3D Walking Based on Online Optimization

Siyuan Feng, X Xinjilefu, Weiwei Huang and Christopher G. Atkeson

Abstract— We present an optimization based real-time walk-
ing controller for a full size humanoid robot. The controller
consists of two levels of optimization, a high level trajectory
optimizer that reasons about center of mass and swing foot tra-
jectories, and a low level controller that tracks those trajectories
by solving a floating base full body inverse dynamics problem
using Quadratic Programming. Our controller is capable of
walking on rough terrain, and also achieves longer foot steps,
faster walking speed, heel-strike and toe push-off. Results are
demonstrated with Boston Dynamics’ Atlas robot in simulation.

I. INTRODUCTION

We consider a generalized walking controller that works
on uneven terrain is essential to enabling humanoid robots
to walk outside labs and be actually useful. Additionally, we
argue that the controller needs to pay attention to a set of foot
steps provided by either a planner or human operator. This
is important in obstacle avoidance, rough terrain traversal,
and walking in a cluttered indoor environment. Although
recent research in hand-crafted policy based walking con-
trollers [1], [2], [3] has shown robust performance on uneven
terrain and against external perturbations, they are essentially
walking blindly and are fundamentally incompatible with the
requirement described above. On the other hand, traditional
Zero Moment Point (ZMP) based designs [4], [5] have yet
to show convincing performance on uneven terrain. We are
proposing a walking controller based on online optimization
that handles uneven terrain. Figure [2| shows a simulated
Atlas robot using our controller to traverse rough terrain in
DARPA’s Virtual Robotics Challenge.

Our approach is rooted in model-based optimal control, as
it takes a desired sequence of foot steps, uses optimization
to generate a locally optimal trajectory, then tracks this
trajectory using inverse dynamics. The high level controller
performs online trajectory optimization using Differential
Dynamic Programming (DDP)[6] with a simplified model
that only reasons about the center of mass (COM) of the
robot. We also use a quintic spline in Cartesian space to
smoothly connect the given foot steps for the swing foot.
The low level controller takes these trajectories as inputs and
uses a Quadratic Programming (QP) based inverse dynamics
solver to generate torques for all the joints. A schematic of
the system is depicted in Figure [T}

The high level controller is similar in spirit to Preview
Control proposed by Kajita et al. [4] in the sense that we
are also using a COM model, reasoning about ZMP and
using future information to guide the current trajectory. But

All the authors are with The Robotics Institute, Carnegie Mellon
University, 5000 Forbes Avenue, Pittsburgh, PA 15213, {sfeng, xxinjile,
cga}@cs.cmu.edu, huangwei@andrew.cmu.edu

our approach can be easily generalized to more complex
nonlinear models and adjust foot steps while optimizing
the COM trajectory. We do not explicitly generate inverse
kinematics solutions or use high gain position controls to
track joint trajectories, which results in compliant walking.
We explicitly add the z dimension in our COM model to
handle height variations on rough terrain. Like capture point
methods [7], we take the next few steps into consideration
during trajectory optimization, although we do not plan
to come to rest at the end. Ogura et al. [8] investigated
generating human like walking with heel-strike and toe-
off by parametrizing the swing foot trajectory, and using a
genetic algorithm to find the parameters. In contrast, we use
very simple rules to guide the low level controller to achieve
the same behaviors.

In the low level controller, we formulate the floating
base inverse dynamics as a Quadratic Programming problem.
We continue to use a formulation previously developed in
our group [9], [10]. Unlike [11], [12] that use orthogonal
decomposition to project the allowable motions into the null
space of constraint Jacobian, and minimize any combination
of linear and quadratic costs in the contact constraints and
the commands, we directly optimize a quadratic cost in terms
of state accelerations, torques and contact forces. We are also
able to directly reason about inequality constraints such as
center of pressure within the support polygon, friction and
torque limits. Although it becomes a bigger QP problem,
we are still able to solve it in real time. Hutter el al. [13]
resolved redundancy in inverse dynamics using a kinematic
task prioritization approach that ensures lower priority tasks
always exist in the null space of higher priority ones. In
contrast to their strictly hierarchical approach, we minimize
a sum of weighted terms. We can directly specify the relative
importance by adjusting the weights.

II. TRAJECTORY GENERATION

Given a sequence of desired foot steps, we assign uni-
form timing to them. We then plan a COM trajectory that
minimizes stance foot ankle torque with DDP, which is
an iterative trajectory optimization technique that updates
the current control signals based on the spatial derivatives
of the value function, and uses the updated controls to
generate a trajectory for the next iteration. The swing foot
trajectory is generated using a quintic spline between the
starting and ending positions. For foot orientation, we take
the yaw angle specified in the foot step sequence, assume
0 roll angle, and estimate the pitch angle by relative height
change from consecutive foot steps. Body orientation at the
end of the swing phase is computed by averaging the yaw

Robot

. N
(@9 T
\ 4 COM (x,x,%)q4
Foot (x, x, %) 4
Trajectory Optimizer @0 2| Inverse Dynamics
q.4q

Proposed controller

Foot Steps

| Foot Step Planner

Fig. 1. The proposed controller consists of a trajectory optimizer and
inverse dynamics solver. The former takes robot state g, ¢ from a state
estimator and desired foot steps from a planner, and produces desired COM
and swing foot trajectories. The latter takes these trajectories and ¢, ¢ and
solves floating base full body inverse dynamics to generate torques.

angles from consecutive foot steps, assuming O roll angle,
and a task specific pitch angle (e.g. leaning forward when
climbing a steep ramp). Both body and foot orientation are
represented as quaternions, and interpolated using spherical
linear interpolation (slerp).

In the current implementation of the high level controller,
we approximate the entire robot as a point mass, without
considering angular momentum. The dynamics for the simple
model are

. (It—Pz)Fz
x mz
il = (ye—py) F:
8 mz
21y ol

The state, X = (z,v, 2, &, 9, 2), is the location and velocity
of the center of mass. The control v = (pg,py, F.) is the
commanded center of pressure and force in the z direction.
The current high level controller does not know about step
length limits, and we are relying on the foot step planner to
give us reasonable foot steps.

A. Differential Dynamic Programming

DDP applies Dynamic Programming along a trajectory.
It can find globally optimal trajectories for problems with
time-varying linear dynamics and quadratic costs, and rapidly
converge to local optimal trajectories for problems with
nonlinear dynamics or costs. This approach modifies (and
complements) existing approximate Dynamics Programming
approaches in these ways: 1) We approximate the value
function and policy using many local models (quadratic for
the value function, linear for the policy) along the trajectory.
2) We use trajectory optimization to directly optimize the
sequence of commands ug y—1 and states Xy n. 3) Refined
local models of the value function and policy are created as
a byproduct of our trajectory optimization process.

We represent value functions and policies using Taylor
series approximations at each time step along a trajectory. For
a state XP, the local quadratic model for the value function

Fig. 2. The proposed controller tested in the Rough Terrain Task in
DARPA’s Virtual Robotics Challenge.

is
VP(X) = V) +VE(X — XP)
1
+ 5 (X = XV (X - XP),

where X is some query state, V' is the constant term, Vi
is the first order gradient with respect to state evaluated at
XP, and V7 is the second order spatial gradient evaluated
at XP. The local linear policy is

uP(X) = ulf — KP(X — XP),

where ug is a constant term, and KP is the first derivative of
the local policy with respect to state evaluated at X?, which
is also a gain matrix for a local linear controller. Vj, Vx,
Vxx and K are stored along with the trajectory.

The one step cost function is

L(X,u) = 0.5(X — X)TQ(X — X*)
+0.5(u — u*)TR(u — u*),

where R is positive definite, and @) is positive semi-definite.
X* is given as a square wave, instantly switching to the next
foot step location and staying there for the entire stance with
velocities equal zero. u* is specified in a similar way with p,,
and p, being at the desired center of pressure in the world
frame, and F, = mg.

For each iteration of DDP, we propagate the spatial
derivatives of the value function Vx x and Vx backward in
time, and use this information to compute an update du to

the control signal. Then we perform a forward integration
pass using the updated controls to generate a new trajectory.
Although we are performing nonlinear trajectory optimiza-
tion, due to analytical gradients of the dynamics, this process
is fast enough in an online setting.

B. Initialization

Given the last desired center of mass location and desired
center of pressure, (X*,u*) in the foot step sequence, we
first compute a Linear Quadratic Regulator (LQR) solution at
that point, and use its policy to generate an initial trajectory
from the initial Xy. Vx x of this LQR solution is also used
to initialize the backward pass.

C. Backward pass

Given a trajectory, one can integrate the value function
and its first and second spatial derivatives backwards in
time to compute an improved value function and policy.
We utilize the “Q function” notation from reinforcement
learning: Q'(X,u) = VIT1(f(X,u)) + L*(X, u) where t is
the time index. The backward pass of DDP can be expressed
as

Qk =Lk + Vx fx
Qu =Ly +Vxfu
Q%x = Lix + Vifix + ¥ Vix Ik
wx = Lix + Vi fix + fT Vi %
wu = L + Vi fow + £ Vix Fo
K'=(Q.) 'Qux
du' = (Q.,) ' Qu
Vit =Qk — QLK
Vix = Qx — QK"
Derivatives are taken with respect to the subscripts, and
evaluated at (X, u).

D. Forward pass
Once we have computed the local linear feedback policy
K?® and updates for controls du’, we integrate forward in
time using
ut o= (ut —dut) — KY(X!,, — X")

new

with X0 = X,. We terminate DDP when the cost-to-go at
X does not change much across iterations. This approach
can be thought of as a generalized version of Kajita’s preview
control [4]. Figure [3] shows trajectories of COM before and
after DDP optimization. The original trajectories are plotted
with dashed lines, and results are plotted with solid lines.
State trajectories are shown in blue, and controls are in green.

In the plots, F, is normalized by body weight.

E. Double support

A short double support phase is planned to allow weight
shifting and explicit controls on the touch down foot and lift
off foot.

- =x0
px0
E — P
< px1
—x1
35
- =0
pyo
E PYq
= py1
—i
0.2 . . . L . L)
0 0.5 1 1.5 25 3 35
time [s]
05 L L L L L L)
0 0.5 1 1.5 2 25 3 35
time [s]

Fig. 3. Desired center of pressure in XY plane and COM height trajectories

are plotted with solid red lines. Initial trajectories before DDP optimization

are plotted in dashed lines, and optimized ones are shown in solid lines.
. ; Fy

States x, y and z are shown in blue, and controls pzx, py and g are plotted

in green.

1) Heel-strike: We command the landing foot’s orienta-
tion to have a pitch angle and allowed the center of pressure
to move quickly from the heel to somewhere in the middle
of the foot.

2) Toe push-off: During the lift off phase, we move the
foot reference point to the toe, and instead of commanding
the angular acceleration to be zero, we request a large pitch
angular acceleration in the foot frame, set the desired center
of pressure to be at the toe, and let the low level controller
handle the rest. A more elegant approach is perhaps elimi-
nating the row in A.g¢ and beq.¢ in that corresponds to
pitch angular acceleration entirely and let QP figure out the
rest.

III. FULL BODY INVERSE DYNAMICS

For the low level control, we use an inverse dynamics
approach to solve for torques that would best satisfy the
given desired motion. We formulate the full body floating
base inverse dynamics problem as a Quadratic Programming
(QP) problem, and apply a standard QP solver at each time
step to generate a set of torque commands.

A. QP formulation

The equations of motion and constraints equations for a
floating base humanoid robot can be described as

M(q)i+ h(q,q) = ST+ J"(¢)F
J(Q)i + J(q,4)d = i

(g, q) is the full state of the system including a 6 DOF joint
at the floating base. M (q) is the inertia matrix. h(q, ¢) is the
sum of gravitational, centrifugal and Coriolis forces. S is a

selection matrix that is the identity matrix except for the first
6 degrees of freedom that corresponds to the floating base.
7 is the joint torque vector. J7(g) is the stacked Jacobian
matrix for all the contacts. F' is the vector of all stacked
contact forces. x is the contact location and orientation in
Cartesian space. The sizes of F' and J7 change depends on
the number of contacts.
We can rewrite the equations of motion as

i
(M(q) —S —J"(q)] | 7| +h(q,q)=0.
F

Given a state (g, ¢), the equations of motion are linear in
.. T
terms of [§ T F] .

Let X =[G 7 F] " We can now formulate the inverse
dynamics as a Quadratic Programming problem

min xXTox +¢"x
s.t. CEX +cel =0
CIX + it >=0.

The equality constraints for this QP problem are the equa-
tions of motions described above, and the inequality con-
straints consist of various terms such as joint torque limits
and ground force limits due to friction cone and center of
pressure remaining in the support polygons. The optimization
criteria can be thought as a big least square minimization
problem penalizing X for deviating from some desired X*.

B. QP optimization criteria

Essentially, we are optimizing a cost function of the form
|AX —b||?, where X = [§ T F]T. A and b can be broken
down row-wise into smaller blocks, each emphasizing certain
desired behaviors with different weights. We will present a
few concrete examples.

1) Cartesian space accelerations: Since

i=J(q)i+ J(q,4)d,

we can penalize deviation from desired Cartesian space
accelerations using

Aca'rt = ['](q) 0 0]

SN (1)
bcart:x _J(Q7Q)Q-

This is useful for task level controls such as COM,
swing foot or hand tracking. For COM and swing foot, the
desired accelerations are specified by the high level trajectory
optimizer described in Section For the stance foot, the
desired accelerations are set to zero. Rather than treating the
stance foot accelerations as hard constraints, we find that
using a soft penalty with high weights is generally more
stable and faster to solve.

2) Net external force and center of mass motion: The re-
lationship between COM linear acceleration and net external
force is

Fiin = m(Zcom + [0 0 g} T)a

where m is the total mass, and g is the gravitational apcel-
eration. Net torque and change in angular momentum L are
related in a similar way

Fang + (xcontact - mcom) X Flin = Iwcorru

where [is the total moment of inertia, and Wy, 1S the
angular acceleration. We can compute

Acomp =1[0 0 [I3x3 0]]
beomp = M5 + [0 0 g]7)
and
AcomTau =10 0

.k
bcomTau = Iwcom,'

[C’I"OSS(xcontaCh Icom) I3><3]:|

*

133 is a 3 by 3 identity matrix. 7, and w,,, are desired
linear and angular accelerations. CT0sS(Zcontacts Teom) 1S
the matrix representing a cross product between (Zcontact —
xcom) and Ein-

3) Center of pressure tracking: Given the forces and
torques, * M. F, specified in foot frame, the location of the
center of pressure in the foot frame is

— |:_bMy/ 'F Z]
b= ng;/bFz .

We can penalize center of pressure deviation with

B 0 0 pp 0 1 O|(R O
Awp—[o 0 [o 0 p. -1 0 0} [o RH
bcop:()v

where (p}, p;) is the desired center of pressure in foot frame,
and R is the rotation matrix from the world frame to the foot
frame.

4) Weight distribution: In double support, it is often
desirable to specify the desired weight distribution w* =
F,i/(F, + F.,). We add this term to the cost function with

Ay =10 0 I,)
by, =0,
where I, is a row vector with zeros, except I,,(3) = 1 —w*
and I,,(9) = —w*.
5) Direct tracking and regularization: We can also di-
rectly penalize X from desired values with
Astate = [[I I]
- T
bstate = [q 0 0])

where ¢* is the desired joint accelerations. This is useful
for directly controlling the upper body joints, as well as
regularizing A’ to make the QP problem well conditioned.
The final cost function uses the vertically concatenated As
and bs each multiplied with their corresponding weights, ws.

Weart bcart
WeomF bcomF

wcartAcart

_ |w A _
A= comF dcomF 7[) =

Weights are summarized in Table (I, wgyqq is for joint
acceleration. Weom and Wytorsowqa are for COM position

TABLE I
WEIGHTS FOR QP COST FUNCTION

Wygdd Weomdd Wytorsowd W footdd
10-T T 6x107 "t 1 1
WeomF WeomTau WregF WregTau
107 107 10-° 10~-°
Ww Wceop WEd WTaud
1073 | 8x1073 103 101

acceleration and upper torso orientation acceleration. w footdd
is for foot position and orientation acceleration. we,,, r and
WeomTau are for net external force and torque. w,..qr and
WregTau are regularization weights for contact force and joint
torques. w,, is for weight distribution. w.,,, is for center of
pressure. wpg and wrg,q penalize changes in contact force
and joint torques between two consecutive time steps.

C. Constraints

Torque limits can be easily added into the inequality
constraints. Friction constraints are approximated by

PF,| < u°F,
"Fy| < W°F..

The center of pressure also has to be under the feet, which
can be written as

d; <-"M,/°F, <df
d, <" M, /°F. < dj,

where F and ®M denotes forces and torques in the foot
frame, and d~ and d* are the sizes of foot. Equations of
motion are treated as equality constraints in the QP problem.

IV. IMPLEMENTATION
A. Trajectory replanning

The high level trajectory planner replans whenever a
new step is taken. It optimizes a COM trajectory for 3
consecutive steps, although we will only use the trajectory
that corresponds to the first step. Because sometimes DDP
cannot finish in one time step (1ms), we run DDP for the
next 3 foot steps on a separate thread, and use the trajectory
that was computed most recently in the low level controller.
As for runtime, DDP completes within 1 to 50ms (depending
on terrain complexity), and QP finishes within 0.5ms.

B. Desired acceleration for the low level controller

We store the local linear policies in addition to the
COM trajectory, and use them to compute the desired COM
accelerations as an input to the low level controller. Since we
have a spline representation (quintic for position, and slerp
for orientation) for the swing foot trajectory, we can compute
its desired acceleration with

Fewing = — Ko — 2%) — Ka(é —) + ",

*

where x*, ©*, ©* are on the spline. Upper body desired
joint accelerations are also computed in a similar PD-servo
fashion.

C. Body orientation tracking

In practice, we discover that controlling upper torso ori-
entation is better than directly controlling pelvis orientation
because this allows the low level controller to use the spine
joints in addition to the leg joints. Upper torso orientation
tracking is also done with a Jacobian similar to COM
position tracking.

D. Foot step orientation

We only require foot step yaw angle from the foot step
planner. To generate a desired foot step orientation, we use
the specified yaw angle, assume O roll angle, and estimate
the pitch angle by relative height change from consecutive
foot steps. On rough terrain, orientation tracking is disabled
on the landing foot once we detect a substantial F, on the
force sensor.

E. Stance leg damping

In DARPA’s Virtual Robotics Challenge, rough terrain is
represented by a triangular mesh. If the robot steps onto a
pointed region, the foot contact geometry no longer remains
rectangular, and the foot will “rock” on the “spike”. We
handle this problem by having explicit joint damping on the
stance leg, and adding a term to the QP’s cost function that
penalizes large torque changes from previous time step.

E Joint limits

When some joint is close to its limit, we command a large
acceleration in the other direction to push it back with

4 — Qlower

§* = —10tan <7r (- 0.5>).
Qupper — Glower

G. State estimation

The proposed controller needs estimates of the root posi-
tion, velocity, orientation, angular velocity and all the joint
positions and velocities. All this information is gathered by
several state estimators, which are discussed in depth in [14].

V. RESULTS

The proposed walking controller is tested on a simulated
Boston Dynamics’ Atlas robot in DARPA’s Virtual Robotics
Challenge setting. The Gazebo simulator is produced by the
Open Source Robotics Foundation. We run the simulation
at real time on a computer with Intel Xeon(R) CPU ES5-
2687W CPU with 32G memory. This setup is necessary
for simulating Atlas in the Gazebo simulator at real time
alone. Our proposed controller uses two threads. One thread
is dedicated to the QP solver running at 1 K H z, and the other
computes COM trajectory only when the robot has taken a
step. The QP solver finishes within 0.5ms, and trajectory
optimizer can take up to 50ms depends on the given foot
steps.

Video showing walking using our proposed controller: http://www.
youtube.com/watch?v=1P52k_ZkOHM

http://www.youtube.com/watch?v=lP52k_ZkOHM
http://www.youtube.com/watch?v=lP52k_ZkOHM

—com
6.5f . (== cOMy

—fl

x [m]
)
\
\
h.

.-fId

L
101 102

y [m]

n

85 L L L L)
92 93 94 95 96 97 98 99 100 101 102

time [s]
1.5¢
1 M‘— '
E
N
0.5F
/ N\ yaN
0 A.-!—"-/AM! 1 1 1 1 1 J
92 93 94 95 96 97 98 99 100 101 102
time [s]

(a) COM and foot position tracking on rough terrain

xd [m/s]

L

92 93 94 95 96 97 98 99 100 101 102
time [s]

= comd
Of . - r:omdd
0.5 V

05 L L L L

yd [m/s]

_1)
92 93 94 95 96 97 98 99 100 101 102
time [s]

comd
0.5- | om
0
1 . . 1 1

05 | . \ .)
92 93 94 95 96 97 98 99 100 101 102
time [s]

zd [m/s]

(b) COM velocity tracking on rough terrain

- —— comdd
€ == comdd y
= L
kel
2
5 ,
92 93 94 95 96 97 98 99 100 101 102
— ——comdd
w
= == comdd 4
3 ‘ o
2 i
5 |
92 93 94 95 96 97 98 99 100 101 102
5
@
N
B -5 —— comdd
N - = comdd
_10 |
92 93 94 95 96 97 98 99 100 101 102
time [s]
(c) COM acceleration tracking on rough terrain
Fig. 4. All actual traces are plotted in solid lines, and desired traces

are shown in dashed lines. In left foot traces are shown in red lines,
right foot in green, and COM are plotted in blue. The reference foot points
are set to the heel. (D)] shows velocity tracking of COM. In actual
COM acceleration are computed by finite differencing the velocity trace,
and capped at £3m/s2.

Fig. 5. Snapshots taken for walking on flat ground with 0.7m step length,
and 0.8s period.

A. Flat ground walking

We are able to demonstrate toe push-off and heel-strike
behavior on flat floor walking. We have achieved a maximum
step length of 0.8m. Figure [shows a sequence of snapshots
taken for walking with 0.7m step length, and 0.8s period on
flat ground. The maximum speed we have achieved is on
average 1.14m/s with 0.8m step and 0.7s period on flat
ground.

B. Rough terrain

The proposed controller can handle up to 0.4 rad inclined
slopes, and continuously climb stair steps that are 0.2m high
and 0.4m apart. We are able to successfully walk on the
rough terrain environment provided in the Virtual Robotics
Challenge as well. In order to traverse rough terrain, an A*
planner [15] is used to provide sequences of foot steps, which
are given as input to the proposed controller. The high level
controller takes the foot steps and generates desired foot
and COM trajectories for the low level controller to track.
Figure [shows tracking performance for a segment of the
experiment.

VI. DISCUSSION AND FUTURE WORK

The most important contribution of this work is demon-
strating that we can perform online trajectory optimization
and inverse dynamics in real time to handle rough terrain
and achieve close to human like step length and speed on a
3D full size humanoid robot. Reasoning about COM motion
alone is enough to guide the inverse dynamics controller,
which is a greedy optimizer, through moderate rough terrain
with height and surface normal changes. Another important
point is that our approach does not impose a predefined
criteria on the set of allowable foot steps since trajectories
are optimized online. Control and foot step planning can
be treated as almost completely independent problems. This
feature allows us to develop the foot step planner separately.
Another interesting discovery was explicitly adding toe push-
off and heel-strike between single stance phases. We have

shown that, with a very simple-minded design, we can
achieve these behaviors and push step length and walking
speed closer to those of humans. We will further explore
this issue in future work.

For flat ground walking, the proposed controller is main-
taining constant COM height and torso pitch angle through-
out the entire walking cycle, which is undesirable for achiev-
ing higher speed and larger step length. We think the point
mass model is also limiting performance since it ignores
angular momentum and swing leg dynamics completely.
The current trajectory optimizer implementation uses less
than 10% of its allowable computation time. An immediate
line of research is to expand the COM model to a more
sophisticated one. We can include angular momentum and
orientation [16], switch to a 3D Spring Loaded Inverted
Pendulum (SLIP) model [17] to capture natural arc like
motion observed in human walking, or add a telescoping leg
to capture some simple notion of stance leg configuration
[18]. Another direction would involve simultaneously opti-
mizing many trajectories. Apart from changing models, we
can also take the foot steps (location and timing) as part of
the optimization. These choices can be treated as parameters
in DDP, and be optimized along with the trajectory. We
imagine the foot step planner will hand us foot steps along
with viable regions, and the trajectory optimizer will have
the freedom to pick the foot steps that are most suitable.
This will be one way to have the planner implicitly taking
robot dynamics into consideration.

Our low level controller only greedily optimizes for the
current time step given a set of desired values to track. We
could potentially add some form of a value function as part of
the optimizing criteria to incorporate a notion of the future in
the low level controller. This value function can come from
performing full-blown DDP on a periodic walking pattern
[19], or once again from the trajectory optimization part.

Our biggest concern in applying this approach to real
hardware is handling modeling error. One option is to adopt
a multiple model approach [20] during optimization and
simultaneously consider a distribution of models.

VII. CONCLUSIONS

We have designed a real time walking controller for a
3D full size humanoid robot with online optimization. The
low level controller solves full body floating base inverse
dynamics by formulating it as a Quadratic Programming
problem. The high level controller guides it with trajectories
that are optimized online using simplified models of the
robot. We have successfully applied this approach to both
flat ground and rough terrain walking, which is demonstrated
using a simulated Boston Dynamics’ Atlas robot. We have
also achieved more human like foot step length and walking
speed by explicitly adding toe push-off and heel-strike in a
very simple way.

ACKNOWLEDGEMENT

This material is based upon work supported in part by
the US National Science Foundation (ECCS-0824077, and

[1S-0964581) and the DARPA M3 and Robotics Challenge
programs. Special thanks to Eric Whitman for his help in
implementation and enlightening discussions.

REFERENCES

[1] S. Song and H. Geyer, “Generalization of a muscle-reflex control
model to 3d walking,” in IEEE Engineering in Medicine and Biology
Society (EMBC’13), 2013.

[2] J. M. Wang, S. R. Hamner, S. L. Delp, and V. Koltun, “Optimizing
locomotion controllers using biologically-based actuators and objec-
tives,” in ACM Transactions on Graphics, 2012, pp. Vol. 31, No. 4,
Article 25.

[3] J. M. Wang, D. J. Fleet, and A. Hertzmann, “Optimizing walking con-
trollers for uncertain inputs and environments,” in ACM Transactions
on Graphics, 2010, pp. Vol. 29, No. 4, Article 73.

[4] S. Kajita, F. Kanehiro, K. Kaneko, K. Fujiwara, K. Harada, K. Yokoi,
and H. Hirukawa, “Biped walking pattern generation by using preview
control of zero-moment point,” in Robotics and Automation, 2003.
Proceedings. ICRA ’03. IEEE International Conference on, vol. 2,
2003, pp. 1620-1626 vol.2.

[5] T. Takubo, Y. Imada, K. Ohara, Y. Mae, and T. Arai, “Rough terrain
walking for bipedal robot by using ZMP criteria map,” in Robotics
and Automation, 2009. ICRA '09. IEEE International Conference on,
2009, pp. 788-793.

[6] D. H. Jacobson and D. Q. Mayne, Differential Dynamic Programming.
Elsevier, 1970.

[71 J. Pratt, J. Carff, S. Drakunov, and A. Goswami, “Capture point: A
step toward humanoid push recovery,” in Humanoid Robots, 2006 6th
IEEE-RAS International Conference on, 2006, pp. 200-207.

[8] Y. Ogura, K. Shimomura, H. Kondo, A. Morishima, T. Okubo,
S. Momoki, H. ok Lim, and A. Takanishi, “Human-like walking with
knee stretched, heel-contact and toe-off motion by a humanoid robot,”
in Intelligent Robots and Systems, 2006 IEEE/RSJ International Con-
ference on, 2006, pp. 3976-3981.

[9] B. Stephens, “Push recovery control for force-controlled humanoid
robots,” Ph.D. dissertation, The Robotics Institute, Carnegie Mellon
University, Pittsburgh, August 2011.

[10] E. Whitman and C. Atkeson, “Control of instantaneously coupled
systems applied to humanoid walking,” in Humanoid Robots (Hu-
manoids), IEEE-RAS International Conference on, 2010, pp. 210-217.

[11] M. Mistry, J. Buchli, and S. Schaal, “Inverse dynamics control of
floating base systems using orthogonal decomposition,” in Robotics
and Automation (ICRA), 2010 IEEE International Conference on,
2010, pp. 3406-3412.

[12] L. Righetti, J. Buchli, M. Mistry, M. Kalakrishnan, and S. Schaal,
“Optimal distribution of contact forces with inverse dynamics control,”
International Journal of Robotics Research, pp. 280-298, 2013.

[13] M. Hutter, M. Hoepflinger, C. Gehring, C. D. R. M. Bloesch, and
R. Siegwart, “Hybrid operational space control for compliant legged
systems,” in Proc. of the 8th Robotics: Science and Systems Conference
(RSS), 2012.

[14] X. Xinjilefu, S. Feng, W. Huang, and C. Atkeson, “Decoupled state
estimation for humanoid using full-body dynamics,” in International
Conference on Robotics and Automation, 2014, p. submission.

[15] W. Huang, S. Feng, X. Xinjilefu, and C. Atkeson, “Autonomous
path planning of a humanoid robot on unknown rough terrain,”
in International Conference on Robotics and Automation, 2014, p.
submission.

[16] E. C. Whitman, B. J. Stephens, and C. G. Atkeson, “Torso rotation
for push recovery using a simple change of variables,” in IEEE-RAS
International Conference on Humanoid Robots, 2012.

[17] A. Wu and H. Geyer, “The 3-D spring-mass model reveals a time-
based deadbeat control for highly robust running and steering in
uncertain environments,” Robotics, IEEE Transactions on, vol. PP,
no. 99, pp. 1-11, 2013.

[18] P. A. Bhounsule, “Gait planning and control of a compass gait walker
based on energy regulation using ankle push-off and foot placement,”
in International Conference on Robotics and Automation, 2014, p.
submission.

[19] C. Liu, C. G. Atkeson, and J. Su, “Biped walking control using a
trajectory library,” Robotica, 2012.

[20] E. Whitman and C. Atkeson, “Multiple model robust dynamic pro-
gramming,” in American Control Conference (ACC), 2012, pp. 5998—
6004.

	Introduction
	Trajectory generation
	Differential Dynamic Programming
	Initialization
	Backward pass
	Forward pass
	Double support
	Heel-strike
	Toe push-off

	Full body inverse dynamics
	QP formulation
	QP optimization criteria
	Cartesian space accelerations
	Net external force and center of mass motion
	Center of pressure tracking
	Weight distribution
	Direct tracking and regularization

	Constraints

	Implementation
	Trajectory replanning
	Desired acceleration for the low level controller
	Body orientation tracking
	Foot step orientation
	Stance leg damping
	Joint limits
	State estimation

	Results
	Flat ground walking
	Rough terrain

	Discussion and future work
	Conclusions
	References

