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Abstract— The ParkourBot is an efficient and dynamic climb-

ing robot. The robot comprises two springy legs connected

to a body. Leg angle and spring tension are independently

controlled. The robot climbs between two parallel walls by

leaping from one wall to the other. During flight, the robot stores

elastic energy in its springy legs and automatically releases the

energy to “kick off” the wall during touch down. This paper

elaborates on the mechanical design of the ParkourBot. We use

a simple SLIP model to simulate the ParkourBot motion and

stability. Finally, we detail experimental results, from open-loop

climbing motions to closed-loop stabilization of climbing height

in a planar, reduced gravity environment.

I. INTRODUCTION

This work is inspired in part by the grace, efficiency, and

adaptability of human parkour, sometimes known as free

running. Parkour is the art of moving from place to place

as quickly and efficiently as possible, overcoming obstacles

using leaps, swings, rolls, and other dynamic movements.

Whereas walls, chutes, and trenches are obstacles that may

not be navigable using less dynamic forms of locomotion,

in parkour these “obstacles” are potential sources of reaction

forces for a well-placed hand or foot. For parkour practition-

ers (“traceurs”) to make maximum use of these handholds

and footholds, they must have precise control of their body

dynamics. By taking advantage of dynamics, and by know-

ing the geometry and contact properties (e.g., friction and

restitution) of the environment, the set of reachable states by

parkour is vastly increased over that by more conventional

locomotion.

To proceed efficiently over obstacles, the traceur stores

energy elastically in muscles and tendons, and kinetically in

translation and rotation. These energies can then be directed

to move seamlessly from one task to the next. The climbing

robot in this paper, called ParkourBot, is based on two

dynamic robots which we have previously built. The first,

the BowLeg hopper [1], [2], has high energy efficiency and

requires feedback for stable hopping. The second, the DSAC

– dynamic single actuator climber [3], [4], sacrifices energy

efficiency for stable open-loop climbing of a chute. This

paper describes the design and control of a biped BowLeg
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Fig. 1. Overlay of the ParkourBot climbing motion with the simplified
SLIP model. The ParkourBot is on top of an inclined air-table, providing a
reduced gravity, planar environment.

climber (Fig. 1) that inherits properties of the BowLeg

hopper and the DSAC. The ParkourBot is designed to address

different types of climbing tasks such as simple chutes and

more complex environment having footholds at different

orientations. The current paper focuses on climbing between

two vertical walls with demonstrations in a planar, reduced

gravity environment.

II. RELATED WORK

This work is allied with previous work on dynamically

locomoting robots, particularly hopping, passive dynamic

walking, and running robots, with many legs or as few

as one. The work of Raibert is particularly influential, as

it demonstrated that simple control laws could be used to

stabilize hopping and control the running speed and direction

of 2D and 3D single-leg hoppers [5], [6]. To improve the

energy efficiency of a hopping robot, Brown and Zeglin

introduced the BowLeg hopper, which can traverse a series

of stepping stones [1], [7], [2]. The BowLeg is a key design

element in the current ParkourBot design.

To facilitate analysis and control design of running and

walking robots, it is convenient to develop simplified models

which nonetheless retain the essential character of the orig-

inal physical system. Two examples are the spring-loaded

inverted pendulum (SLIP) model of running robots [8], [9],
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[10] and the “simplest walking model” [11]. Such models can

be used to extract important relationships between design and

control parameters and performance. For example, Kuo used

the simplest walking model to demonstrate that applying an

impulse at toe-off is a more energy-efficient way to inject

energy into a walker than applying a torque to the stance

leg [12]. In the current work, we develop a simplified model

of the ParkourBot to analyze the open-loop dynamic stability

in the chute-climbing task. Our chute-climbing task may be

viewed as “vertical running,” in that our goal is to stabilize

a desired limit cycle motion, as in running robots.

Other dynamic multi-legged running robots include

RHex [13], the Whegs (wheel-legs) robots [14], and

Sprawlita [15]. These robots use compliant legs that allow

them to both scramble over obstacles and locomote relatively

efficiently on flat ground.

One aspect of this work that differs from the work de-

scribed above is that locomotion occurs largely in the vertical

direction. While a number of robots have been designed

for climbing locomotion, they are mostly quasistatic. The

Alicia3 robot climbs walls by using pneumatic adhesion at

one or more of three “cups” connected by two links [16].

The climbing robots in [17], [18] climb by kinematic or

quasistatic bracing between opposing walls. The four-limbed

free-climbing LEMUR robot goes up climbing walls by

choosing a sequence of footholds and motions that keep the

robot in static equilibrium at all times [19]. Gecko-inspired

directional dry adhesives allow Stickybot and Waalbot to

climb vertical, smooth surfaces such as glass [20], [21], and

the RiSE and SpinybotII robots climb soft or rough walls

using spined feet to catch on asperities in the wall [22],

[23]. Unlike the quasistatic climber, a few mechanisms [24],

[25] have been proposed to achieve a vertical climbing task

using dynamic motions while using spines to attach to car-

peted surfaces. The current ParkourBot has no adhesives or

clamping mechanisms and cannot maintain height statically.

Like runners, we use dynamics and relay on reaction forces

inside a friction cone, but unlike runners, our footholds, and

desired net motion, are aligned with gravity.

III. MECHANICAL DESIGN

As mentioned previously, this current ParkourBot is based

on the BowLeg hopper [1]. However, in order to adapt it

to a climbing scenario, we have decreased the size and have

implemented a new mechanism design. This section will first

explain the previous BowLeg concept and later review some

of the new mechanism design components.

A. BowLeg design

The BowLeg [26], a robotic leg concept developed at

Carnegie Mellon, integrates the functions of structure and

spring into a lightweight leg. As shown in Fig. 2, the

BowLeg resembles an archer’s bow, with the hip joint at

one end and the foot at the other end of the bow. Made of

unidirectional fiberglass (“bow glass”), the BowLeg can store

a large amount of elastic energy, typically enough to lift its

own weight 50 meters vertically. The concept of a single-leg

Leg Retracted 

Leg Compressed 

Leg Extended 

Fig. 2. Schematics of the BowLeg monopod (reprinted with permission
from [2]).

Fig. 3. Schematic of the prototype thrust mechanism which stores energy
in the leg during flight. The cycle begins in the relaxed state (A). During
winding (B), the servo disk rotates, the drive pulley engages the bowstring,
and the displacement of the bowstring compresses the leg (not shown). The
energy stored in the cocked position (C) is a function of rotation angle.
During the impact (D), the string goes slack, the face spring (not shown)
nudges the bowstring off the pulley, and the leg extends to full length.
Not shown are the servo body or the leg. The winding direction and string
displacement alternate left-right. Reprinted from [1] c©[1998 IEEE].

hopping machine using BowLeg technology is illustrated in

Fig. 2. When the BowLeg hopper is in flight, a low-power

actuator stores energy in the BowLeg by tensioning a string

attached to the foot. A separate actuator uses control strings

to position the leg for the next impact. Upon impact, the

string becomes slack and the BowLeg quickly releases its

stored energy. The leg rotates freely about a hip joint, so

that the foot matches ground speed without actuation, and

no attitude-disturbing torque is transmitted through the joint.

Hopping motion is controlled by choosing the angle of the

leg at impact and the amount of energy stored in the BowLeg

during flight. A special clutch mechanism (Fig. 3) is used to

release the leg when impact with the floor occurs.
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Fig. 4. CAD design of the ParkourBot mechanism.

B. ParkourBot design overview

The current ParkourBot depicted in Fig. 4 comprises five

primary parts: disk, BowLeg, leg angle control mechanism,

retract mechanism, and a gyro-stabilizer. The disk, the main

body of the robot, floats on top of an inclined air-table in

order to planarize the system while enabling lower effective

gravity. The BowLeg includes a thin, unidirectional fiberglass

strip that provides the main leg structure and elastic energy

storage; the hip lever that softens the leg stiffness and

connects to the hip; the bow string that passes through the

hip, connecting the foot to the retract mechanism; and a

rubber foot pad that enhances foot traction. The remaining

parts of the climber are described below.

C. Retract mechanism

The retract mechanism pulls on the bow string and stores

potential energy in the springy BowLeg. It also includes a

clutch to release the spring energy when the string goes

slack during stance. As shown for the BowLeg Hopper in

Fig. 3, when the leg contacts the wall, the string slackens and

the clutch disengages the string from the retract arm. This

enables the BowLeg to fully extend and “kick” the wall. The

initial design of the retract mechanism for the climber was

a miniature version of this, but reliable release of the string

could not be achieved at the smaller scale. A new mechanism

was conceived and built, as shown in Fig. 5. In the current

design, a telescoping slider (green) engages the driven arm

(orange) when the string is under tension, allowing the arms

to move together, pull the string and retract the leg. When

the string goes slack due to foot contact with the wall, the

slider retracts and disengages from the drive arm, releasing

the stored energy when the foot lifts off the wall.

D. Gyro-stabilizer

To maintain a constant orientation of the main body of

the robot in the ẑ direction, we have implemented a gyro-

stabilizer. The gyro-stabilizer is a fast spinning flywheel

mounted on a single-axis gimbal. The gyro spin axis is

nominally aligned with the air table surface and the “vertical”

axis (ŷ) of the climber. The gimbal permits the gyro to

precess about the x̂-axis, stabilizing the attitude about the

ẑ-axis. A motor and potentiometer attached to the gimbal

axis allow active correction of the body orientation. In our
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(a) (b)

(c) (d)

Fig. 5. Retract mechanism sequence. The string is marked with an ‘x’
for length reference. (a) Leg extended, telescope slider fully extended. (b)
Servo arm rotates and engages (couples) with latch pin. (c) Servo arm and
telescope slider rotate together to retract leg. After wall impact, string goes
slack and the spring pulls the telescope slider back. This causes the latch
pin to disengage. (d) The telescope slider is pulled back to center by tension
in the bow string. While leg extends and tension builds back in the string,
the telescope slider extends and the sequence repeats.

experiments, where the goal is to keep the body orientation

constant, such corrections are rarely needed.

IV. MODELING

A two-legged SLIP model is used for our mechanism.

Two massless legs with rest length l0 and stiffness k are

attached to a point mass m as in Fig. 6. Leg angle ψ0 and leg

length ζ0 at touch down are the controls of the system, where

ζ0 ≤ l0 determines the energy stored in the leg. Two parallel

walls are at distance d apart, the gravitational acceleration

is g and we assume no slip at contact. The inertial frame

is centered between the walls. An entire stride of the SLIP

model is composed of flight phase, touch down, stance phase,

lift off and back to flight phase. Despite the simplicity of

the model, during stance phase the system is a two degree-

of-freedom Hamiltonian system without an explicit solution.

Thus analysis and simulation in the later sections are done

numerically in MatlabT M .

During flight phase, the motion is ballistic and integrable,

with configuration variables (x,y). During stance phase it is

convenient to replace the cartesian coordinates with polar

coordinates and represent the configuration as (ζ ,ψ). Since

the leg is massless, touch down occurs without impact when

the end of the leg touches the ground. Lift off occurs when

the leg length ζ reaches the spring resting length, l0, and ζ̇
is positive. After liftoff the leg angle repositions back to ψ0.

To better capture the physical system, we add two damping

terms to the stance phase equations of motion, cζ and cψ ,
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(a) (b)

Fig. 6. Mechanism schematics and configuration variables: (a) configura-
tion variables during stance phase; (b) one full sequence including touch
down on right wall, stance phase and flight phase toward left wall.

acting along the leg and at the pivot with the wall.

The Lagrangian in polar coordinates during stance phase

is

L =
1

2
m(ζ̇ 2 +ζ 2ψ̇2)− k

2
(l0 −ζ )2 −mgζ sin(ψ). (1)

To find the nondimensional equations, we rescale with char-

acteristic length l0 and characteristic time

√
l0
g

. This converts

the system into nondimensional variables ζ̂ = ζ
l0

, ψ̂ = ψ and

t̂ =
√

g
l0

t. The nondimensional Lagrangian becomes

L̂ =
1

2
mgl0(

˙̂
ζ 2 + ζ̂ 2 ˆ̇ψ2)− k

2
l0

2(1− ζ̂ )2 −mgl0ζ̂ sin(ψ̂). (2)

After adding viscous damping for both linear and rotational

motion during stance phase we arrive at a set of nondimen-

sional equations of motion

¨̂
ζ = α −αζ̂ + ζ̂ ˙̂ψ2 − sin(ψ̂)− ĉζ

˙̂
ζ

¨̂ψ = − 1

ζ̂
(cos(ψ̂)−2

˙̂
ζ ˙̂ψ)− ĉψ

˙̂ψ, (3)

where α = kl0
mg

is the ratio between the maximum spring force

and the gravitational force. The ratio α gets larger as the

spring gets stiffer or gravity shrinks.

V. ANALYSIS AND SIMULATION

For the analysis section and the experimental section

we use the parameters in Table I. The BowLeg spring

coefficient, k, was empirically approximated by measuring

the displacement to a known load. Damping coefficients, cζ

and cψ , were approximated from experimental data and drop

tests. In the experimental setup, limited leg thrust allowed

climbing in effective gravity less than 2 m
s2 .

A. Poincaré map and Poincaré section

The bipedal SLIP model is a hybrid system characterized

by separate continuous flows (flight / stance phase) connected

by discrete transitions (touch down / lift off). We use a

Poincaré map to convert the hybrid system into a discrete-

time system. Using the symmetry of the system we “flip”

TABLE I

PARAMETERS FOR ANALYSIS AND EXPERIMENT SECTIONS

Dimensional Parameters

Parameter Description Value

m body mass 1.54 kg

l0 leg rest length 0.223 m

d wall width 0.54 m

k leg spring stiffness 525 N
m

g gravitational acceleration 0.98 m
s2

cζ damping coef. 1 Ns
m

cψ damping coef. 1 Ns

Nondimensional Parameters

α nondimensional (ND) force -
kl0
mg

77.57

d̂ ND wall width - d
ζ0

2.42

ĉζ Damping coef. -
cζ√
g/l0

0.4770

ĉψ Damping coef. -
cψ

g/l0
0.2276

coordinates during touch down at the right wall and define

the Poincaré map as a jump from the left wall to the right

wall back to stance phase at the left wall. We choose the

Poincaré section at touch down after the coordinate “flip”.

The touch down position x is calculated from ζ0 and ψ0. The

state variable y does not appear in the Poincaré section. We

do not want to stabilize it, and due to the vertical symmetry

it does not appear in the equations of motion for the other

state variables. We are left with only two state variables, ẋ

and ẏ, in our Poincaré section.

B. Fixed-point and local stability

A period-n fixed-point is a point on the Poincaré section

that is mapped back to itself after applying the Poincaré

map P n times. To find a period-n fixed-point q∗, with the

controls ζ0 and ψ0 fixed, we use the Levenberg-Marquardt

gradient descent method ([27]) to find the zeros of Pn(q)−q,

where n is the periodicity of the desired fixed point, and q is

the state on the Poincaré section. The gradient is calculated

numerically.

To find the local stability of an orbit, we linearize around

the fixed-point by computing a forward difference approxi-

mation to the Jacobian. A fixed-point is stable if and only

if both of its eigenvalues are inside the unit circle in the

complex plane.

In experiments, we have noticed an asymmetry of the two

leg controls due to imperfection of the servo motor controller.

To simulate this asymmetry, we introduce alternating controls

(ψ0 and ζ0) between Poincaré maps. On odd jumps, ψ0L,ζ0L

are used, while on even jumps, ψ0R,ζ0R are used. For the

symmetric case with identical controls, we searched for

stable period-1 motions. Depending on the fixed controls and

the initial conditions of the search, we found representative

stable period-1 gaits for descending, jumping in place, and

climbing upwards. For the asymmetric case, we found stable

period-2 and period-4 gaits for climbing, jumping in place,

and descending. We did not search exhaustively for all stable

gaits over all possible controls, and the solutions shown here

are local attractors for particular gradient searches we tried.

Fig. 7 depicts a stable period-1 gait for the symmetric case,
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(a) stable period-1 with symmetric controls
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(b) stable period-2 with asymmetric controls
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(c) stable period-4 with asymmetric controls

Fig. 7. Trajectories and fixed-points of stable gaits. Left column shows
the trajectory of two cycles starting from a fixed-point (red circle), and
right column shows the fixed-points on the Poincaré section (red ’+’). The
magnitudes of the maximum eigenvalues are 0.9007, 0.8652 and 0.5746

respectively. Controls: (a) ψ0L = ψ0R = 30◦ and ζ̂0L = ζ̂0R = 0.93. (b) ψ0L =
ψ0R = 30◦, ζ̂0L = 0.87 and ζ̂0R = 0.9. (c) ψ0L = 30◦, ψ0R = 35◦, ζ̂0L = 0.9
and ζ̂0R = 0.95.

and stable period-2 and period-4 gaits for the asymmetric

case.

C. Varying energy input

As Fig. 8 shows, there is a high correlation between energy

input (the amount of leg retraction) and the stability of the

system. Higher input energy corresponds to higher local

stability and a larger basin of attraction. We vary the energy
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Fig. 8. Varying ζ̂0 with symmetric controls. All fixed-points are period-

1 motions. Green line / plane indicates critical ζ̂0 for jumping in place,
leg lengths to the right of green line / plane correspond to climbing down.
Upper graph shows the maximum magnitude of eigenvalue of the Jacobian

for the fixed-point given ζ̂0. Lower graph shows the basin of attraction for
various energy levels.
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Fig. 9. Experimental setup: air table and tracking system.

input by changing the amount of leg retraction, then compute

the basin of attraction and fixed-point for that particular leg

retraction.

VI. EXPERIMENTS

A. Experimental setup

We use a tilted air table (see Fig. 9) as the testbed,

which enforces the planar constraint on the ParkourBot, and

provides an easy way to change the effective gravity by

tilting the table. Since the contact between the ParkourBot

and the table is frictionless, this setup is equivalent to pure

vertical climbing in a reduced gravity environment. Friction

between the rubber foot and wall was observed to be about

μ = 2.0, thus making foot slipping rare. A NaturalPointT M

FLEX V100 IR camera is mounted above the air table. The

camera provides positions of all IR reflectors to a PC, which

communicates with the robot over wireless XBee protocol.

Mechanism and environment parameters are given in Table I.
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(b) Period-4

Fig. 10. Experimental data of open-loop climbing: climbing trajectory (left
column), height y vs. time (middle column), where the red circle indicates
the Poincaré section, and Δy between pairs of consecutive states on Poincaré
section (right column). (a) Stable period-2 climbing up. (b) Stable period-4
climbing up.

B. Open-loop experimental results

The goal of the open-loop experiments was to verify

our analysis results, particularly the existence of period-

1, period-2, and period-4 stable cycles, and the correlation

of stability with input energy. We readily observed stable

period-2 and period-4 motions (Fig. 10), but not period-1

motions, perhaps due to the asymmetric leg angles noted

earlier. To measure stability we use Mean Jumps To Failure

(MJTF), similar to [28]. We chose ten different energy levels

and ran eight experiments for each energy level. For each

individual experiment, we counted the number of jumps

before crash, as seen in Fig. 11. This plot correlates to our

simulation results in Fig. 8, showing how the system is more

stable when the input energy is increased. Typically the main

failure mode is the body orientation drifting to the point

where the state of the robot exits the basin of attraction.

C. Closed-loop experimental results

The goal of the closed-loop experiments was to assess

the feasibility of stabilizing the vertical height of the robot.

We determine height error from IR tracker data at the

Poincaré section (at touch down), and use a PID controller

to determine energy input for the next touch down. Fig. 12

shows the successful stabilization at a height of 55 cm. See

supplementary attachment for a video of this experiment.
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Fig. 11. Mean Jumps To Failure (MJTF) vs. leg retraction ζ̂0. Vertical axis
shows the average number of jumps before crash, with error bars represent-

ing the standard deviation. Leg retraction ζ̂0 was roughly approximated.
Eight experiments are conducted for each energy level.
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(a) Trajectory
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(b) Height vs. time

Fig. 12. Experimental data of closed-loop climbing reaching a desired
height of 55 cm: (a) climbing trajectory; (b) height y vs. time.
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D. Discussion

While there is qualitative agreement between simulation,

analysis, and experiment, there are also differences arising

from modeling approximations and the limitations of our

experimental apparatus. While we model the robot body

as a point mass, the actual robot body has pitch which

drifts, ultimately leading to failure when leg angles reach

joint limits. We have already noted the asymmetry in the

robot mechanism, which may be responsible for the lack

of observed period-1 stable gaits. We also lack an accurate

launching mechanism. Finally, since the most stable gaits

involve the most rapid climbing, our most successful exper-

iments are limited by the height of tilted table.

VII. CONCLUSIONS

This paper demonstrates the use of dynamic leaping

maneuvers of a two legged robot to traverse up a vertical

channel. By storing elastic energy in the springy legs during

flight phase the robot is able to kick off and release this

energy during impact with the walls. We use a simplified

SLIP model to understand the dynamics and stability of

the robot and show correlation to experiments. Currently,

our prototype is able to achieve a relatively simple task of

climbing inside a chute in a reduced gravity, planar environ-

ment. We intend to continue and push the capabilities of the

ParkourBot to climb in more complex environments such as

ones with random footholds at different orientations while

controlling foot placement. To do so, we intend to further

test different spring materials, different thrust mechanisms

and enhance the control capabilities of the mechanism.
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