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Decoupled State Estimation for Humanoids Using Full-body Dynamics
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Abstract— We propose a framework to use full-body dynam-
ics for humanoid state estimation. The main idea is to decouple
the full body state vector into several independent state vectors.
Some decoupled state vectors can be estimated very efficiently
with a steady state Kalman Filter. In a steady state Kalman Fil-
ter, state covariance is computed only once during initialization.
Furthermore, decoupling speeds up numerical linearization of
the dynamic model. We demonstrate that these state estimators
are capable of handling walking on flat ground and on rough
terrain.

I. INTRODUCTION

Unlike fixed base robot manipulators, humanoid robots are
high degree of freedom dynamical systems with a floating
base that can move around in complex environments. State
estimation is an integral part of controlling such a system.
For a controller using floating base inverse dynamics to
compute feed-forward torques, the state estimator needs to
provide the location, orientation, and linear and angular
velocities of the floating base, as well as the angle and
angular velocity of each joint.

In this paper, we propose a framework to use full-body
dynamics for humanoid state estimation. Using full-body
dynamics is currently too expensive to use in real time
state estimation in the standard way. Our approach is to
decouple the full body state vector into several independent
state vectors. Each decoupled state vector can be estimated
very efficiently by using a steady state Kalman Filter (KF).
In a steady state KF, state covariance is computed only
once during initialization. Furthermore, decoupling speeds
up numerical linearization of the dynamic model. We trade
partial information loss for a reduction in computational cost.

This paper is organized as follows. In Section II, we
will review some related work in state estimation using
the KF. In Section III, we formulate the full body state
estimation problem as several decoupled state estimation
problems. Section IV describes the implementation of each
state estimator. In Section V, we show simulation results
with the Atlas robot (see Fig. 1) walking using the Gazebo
simulator, and actual robot results. Section VI discusses
future work and the last section concludes this paper.

II. BACKGROUND
A. The Kalman Filter
Kalman Filter is a recursive filter that estimates the internal

state of a linear dynamic system from a series of noisy
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measurements. To handle nonlinearity, the Extended Kalman
Filter (EKF)[1] and later the Unscented Kalman Filter
(UKF)[2] were invented. The EKF linearizes the nonlinear
dynamics at the current mean estimate, and propagates the
belief or information state covariance the same way as the
KF. The UKF samples around the mean estimate based on
the state covariance to create sampling points (sigma points),
and propagates the mean and covariance of the belief or
information state using the sigma points. We list the discrete
time EKF equations below for future reference. The EKF
equations are given in two steps:

Prediction step

zy = flay un) (1)
Py =FPl B+ Qx ®)
Update step
Yr = h(zy) 3)
Ayy = 2k — Yk (4)
Sy = Hy P, Hif + Ry, (5)
Ky =P, HES, ! ©6)
Az = KAy (7)
ol =) + Axy ©)
The subscript £ is the step index, the superscript “—” and

“+” represent before and after the measurement update,
capital letters are matrices, and lower case letters stand
for vectors. Fj and Hj are Jacobian matrices of f and
h linearized around the mean estimate. Fj is the state
transition matrix, H}, is the observation matrix, P is the state
covariance, and K} is the Kalman Gain. z; is the actual
measurement, yy, is the predicted measurement, and Ayy, is
called the innovation or measurement residual.

In this recursive formulation, one expensive operation is
to compute S L in Eq. (6). If F), and Hj are computed
by numeric differentiation at each recursion, they are also
computationally expensive. In the linear KF settings, if
Fy, Hy, Qr and Ry, are time invariant (constant), then Pj and
K, will converge to their steady state values. It is uncommon
for an EKF to have time invariant F}, and H;. If we assume
they are constant over a certain period of time or some states,
we could formulate the recursive EKF problem as a steady
state EKF problem.

For a discrete time steady state EKF, the steady state
covariance P can be obtained through solving the Discrete



Fig. 1. The Atlas robot built by Boston Dynamics

time Algebraic Riccati Equation (DARE)
FPFT - P-FPHY(R+HPH") " 'HPFT+Q=0 (10)
and the steady state Kalman Gain K is given by
K =PHY(R+ HPHT)™! (11)

Given the steady state Kalman Gain K, we could formulate
the steady state EKF as
Prediction step

ay = oy uk—1) (12)

Update step
Ay = 2 — h(z);) (13)
xf =) + KAyy, (14)

B. The Kalman Filter in Legged Robot Locomotion

There is a lot of work on state estimation in legged robot
locomotion, and it is not possible to list all the references
here. We focus on the work that uses robot dynamics rather
than kinematics for state estimation, because dynamics can
predict generalized velocity.

In the work of [3], the Sarcos humanoid is modeled by a
Linear Inverted Pendulum Model (LIPM) [4] and standing
balance with unknown modeling errors is studied with an
EKF. An Hs-norm optimal filter is introduced in [5] to
estimate the pose and velocity of the links of a humanoid
robot. They assume that the motion model is linear and all
external forces are known. In locomotion state estimation
of quadrupedal [6] and hexapedal [7] robots, hybrid EKFs

are used and model transitions are determined by sensors.
Sliding model observers are designed and implemented to
estimate the absolute torso orientation of a 5-link biped robot
during single support [8][9]. Leg kinematics and IMU data
are fused to estimate the root pose for the quadruped robot
StarlETH[10]. The base state estimator introduced in Section
III-A uses a similar approach.

III. DECOUPLED STATE ESTIMATORS

The full body floating base dynamics of a humanoid robot
with acceleration level contact constraints can be represented
using the equation of motion and constraint equation as
follows

M(q)G+h(q,q) = ST+ Il (o) f

o . 15
Je(q,4)q + JoG = ¢ (15)

where ¢ = [pL, qu,HﬂT is the vector of base position,
orientation and joint angles, ¢ = [pZ, p, 8717 is the vector
of base velocity, angular velocity and joint velocities. M (q)
is the inertia matrix, h(q, ) is the vector sum for Coriolis,
centrifugal and gravitational forces. S = [0,1]7 is the
selection matrix with zero entries corresponding to the base
variables and the identity matrix corresponding to the joint
variables. 7 is the vector for actuating joint torques. J.(q) is
the Jacobian matrix and jc(q, ) is its derivative at contact
points, and f is the vector of external forces at contact points.
c is the contact point’s position and orientation in Cartesian
coordinates.

It is possible to formulate a state estimator using the full
body dynamics as the process equation, and using sensor
information in the measurement equation. One difficulty
in this formulation is computation speed. The degrees of
freedom for a humanoid are usually over 30. It is not very
efficient to do numerical differentiation every time step if we
are using an EKF, nor to do multiple forward simulations
if we are using an UKF. We could not implement the
nonlinear KFs fast enough within one control step. Choosing
appropriate filter parameters has also proved to be difficult
in this setting, since the Kalman gain essentially depends on
the covariance of all the states.

We will introduce an alternative formulation, where we
separate the full body dynamics into two parts: the dynamics
of the base, and the dynamics of all the actuated joints. In this
formulation, the base states are no longer correlated with the
joint states. There is information loss due to the decoupling.
This will be discussed in Section VI.

A. Base State Estimator

In a floating base humanoid, the base has 3 translational
and 3 rotational degrees of freedom. We assume there is an
6-axis IMU attached to the base, which is common. The
base state estimator estimates the base global position p,,
orientation p,, linear velocity p,, angular velocity p,,, and
the accelerometer bias b,.

The base filter is modeled as a multiple model EKF
with contact switching. We assume the base position and
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orientation coincide with the IMU. If there is an off-
set/misalignment, we can always find the fixed transforma-
tion between the IMU and the base. The orientation p, of the
base is represented with a quaternion. The angular velocity
Dw 1s expressed in the base frame. The discrete time process
dynamics equations of the base are given by

Pu i p;kfl + p;kflAt
Py k p;k—l + %G(pI,k_l)pfk_lﬁt
T = p;k = p:k_1JF[RT(p;k_D(&k*ba,k—l)*Q]At
Pk Pa g+ (@ — 1)
bk ba k-1

(16)

where At is the time step, @ and @ are the measured IMU
proper acceleration and angular velocity, g is the gravity
vector, and R(-) is the rotation matrix for the corresponding
quaternion. G(-) is a 4 x 4 matrix that maps a quaternion
to its rate. The fourth equation in Eq. (16) models the gyro
bias explicitly in terms of the base angular velocity, because
it is one of the base states we want to estimate directly.

The state vector has one more dimension than the state
covariance due to the quaternion. We switch from quaternion
to rotation vector representation during linearization. For a
vector o representing a small angle, its incremental rotation
matrix is given by

A(a) == exp(a™)

=T+ (a™)sin||q| +(04X)2(1 — cos|la||) 17

where o* is the cross product matrix of vector «, I is the
identity matrix. The linearized state transition matrix is given
by

I 0 At 0 0
0 A(Atp] 1) 0 0 0
Fe= |0 At(RT[a—b;k_l})x I 0 —AtRT| (I8)
0 0 01 o
0 0 0 O I

The predicted covariance estimate follows Eq. (2).

The update step is slightly more complicated. There is
no sensor directly measuring the position and velocity of
the base in the world coordinate. We use the following
assumptions in place of an actual measurement: we know the
contact points, and we know how the contact points move
in Cartesian coordinates. These assumptions are not limited
to walking, but we will use walking as an example. Let the
point of the ankle joints of the left and right feet be ¢; and
¢, in Cartesian coordinates, and the corresponding velocities
be ¢; and ¢,

In the double support phase (DS), we assume the feet are
not moving to obtain the following measurements

1 N
~N Zi=1 Clk—i

ClLk
1 N
Cr.k ~ -2 Cpl—i
aps = | S0 [ = | Wkl q1g)
ér,k 0
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The first two equations say that the current foot position
is the average of previous N time step foot positions, and
the last two equations say the foot linear velocities are
zero. Essentially the first and last two equations convey the
same information: the feet are fixed. We decided to fuse
the redundant information because the filter will not perform
worse under this condition.

To write the measurement equations we need the observa-
tion to be a function of the base states. They are given by
the floating base forward kinematics F K (-),

(20)

In Eq. (20), we used filter states from the joint state estimator,
which will be discussed in the next section.

The observation matrix Hj is computed by linearizing
Eq. (20). This can be done numerically. It is also possible
to write the entries of Hj symbolically in terms of the base
states.

In single support phase, we assume the stance foot is fixed,
so Eq. (19)(20) and H}, are modified to account for contact
switching. Contact switching will be discussed in Section IV.

When we compute Eq. (7), the innovation multiplied by
the Kalman gain is one dimension less than the state vector.
We need to switch from rotation vector to quaternion. Sup-
pose « is a rotation vector, then its corresponding quaternion
is given by

Therefore the quaternion component of the updated state
estimate is given by

p;k = f(Ad)k)p;k

where A¢ is the fourth to sixth components of Az in Eq. (7).

cost
sing [lof| o7

§(a) = [ 1)

(22)

B. Joint State Estimator

The joint state estimator is composed of two filters: the
joint position filter and the joint velocity filter. The reason to
separate the joint state estimator into two filters is to simplify
computation during linearization, and the joint position 6y
is treated as constant in the joint velocity filter.

1) Joint Position Filter: The process dynamics and state
transition matrix are

(23)
(24)

a, =07, = ejk_l + ajk_lAt
F.=1

We assume each joint angle is measured. The measurement
equation and observation matrix are also trivial,

(25)
(26)

ykzajk
Hy =1



2) Joint Velocity Filter: The joint velocity filter uses the

full body dynamics to estimate joint velocities. Define

G=li,05]" 27)
i, = [pL, pL]7T is the base linear and angular acceleration in
Cartesian coordinate. The process dynamics is derived from

Eq. (15), assuming ¢ = 0 and reorganizing it as
ST — h(

R A

_ch
Rewrite Eq. (28) as

Ty
S
0

_Jr

C

0

M,
JC,Ib

My,
JC’GJ

A { ”;f ] + Asfi; = b (29)
N B M St—h(g,4)
_ Ty —Je _ 0y _ T— . q,9
Al_ Jc,xb 0 ’ AQ_ Jc,(),; :|’ b= |: - cq :l

In [11] and [12], an orthogonal decomposition is used to
project motion into the orthogonal complement of the contact
Jacobian where the inverse dynamics is solved. We are taking
a similar approach here by projecting the allowable motion
into the orthogonal complement of A;. To solve Eq. (29) for
9:], we perform a QR decomposition on A

R’

0 (30)

A =] Qz][ :|:Q1R1

where the matrix @ is orthogonal. Multiply Eq. (29) by Q¥
QF A2f; = Q3b (31)

and we can solve for 6. Since ()2 and A, are not functions
of 0, and only b is a function of ;, we only have to modify
b during numerical linearization. Now we write the process
dynamics of the joint velocity filter as

zp =07, =01, +(QFA)'QIbvAt  (32)

The state transition matrix is the linearization of Eq. (32),
given by

0b
90y |4+

Jk—1

Fr, =T+ At(QYAy)1QY (33)

We assume the joint angle velocities are measured. The
measurement equation and observation matrix are given by

(34)
(35)

yr =y =07,
H, =1
IV. IMPLEMENTATION

We implement all the state estimators mentioned in Sec-
tion III in an EKF framework. At each time step, every filter
follows two steps: the prediction step, and the update step.
Both prediction and update steps are synchronized across
different filters, such that we have access to all the priori
states (“—”") before the update step, and to all the posterior
states (“+) before the prediction step. As for each filter,
the implementation is slightly different. The time step for
simulation is 1ms, and 3.33ms on the actual robot.
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A. Base State Estimator

The base state estimator is implemented as a recursive
EKF. One filter step follows Eq. (1)-(9) and Eq. (16)-(22).
The quaternion states need some additional operation. We
normalize the quaternion after Eq. (16) to make sure it is
unity.

The filter has multiple observation models corresponding
to different contact states, and there are two ways to specify
the contact state. One way is to use force sensors on the
foot, the other is to use the desired contact states from the
controller. We used the former to process robot data, and
latter in simulation.

B. Joint Position Filter

The joint position filter is implemented with a steady
state EKF, since both the state transition (Eq. (24)) and
observation (Eq. (26)) matrix are constant. During the filter
initialization stage, we pre-compute the steady state Kalman
Gains (Eq. (11)) by solving the corresponding DARE with
constant F) H,(Q and R. Then the filter prediction step
involves Eq. (12), and the update step is based on Eq. (13)
and (14). Essentially the covariance matrix computation is
not needed.

C. Joint Velocity Filter

The joint velocity filter is expensive to implement recur-
sively at each time step due to the numerical linearization
in Eq. (33). Instead, we compute Eq. (33) and the steady
state Kalman Gain through DARE in a separate thread, and
update them whenever new values are available, each update
usually takes less than 10ms. Each time step we use the
commanded torque as 7 in the prediction step of Eq. (32).

D. Filter Parameters

Each filter has its own set of process and measurement
noise covariance parameters. Since the state estimators are
decoupled, a set of parameters for one filter has no impact
on the other filters. This makes tuning individual filters
much easier compared to tuning one large filter with all the
correlated states.

E. Controller and Planner

These state estimators provide estimated base position,
velocity, orientation and angular velocity, as well as joint
positions and velocities to the controller, which is described
in detail in [13]. The planner uses the estimated base position
at a much lower frequency to build a map, see[14] for details.

V. RESULTS
A. Simulation Results

We test our state estimators together with the controller
and planner on a simulated Atlas robot. The Gazebo sim-
ulator is based on Open Dynamic Engine and is provided
by the Open Source Robotics Foundation for the DARPA
Virtual Robotics Challenge. The dynamics involved in the
state estimator is implemented using SD/Fast.
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Fig. 3. Simulation data: ground truth and estimated base velocity

We have tested the state estimators on different walking
patterns and tasks. The simulated Atlas robot can walk
straight and turn on flat ground, and walk up and down
slopes. It also walks on rough terrain with different local
geometry. We show the results of walking on a flat ground
as an example, the traces are very similar in other scenarios.

Fig. 2 is the estimated base position vs. ground truth. The
estimated position drifted about 0.6 meters in the forward
direction. This happens because there is no actual sensor
information to correct position drift. This does not have
any impact on the controller or planner as long as they
are consistent with the state estimator. The estimated base
orientation, velocity, and angular velocity are quite consistent
with the ground truth. Fig. 3 shows spikes in the estimated
vertical velocity due to a large impact at foot touch-down.
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Fig. 4. Simulation data: ground truth and estimated base orientation in
quaternion.

B. Robot Data Processing

We also tested our state estimator on data collected from
an actual Atlas robot. The data was taken when the Atlas
was walking in place for about one minute, and it was
controlled by the Boston Dynamics walking controller. The
Boston Dynamics controller uses its own state estimator
for the base state estimation. We do not know whether the
joint positions and velocities are estimated in the Boston
Dynamics controller by any state estimator, or they are sim-
ply low pass filtered. Implementing our own state estimator
will allow us to do state estimation under a wider range of
conditions, including our own walking control as well as
filter joint velocities. The details of the Boston Dynamics
state estimator are secret, so we can not improve it. Fig. 5
compares the base linear velocity estimated by the Boston
Dynamics state estimator, and our decoupled state estimators.
Both estimators have similar noise characteristics and the
same amount of delay. Fig. 6 plots some joint velocities
of the right leg joints. We compare the raw sensor data
with the filtered joint velocities from the joint velocity filter.
We believe the raw sensor data is the finite difference of
the measured joint position with some low pass filtering.
It is visible that the filtered states are less noisy than
the measurement. There is no delay between the filtered
and measured velocities by computing the cross correlation
between traces.

The dynamic model used in our state estimator for robot
data was identified through robot experiments and is different
from the simulation model.

VI. DISCUSSION AND FUTURE WORK

One obvious flaw of decoupling the full state of the robot
is information loss. There is always a trade-off between
accuracy and computational cost, in our case we favor
computational cost because we can not estimate the entire
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Fig. 6. Robot data: measured joint velocities vs. estimated joint velocities
from joint velocity filter. From top to bottom are the right hip roll, pitch
and knee pitch angular velocities

state fast enough using one big EKF. An interesting question
is, to what degree and in what way can we decouple the
state to get optimal performance. It is possible to decouple
the joint velocity filter into several filters based on the tree
structure of the floating base dynamics (for example, a left
leg filter and a right leg filter).

In the base state estimator, we assumed the stance foot was
fixed on the ground. This assumption is often violated when
we have push-off and heel-strike, or when the foot is slipping
which happens a lot in rough terrain simulation. To handle
push-off, we move the stance foot reference point from the
ankle joint to the toe of that foot, since we know the exact
moment of push-off from the controller. Similarly, we move

the stance foot reference point to the heel during heel-strike.
To handle slipping, we have to detect it first. One way to
detect slipping is to learn a slipping model for ¢ in Eq. (15).
Another way is to use the innovation, which is the difference
between assumed stance foot position-velocity and predicted
stance foot position-velocity. To handle slip, we could put a
threshold on the innovation, and increase the measurement
noise covariance R accordingly. At the same time, we need
to switch back to the recursive EKF since R is no longer
time invariant. The second approach was implemented, and
it made the base velocity trace smoother with fewer spikes.

It is not a surprise that the state estimator works well
in simulation, since the state estimator dynamic model is
nearly identical to the simulator model. When it comes to real
hardware, modeling error is inevitable. Preliminary results
show that state estimator with simplified models could work
on the Sarcos humanoid [15]. We have shown in the paper
that the decoupled state estimator reduces the noise level
on the joint velocities of the Atlas. Our future work will
be implementing the decoupled state estimator on the Atlas
together with our controller and planner.

The decoupled framework provides a modular option to
state estimation. We could identify different swing and stance
leg dynamics, and switch the filters in different phases
without affecting other filters.

VII. CONCLUSIONS

We introduced a framework to estimate the full state of a
humanoid robot. The main idea is to decouple the full body
state vector into several independent state vectors. These state
estimators are implemented on a simulated Atlas Robot, and
tested successfully walking on flat ground and rough terrain.

We also showed preliminary results on processing real
robot data with the decoupled state estimators. The results
indicate a reduction on the measured joint velocity noise.

The main advantage of this approach over a single full
EKF is speed, because we are dealing with lower dimensional
systems, and using the steady state EKF speeds up numerical
linearization of the robot dynamics.
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