Professor TuomasSandholm. Collaborators 

were TuomasSandholmand Noam Brown.

Å20,000 hands of two-player no-limit Texas 

hold óembetween ñClaudicoò and Dong Kim, 

Jason Les, Bjorn Li, Doug Polk

ï80,000 hands in total

ÅUsed ñduplicateò scoring
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Brains
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Brains
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Brains
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Results

ÅHumans won by 732,713 chips, which 

corresponds to 9.16 big blinds per 100 hands 

(BB/100) (SB = 50, BB = 100)

ïStatistically significant at 90% confidence level, but 

not 95% level

ÅDong Kim beat Nick Frame by 13.87 BB/100 

ï$103,992 over 15,000 hands with 25-50 blinds

ÅDoug Polk beat Ben Sulskyby 24.67 BB/100

ï$740,000 over 15,000 hands with 100-200 blinds
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Payoffs

ÅPrize pool of $100,000 distributed to the 

humans depending on their individual profits.
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I Limp!

ÅñLimping is for Losers. This is the most important 

fundamentalin poker -- for every game, for every 

tournament, every stake: If you are the first player to 

voluntarily commit chips to the pot, open for a raise. 

Limping is inevitably a losing play. If you see a person 

at the table limping, you can be fairly sure he is a bad 

player. Bottom line: If your hand is worth playing, it is 

worth raisingò [Phil Gordonôs Little Gold Book, 2011]

ÅClaudicolimps close to 10% of its hands

ïBased on humansô analysis it profited overall from the limps

ÅClaudicomakes many other unconventional plays (e.g., 

small bets of 10% pot and all-in bets for 40 times pot)
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Architecture

ÅOffline abstraction and equilibrium computation

ïEC used Pittsburghôs Blacklightsupercomputer with 961 cores

ÅAction translation

ÅPost-processing

ÅEndgame solving
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Pseudo-harmonic mapping

ÅMaps opponentôs bet x to one of the nearest sizes in the 

abstraction A, B according to:

Åf(x) = 

Åf(x) is probability that x is mapped to A

ÅExample: suppose opponent bets 100 into pot of 500, 

and closest sizes are ñcheckò (i.e., bet 0) or to bet 0.25 

pot. So A = 0, x = 0.2, B = 0.25. 

ÅPlugging these in gives f(x) = 1/6 = 0.167.



55

Endgame solving

ÅDoug Polk related to me in personal communication after the 

competition that he thought the river strategy of Claudicousing 

the endgame solver was the strongest part of the agent.
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Problematic hands

1. We had A4s and folded preflopafter putting in over half of our stack 

(human had 99).

ï We only need to win 25% of time against opponentôs distribution for 

call to be profitable (we win 33% of time against 99). 

ï Translation mapped opponentôs raise to smaller size, which caused us to 

look up strategy computed thinking that pot size was much smaller than 

it was (7,000 vs. 10,000)

2. We had KT and folded to an all-in bet on turn after putting in ¾ of our stack 

despite having top pair and a flush draw

ï Human raised slightly below smallest size in our abstraction and we 

interpreted it as a call

ï Both 1 and 2 due to ñoff-tree problemò

3. Large all-in bet of 19,000 into small pot of 1700 on river without ñblockerò

ï E.g., 3s2c better all-in bluff hand than 3c2c on JsTs4sKcQh

ï Endgame information abstraction algorithm doesnôt fully account for 

ñcard removalò
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Lessons learned

ÅTwo most important avenues for improvement

ïSolving the ñoff-tree problemò

ïImproved approach for information abstraction that better 

accounts for card removal/ñblockersò 

ÅImproved theoretical understanding of endgame solving

ïWorks very well in practice despite lack of guarantees

ïNewer decomposition approach with guarantees does worse

ÅBridge abstraction gap

ïApproaches with guarantees only scale to small games

ÅDiverse applications of equilibrium computation

ÅAction translation axioms

ÅTheoretical understanding of post-processing success
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Standard paradigm

Nash equilibriumNash equilibrium

Original game

Abstracted game

Automated abstraction

Custom 

equilibrium-finding 

algorithm

Reverse mapping
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New game-solving paradigms
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Endgame solving

Strategies for entire game 

computed offline

Endgame strategies 

computed in real time to 

greater degree of accuracy
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Incorporating qualitative models

Stronger

hand

Weaker

hand

BLUFF/CHECK BLUFF/CHECK

Player 1ôs 

strategy

Player 2ôs 

strategy
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Computing Nash equilibria in games 

with more than two players
ÅDeveloped new algorithms for computing Ů-equilibrium 

strategies in multiplayer imperfect-information stochastic games

ïModels multiplayer poker tournament endgames

ÅMost successful algorithm, called PI-FP, used a two-level 

iterative procedure

ïOuter loop is variant of policy iteration

ïInner loop is an extension of fictitious play

ÅProposition: If the sequence of strategies determined by 

iterations of PI-FP converges, then the final strategy profile is an 

equilibrium.

ÅWe verified that our algorithms did in fact converge to Ů-

equilibrium strategies for very small Ů
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The need for opponent exploitation

ÅGame-solving approach produces unexploitable(i.e., 

ñsafeò) strategies in two-player zero-sum games

ÅBut it has no guarantees in general-sum and 

multiplayer games

ÅFurthermore, even in two-player zero-sum games, a 

much higher payoff is achievable against weak 

opponents by learning and exploiting their mistakes
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Opponent exploitation challenges

ÅNeeds prohibitively many repetitions to learn in large 

games (only 3000 hands per match in the poker 

competition, so only have observations at a minuscule 

fraction of information sets)

ÅPartial observabilityof opponentôs private information

ÅOften, there is no historical data on the specific opponent 

ïEven if there is, it may be unlabelledor semi-labelled

ÅRecently, game-solving approach has significantly 

outperformed exploitation approaches in Texas hold óem
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Overview of our approach

ÅStart playing based on game theory approach

ÅAs we learn opponent(s) deviate from equilibrium, adjust our 

strategy to exploit their weaknesses

ïE.g., the equilibrium raises 90% of the time when first to act, but the 

opponent only raises 40% of the time

ïRequires no prior knowledge about the opponent

ÅFind opponentôs strategy that is ñclosestò to a pre-computed 

approximate equilibrium strategy and consistent with our 

observations of his actions so far

ÅCompute and play an (approximate) best response to the 

opponent model.
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Deviation-Based Best Response algorithm
(generalizes to multi-player games)

ÅCompute an approximate equilibrium

ÅMaintain counters of opponentôs play throughout the match

Å for n = 1 to |public histories|

ïCompute posterior action probabilities at n (using a Dirichlet prior)

ïCompute posterior bucket probabilities

ïCompute model of opponentôs strategy at n

Åreturn best response to the opponent model

Many ways to define opponentôs ñbestò strategy 

that is consistent with bucket probabilities
Å L1 or L2 distance to equilibrium strategy

Å Custom weight-shifting algorithm, é
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Experiments on opponent exploitation

ÅSignificantly outperforms game-theory-based base strategy in 2-

player limit Texas hold óemagainst 

ïtrivial opponents (e.g., one that always calls and one that plays randomly)

ïweak opponents from AAAI computer poker competitions

ÅDonôt have to turn this on against strong opponents

Opponent: Always fold

Win 

rate

Opponent: Always raise Opponent: GUS2

1,000 3,000
#hands
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Exploitation-exploitability tradeoff

L

Full 
opponent 

exploitation

Nash 
equilibrium

????

Exploitability

Exploitation
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Safeopponent exploitation

ÅDefinition. Safestrategy achieves at least the 

value of the (repeated) game in expectation

ÅIs safe exploitation possible (beyond selecting 

among equilibrium strategies in the one-shot 

game)?



70

Rock-Paper-Scissors

ÅSuppose the opponent has played Rock in each of the 

first 10 iterations, while we have played the 

equilibrium ů*

ÅCan we exploit him by playing pure strategy Paper in 

the 11th iteration?

ïYes, but this would not be safe! 

ÅBy similar reasoning, any deviation from ů* will be 

unsafe

ÅSo safe exploitation is not possible in Rock-Paper-

Scissors
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Rock-Paper-Scissors-Toaster

Åt is strictly dominated

ïs does strictly better than t regardless of P1ôs strategy

ÅSuppose we play NE in the first round, and he plays t

ïExpected payoff of 10/3

ÅThen we can play R in the second round and guarantee at 
least 7/3 between the two rounds

ÅSafe exploitation is possible in RPST!

ïBecause of presence of ógiftô strategy t

rock paper scissors toaster

Rock 0,0 -1, 1 1, -1 4, -4

Paper 1,-1 0, 0 -1,1 3, -3

Scissors -1,1 1,-1 0,0 3, -3
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When can opponent be exploited safely?

ÅOpponent played an (iterated weakly) dominated strategy?

ÅOpponent played a strategy that isnôt in the support of any eq?

Å Definition. We received a gift if opponent played a strategy such that we have 

an equilibrium strategy for which the opponentôs strategy isnôt a best response

Å Theorem.Safe exploitation is possible iff the game has gifts

R is a gift 

but not iteratively weakly dominated

L M R

U 3 2 10

D 2 3 0

L R

U 0 0

D -2 1

R isnôt in the support of any equilibrium

but is also not a gift
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Exploitation algorithms

1. Risk what youôve won so far

2. Risk what youôve won so far in expectation (over natureôs & own 

randomization), i.e., risk the gifts received

ïAssuming the opponent plays a nemesis in states we donôt observe

ÅTheorem. A strategy for a two-player zero-sum game is safe iff it 

never risks more than the gifts received according to #2

ÅCan be used to make any opponent model / exploitation algorithm 

safe

ÅNo prior (non-eq) opponent exploitation algorithms are safe

ÅWe developed several new algorithms that are safe

ïPresent analogous results and algorithms for extensive-form 

games of perfect and imperfect-information
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Risk What Youôve Won in Expectation 

(RWYWE)

ÅSet k1 = 0

Åfor t = 1 to T do

ïSet ́ t
i to be kt-safe best response to M

ïPlay action at
i according to ́ti

ïUpdate M with opponentôs action at
-i

ïSet kt+1 = kt + ui(
t́
i, a-i) ïv* 

74
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Experiments on Kuhn poker

ÅAll the exploitative safe algorithms outperform Best Nash 

against the static opponents

ÅRWYWE did best against static opponents

ïOutperformed several more conservative safe exploitation algs

ÅAgainst dynamic opponents, best response does much worse 

than value of the game

ïSafe algorithms obtain payoff higher than the game value
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Recap

ÅBackground

ÅNew approaches for game solving within the 

standard paradigm

ÅNew game-solving paradigms

ÅOpponent exploitation

ÅChallenges and directions



77

Game solving challenges

ÅNash equilibrium lacks theoretical justification in 

certain game classes

ïE.g., games with more than two players

ïEven in two-player zero-sum games, certain refinements are 

preferable

ÅComputing Nash equilibrium is PPAD-complete in 

certain classes

ÅEven approximating NE in 2p zero-sum games very 

challenging in practice for many interesting games

ïHuge state spaces

ÅRobust exploitation is preferable
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Frameworks and directions

ÅStandard paradigm

ïAbstraction, equilibrium-finding, reverse mapping (action translation and 

post-processing)

ÅNew paradigms

ïIncorporating qualitative models (can be used to generate human-

understandable knowledge)

ïReal-time endgame solving

ÅDomain-independent approaches

ÅApproaches are applicable to games with more than two players

ïDirect: abstraction, translation, post-processing, endgame solving, 

qualitative models, exploitation algorithm

ïEquilibrium algorithms also, but lose guarantees

ïSafe exploitation, but guarantees maximininstead of value 
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Åwww.ganzfriedresearch.com

Åhttp://forumserver.twoplustwo.com/29/news-views-gossip-

sponsored-online-poker-report/wcgrider-dong-kim-jason-les-

bjorn-li -play-against-new-hu-bot-1526750/

Åhttps://www.youtube.com/watch?v=phRAyF1rq0I


