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1 Introduction

The creation of three-dimensional models of existing architectural scenes with the aid of the computer has
been commonplace for some time, and the resulting model s have been both entertaining virtual environments
aswell asvauablevisudizationtools. Large-scd e effortshave pushed the campuses of |owa State University,
CdliforniaState University — Chico, and swaths of downtown Los Angeles[23] throughthe graphics pipeline.
Unfortunately, the modeling methods employed in such projects are very labor-intensive. They typicaly in-
volvesurveyingthesite, locating and digitizingarchitectura plans(if available), and converting existing CAD
data (if available). Moreover, the renderings of such mode s are noticeably computer-generated; even those
that employ large number of texture-maps generally fail to resemble real photographs.

Already, effortsto build computer models of architectural scenes have produced many interesting appli-
cationsin computer graphics; afew such projectsare shownin Fig. 1. Unfortunatdly, the traditional methods
of constructing models (Fig. 2a) of existing architecture, in which a modeling program is used to manually
position the e ements of the scene, have several drawbacks. First, the process is extremely labor-intensive,
typicaly involving surveying the site, locating and digitizing architectural plans (if available), or converting
existing CAD data(again, if available). Second, itisdifficultto verify whether theresulting model isaccurate.
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Figure 1: Three ambitious projectsto model architecture with computers, each presented with arendering of
the computer model and a photograph of the actual architecture. Top: Soda Hall Walkthru Project [47, 19],
University of Caiforniaat Berkeley. Middle: GizaPlateau M odeling Project, University of Chicago. Bottom:
Virtua Amiens Cathedral, Columbia University. Using traditional modeling techniques (Fig. 2a), each of
these modedls required many person-months of effort to build, and athough each project yielded enjoyable
and useful renderings, the results are qualitatively different from actual photographs of the architecture.

4-2



Most disappointing, though, isthat the renderings of the resulting model s are noti ceably computer-generated;
even those that employ liberal texture-mapping generally fail to resemble real photographs. Asaresult, itis
easy to distinguishthe computer renderings from the real photographsin Fig. 1.

Recently, creating models directly from digital images has received increased interest in both computer
visionand in computer graphicsunder thetitle of image-based modeling and rendering. Sincerea imagesare
used as input, such an image-based system (Fig. 2¢) has an advantage in producing photorealistic renderings
asoutput. Some of these promising systems (e.g. [26, 32, 31, 44, 39], see also Figs. 3 and 4) employ the com-
puter vision technique of computational stereopsis to automatically determine the structure of the scene from
the multiplephotographsavailable. Asaconsequence, however, these systemsare only as strong as theunder-
lying stereo algorithms. This has caused problems because state-of-the-art stereo a gorithms have a number
of significant weaknesses; in particular, the photographs need to have similar viewpointsfor reliable results
to be obtained. Because of this, current image-based techniques must use many closely spaced images, and
in some cases empl oy significant amounts of user input for each image pair to supervise the stereo agorithm.
In thisframework, capturing the data for aredistically renderable model would require an impractical num-
ber of closaly spaced photographs, and deriving the depth from the photographs could require an impractical
amount of user input. These concessions to the weakness of stereo algorithmswould seem to bode poorly for
creating large-scale, freely navigable virtua environmentsfrom photographs.

The techniques presented in these notes aim to make the process of obtai ning basic models of architectural
scenes more convenient, moreaccurate, and more photorealisticthan the methods currently available. The ap-
proach devel oped draws on the strengths of both geometry-based and image-based methods, asillustrated in
Fig. 2b. Theresult isthat our approach to modeing and rendering architecture requires only a sparse set of
photographsand can produce redlistic renderingsfrom arbitrary viewpoints. In our approach, abasic geomet-
ric model of the architecture isrecovered semi-automatically with an easy-to-use photogrammetric modeling
system (explained in the following reprinted paper [12]), novel views are created using view-dependent tex-
ture mapping [12, 13], and additional geometric detail can be recovered through model-based stereo corre-
spondence[12, 10]. Thefinal images can be rendered with current image-based rendering techniques or with
traditional texture-mapping hardware. Because only photographs are required, our approach to modeling ar-
chitectureis neither invasive nor doesit requirearchitectural plans, CAD models, or speciaized instrumenta
tion such as surveying equipment, GPS sensors or |aser range scanners.

2 Work Related to Photogrammetric Modeling

The process of recovering 3D structure from 2D images has been a central endeavor within computer vision,
and the process of rendering such recovered structuresis an emerging topic in computer graphics. Although
no genera technique exists to derive models from images, severa areas of research have provided results
that are applicable to the problem of modeling and rendering architectura scenes. The particularly relevant
areas reviewed here are: Camera Calibration, Structure from Motion, Shape from Silhouette Contours, Stereo
Correspondence, and |mage-Based Rendering.

2.1 Cameracalibration

Recovering 3D structure from images becomes a simpler problem when the images are taken with calibrated
cameras. For our purposes, a camerais said to be calibrated if the mapping between image coordinates and
directions relative to the camera center are known. However, the position of the camera in space (i.e. its
trang ation and rotati on with respect to world coordinates) isnot necessarily known. An excellent presentation
of the algebraic and matrix representations of perspective cameras may befound in[17].

Considerable work has been done in both photogrammetry and computer vision to calibrate cameras and
lenses for both their perspective intrinsic parameters and their distortion patterns. Some successful methods
include [49], [16], and [15]. While there has been recent progress in the use of uncaibrated views for 3D
reconstruction [18], this method does not consider non-perspective camera distortion which prevents high-
precision resultsfor imagestaken withrea cameras. Wehavefound camera calibrationto be astraightforward
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Figure 2: Schematic of how our hybrid approach combines geometry-based and image-based approaches to
modeling and rendering architecture from photographs. The geometry-based approach illustrated places the
majority of the modeling task on the user, whereas the image-based approach places the mgjority of the task
on the computer. Our method divides the modeling task into two stages, one that is interactive, and one that
isautomated. The dividing point we have chosen capitalizes on the strengths of both the user and the com-
puter to produce the best possible model sand renderings using the fewest number of photographs. The dashed
linein the geometry-based schematic indicates that images may optionally be used in amodeling program as
texture-maps. The dashed linein theimage-based schematic indicates that in some systems user input is used
toinitializethe stereo correspondence algorithm. The dashed linein the hybrid schematic indicatesthat view-
dependent texture-mapping (discussed later inthese notesand in[10, 13, 36]) can be used without performing
stereo correspondence.
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Figure 3: The Immersion ' 94 [32] stereo image sequence capture rig, being operated by Michael Naimark of
Interval Research Corporation. Immersion ' 94 was one project that attempted to create navigable, photoreal -
istic virtual environmentsfrom photographic data. The stroller supportstwo identical 16mm movie cameras,
and has an encoder on one whedl to measure the forward motion of the rig. The cameras are motor-driven
and can be programmed to take picturesin synchrony at any distanceinterval as the camerarollsforward. For
much of the work done for the Immersion project, the forward motion distance between acquired stereo pairs
was one meter.

process that considerably simplifies the problem of 3D reconstruction, although the methods presented here
can aso solve for focal lengths and other intrinsic parameters if necessary. [10], Chapter 4 provides a more
detailed overview of the issues involved in camera calibration and discusses the camera calibration process
used in thiswork.

2.2 Structurefrom motion

Giventhe 2D projection of apointintheworld, itspositionin 3D space could be anywhere on aray extending
out in a particular direction from the camera's optical center. However, when the projections of a sufficient
number of pointsin the world are observed in multipleimages from different positions, it is mathematically
possible to deduce the 3D locations of the points as well as the positions of the origina cameras, up to an
unknown factor of scale.

This problem has been studied in the area of photogrammetry for the principa purpose of producing topo-
graphic maps. In 1913, Kruppa[25] proved the fundamental result that given two views of five distinct points,
one could recover the rotation and translation between the two camera positions as well as the 3D locations
of the points(up to asca e factor). Sincethen, the problem’smathematical and algorithmic aspects have been
explored starting from the fundamental work of Ullman [51] and Longuet-Higgins[29], in the early 1980s.
Faugeras'sbook [17] overviewsthe state of theart as of 1992. So far, akey realization has been that the recov-
ery of structure isvery sensitive to noise in image measurements when the trand ation between the available
camera positionsis small.

Attention has turned to using more than two views with image stream methods such as [48] or recursive
approaches [1]. Tomas and Kanade [48] (see Fig. 5) showed excdlent results for the case of orthographic
cameras, but direct solutions for the perspective case remain dusive. In general, linear algorithms for the
problem fail to make use of al availableinformationwhile nonlinear optimization methods are proneto diffi-
cultiesarising fromlocal minimain the parameter space. An aternativeformulation of the problem by Taylor
and Kriegman [46] (see Fig. 6) useslinesrather than pointsasimage measurements, but the previoudly stated
concernswere showntoremain largely valid. For purposesof computer graphics, thereisyet another problem:
the model s recovered by these algorithms consist of sparse point fields or individual line segments, which are
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Figure 4: The Immersion ' 94 [32] image-based modeling and rendering (see Fig. 2c) project. The top two
photosare astereo pair (reversed for cross-eyed stereo viewing) taken withtheapparatusin Fig. 3in Canada's
Banff National Forest. Thefilm framewas overscanned to assistinimageregistration. The middleleft photois
astereo disparity map produced by aparallel implementation of the Zabih-Woodfill stereo algorithm [55]. To
itsright the map has been processed using a left-right consistency check to invalidate regions where running
stereo based on the left image and stereo based on the right image did not produce consistent results. Below
are two virtual views generated by casting each pixel out into space based on its computed depth estimate,
and reimaging the pixelsinto novel camera positions. On the left is the result of virtually moving one meter
forward, on theright is the result of virtually moving one meter backward. Note the dark de-occluded areas
produced by thesevirtual camera moves; these areas were not seen intheorigina stereo pair. Inthelmmersion
'94 animations, these regions were automatically filled in from neighboring stereo pairs.
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Figure5: Images from the 1992 Tomasi -K anade structurefrom motion paper [48]. Inthis paper, feature points
were automatically tracked in an image sequence of amodel house rotating. By assuming the camerawas or-
thographi ¢ (which was approximated by using a telephoto lens), they were able to solve for the 3D structure
of the pointsusing a linear factorization method. The above | eft picture shows a picture from the original se-
guence, the above right picture shows a second image of the model from above (not in the original sequence),
and the plot below showsthe 3D recovered pointsfrom the same camera angle as the above right picture. Al-
though an el egant and fundamental result, thisapproach isnot directly applicableto real-world scenes because
real camera lenses (especialy thosetypically used for architecture) are too wide-angle to be approximated as
orthographic.
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Figure 6: Images from the 1995 Taylor-Kriegman structure from motion paper [46]. In thiswork, structure
from motionisrecast in terms of line segments rather than points. A principal benefit of thisisthat line fea-

tures are often more easily located in architectural scenes than point features. Above are two of eight images
of a block scene; edge correspondences among the images were provided to the algorithm by the user. The
algorithm then employed a nonlinear optimi zation techniqueto solvefor the 3D positionsof theline segments
as well asthe original camera positions, show below. Thiswork used calibrated cameras, but allowed afull

perspective model to be used in contrast to Tomasi and Kanade [48]. However, the optimization technique
was proneto getting caught inlocal minimaunlessgood initial estimates of the camera orientationswere pro-
vided. Thiswork was extended to become the basis of the photogrammetric modeling method presented in

this section of these notes.
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not directly renderable as solid 3D models.

In our approach, weexpl oit thefact that we are trying to recover geometric model s of architectural scenes,
not arbitrary three-dimensional point sets. Thisenablesusto includeadditiona constraintsnot typically avail-
able to structure from motion algorithms and to overcome the problems of numerical instability that plague
such approaches. Our approach is demonstrated in an interactive system for building architectura models
from photographs, described in the following paper.

2.3 Shapefrom silhouette contours

Some work has been done in both computer vision and computer graphics to recover the shape of objects
from their silhouette contoursin multipleimages. If the camera geometry isknown for each image, then each
contour defines an infinite, cone-shaped region of space within which the object must lie. An estimate for
the geometry of the object can thus be obtained by intersecting multiple such regions from different images.
Asagreater variety of views of the object are used, thistechnique can eventually recover theray hull® of the
object. A simpleversion of the basic techniquewas demonstrated in[8], showninFig. 7. Inthisproject, three
nearly orthographic photographs of a car were used to carve out its shape, and the images were mapped onto
thisgeometry to produce renderings. Although just three viewswere used, the recovered shapeisclosetothe
actual shape because the views were chosen to align with the mostly boxy geometry of the object. A projectin
which a continuous stream of views was used to reconstruct object geometry ispresented in [45, 44]; see dso
Fig. 8. A similar silhouette-based technique was used to provide an approximate estimate of object geometry
to improve renderings in the Lumigraph image-based modeling and rendering system [20].

In modeling from silhouettes, qualitatively better results can be obtained for curved objects by assuming
that the object surface normal is perpendicular to the viewing direction at every point of the contour. Using
this constraint, [43] devel oped a surface fitting technique to recover curved models from images.

In general, silhouette contours can be used effectively to recover approximate geometry of individual ob-
jects, and the process can be automated if thereisknown camera geometry and the objects can beautomatically
segmented out of theimages. Silhouette contours can also be used very effectively to recover the precise ge-
ometry of surfaces of revolutioninimages. However, for the general shape of an arbitrary building that has
many sharp corners and concavities, silhouette contours alone can not provide adequately accurate model ge-
ometry.

Although not adequate for genera building shapes, silhouette contours could be useful in recovering the
approximate shapes of trees, bushes, and topiary inarchitectura scenes. Techniquessuch asthosepresentedin
[35] could then be used to synthesize detail ed plant geometry to conform to the shape and type of the origina
flora. Thistechniquewould seem to hold considerably more promisefor practically recovering plant structure
than trying to reconstruct the position and coloration of each individua leaf and branch of every treein the
scene.

2.4 Stereo correspondence

The geometrical theory of structure from motion assumes that one is able to solve the correspondence prob-
lem, whichisto identify the pointsin two or more images that are projections of the same point in the world.
In humans, corresponding pointsin the two slightly differing images on the retinas are determined by the vi-
sual cortex in the process called binocular stereopsis. Two terms used in reference to stereo are baseline and
disparity. The baseline of astereo pair isthe distance between the camera locations of the two images. Dis-
parity refers to the difference in image location between corresponding features in the two images, whichis
projectively related to the depth of the feature in the scene.

Years of research (e.g. [2, 14, 21, 24, 30, 33, 34]) have shown that determining stereo correspondences by
computer is difficult problem. In general, current methods are successful only when theimagesare similarin
appearance, asinthe case of human vision, whichisusualy obtained by using cameras that are closely spaced

1Theray hull of an object isthe complement of the union of all raysin spacewhich do not intersect the object. Theray hull can capture
some forms of object concavities, but not, in general, complicated concave structure.
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Figure7: Imagesfromthe 1991 Chevette M odeling project [8]. Thetop threeimages show picturesof the 1980
Chevette photographed witha210mm lensfrom thetop, side, and front. The Chevette was semi-automatically
segmented from each image, and theseimages were then registered with each other approximating the projec-
tionas orthographic. Theregistered photographsare shown placed in proper rel ation to each other onthefaces
of arectangular box in the center of the figure. The shape of the car is then carved out from the box volume
by perpendicularly sweeping each of the three silhouettes like a cookie-cutter through the box volume. The
recovered volume (shown insidethe box) isthen textured-mapped by projecting theorigina photographsonto
it. The bottom of the figure shows a sampling of frames from a synthetic animation of the car flying across
the screen.  Although (and perhaps because) the final mode has flaws resulting from specularities, missing
concavities, and imperfect image registration, it unequivocally evokes an uncanny sense of the actual vehicle.
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Figure 8: Images from a silhouette modeling project by Rick Szeliski [45, 44]. The cup was videotaped on
a rotating platform (left), and the extracted contours from this image sequence were used to automatically
recover the shape of the cup (right).

relative to the objects in the scene. Asthe distance between the cameras (often called the baseline) increases,
surfaces in the images exhibit different degrees of foreshortening, different patterns of occlusion, and large
disparitiesin their locationsin the two images, al of which makes it much more difficult for the computer to
determine correct stereo correspondences. To be more specific, the mgjor sources of difficulty include:

1. Foreshortening. Surfaces in the scene viewed from different positions will be foreshortened differ-
ently intheimages, causing theimage nel ghborhoodsof corresponding pixelsto appear dissimilar. Such
dissimilarity can confound stereo algorithms that use local similarity metrics to determine correspon-
dences.

2. Occlusions. Depth discontinuitiesin theworld can create half-occluded regionsin an image pair, which
also poses problemsfor local similarity metrics.

3. Lack of Texture. Where there is an absence of image intensity features it is difficult for a stereo ago-
rithm to correctly find the correct match for a particular point, since many point neighborhoodswill be
similar in appearance.

Unfortunately, the dternative of improving stereo correspondence by using images taken from nearby |o-
cations has the disadvantage that computing depth becomes very sensitive to noise in image measurements.
Since depthis computed by taking the inverse of disparity, image pairswith small disparitiestend to giverise
to noisy depth estimates. Geometrically, depth is computed by triangulating the position of a matched point
from its imaged position in the two cameras. When the cameras are placed close together, thistriangle be-
comes very narrow, and the distance to its apex becomes very sensitiveto the angles at itsbase. Noisy depth
estimates mean that nove viewswill become visually unconvincing very quickly asthevirtua camera moves
away from the original viewpoint?.

Thus, computing scene structure from stereo |eaves us with a conundrum: image pairs with narrow base-
lines (relative to the distance of objectsin the scene) are similar in appearance and make it possible to auto-

2Theerror present in asynthetic view asafunction of stereo correspondenceaccuracy can be described asthere-rendering equation.
If the novel view is at the same position as the original view, then no amount of depth estimation error can effect the appearance of the
re-rendered view; it will lwaysbethe sameastheoriginal view up to rotation. However, if the novel view is displaced up to onebaseline
away from the original view, then a stereo correspondenceerror of n pixelswill cause up to n pixels of error in the reprojected position
of the mis-corresponded pixel. For a displacement up to k baselines away from the original viewpoint, the reprojection error will be up
to kn pixelsin the reprojected view, with this bound realized if the cameramotion is parallel to the baseline between the cameras. Thus,
itisadvisableto limit novel viewpointsto be within afew baselines of the original views, lest correspondenceerrors distort the images
very noticeably.
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matically compute stereo correspondences, but give noisy depth estimates. Image pairs with wide baselines
can givevery accurate depth localization for matched points, but the images usually exhibit large disparities,
significant regions of occlusion, and different forms of foreshortening which makes it very difficult to auto-
matically determine correspondences.

In these notes, we help address this problem by showing that having an approximate modd of the pho-
tographed scene can be used to robustly determine stereo correspondences from images taken from widely
varying viewpoints. Specifically, themode enablesusto warp theimages to €liminate unequal foreshortening
and to predict major instances of occlusion before trying to find correspondences. Thistechniqueis a gener-
alization of the plane-plus-parallax parameterization [38] which we call model-based stereo; itispresentedin
the following paper and in [10], Chapter 7.

2.5 Rangescanning

Instead of the approach of using multipleimages to reconstruct scene structure, an aternative techniqueisto
use range imaging sensors (e.g. [4]) to directly measure depth to various pointsin the scene. Range imaging
sensors determine depth either by triangulating the position of a projected laser stripe, or by measuring the
time of flight of adirectional laser pulse. Whileexisting versions of these sensors are generally slow, cumber-
some and expensive, active development of thistechnology is making it of practical use for more and more
applications. Indeed, the improved practicality of these devices combined with their amazing resolution and
range precision will advocate their usein more and more modeling projects. In particular, the Digital Michae-
langelo project [27] being directed by Professor Marc Levoy of Stanford University will undoubtedly serve
as awatershed event in the practical use of laser range devices and digital photography for creating realistic
models of both objects and environmentsfor computer graphics applications.

Algorithmsfor combining multiple range images from different viewpoints have been developed both in
computer vision [53, 42, 41] and in computer graphics[22, 50, 6]; seeadso Fig. 9. In many ways, rangeimage
based techniques and photographic techniques are complementary and each have advantages and disadvan-
tages. Some advantages of modeling from photographicimages are that () still cameras are inexpensive and
widely available, (b) for some architecture that no longer exists (historic buildings, disassembl ed film sets) all
that isavailableare photographs, and (c) photogrammetry works at arbitrary distances, and isawayseye-safe.
Of course, geometry aloneisinsufficient for producing realistic renderings of a scene; photometric informa:
tion from photographsis aso necessary. In general, any image-based rendering techniquethat can work with
geometry acquired from photogrammetry or stereo can work equally well or better with geometry acquired
from range scanning.

2.6 Image-based modeling and rendering

In traditiona image-based rendering systems, the moddl consists of a set of images of a scene and their corre-
sponding depth maps. When the depth of every pointinan imageisknown, theimage can bere-rendered from
any nearby point of view by projecting the pixels of the image to their proper 3D locations and reprojecting
them onto a new image plane. Thus, anew image of the sceneis created by warping theimages according to
their depth maps. A principal attraction of image-based rendering is that it offers a method of rendering ar-
bitrarily complex scenes with a constant amount of computation required per pixel. Using this property, [52]
demonstrated how regularly spaced synthetic images (with their computed depth maps) could be warped and
composited inreal timeto produce a virtual environment.

Inthe Immersion ' 94 project [32], (Fig. 4) stereo photographswith abaseline of eight inches were taken
every meter along atrail inaforest. Depth was extracted from each stereo pair using acensus stereo algorithm
[55]. Novel views were produced by supersampled z-buffered forward pixel splatting based on the stereo
depth estimate of each pixel. ([26] describes a different rendering approach that implicitly triangulated the
depth maps.) By manually determining relative camera pose between successive stereo pairs, it was possible
to optically combine re-renderings from neighboring stereo pairsto fill in missing texture information. The
project was able to produce very realistic synthetic views looking forward along the trail from any position
within ameter of the origina camera path, which was adequate for producing arealistic virtua experience of
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(d)

Figure 9: Severa models constructed from triangul ation-based | aser range scanning techniques. (a) A model
of aperson’s head scanned using acommercially avail able Cyberware | aser range scanner, using acylindrical
scan. (b) A texture-mapped version of thismodel, using imagery acquired by the same video camera used to
detect thelaser stripe. (¢) A more complex geometry assembled by zi ppering together severa triangle meshes
obtained from separate linear range scans of asmall object from [50]. (d) An even more complex geometry
acquired from approximately sixty range scans using the volumetric recovery method in[6].
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walking downthetrail. Thus, for mostly linear environments such as aforest trail, thismethod of capture and
rendering seems promising.

[31] presented a real-time image-based rendering system that used panoramic photographs with depth
computed, in part, from stereo correspondence. One observation of the paper was that extracting reliable
depth estimates from stereo is very difficult. The method was nonetheless able to obtain acceptable results
for nearby views using user input to aid the stereo depth recovery: the correspondence map for each image
pair was seeded with 100 to 500 user-supplied point correspondences and a so post-processed. Even with user
assistance, theimages used still had to be closely spaced; the largest baseline described in the paper was five
feet.

The requirement that samples be close together is a serious limitation to generating a fredy navigable
virtual environment. Covering the size of just one city block could require thousands of panoramic images
spaced five feet apart. Clearly, acquiring so many photographsisimpractical. Moreover, even adense lattice
of ground-based photographswould only allow renderings to be generated from within afew feet of the orig-
inal cameralevd, precluding any virtua fly-bys of the scene. Extending the dense lattice of photographsinto
three dimensions would clearly make the acquisition process even more difficult.

The modeling and rendering approach described in these notes takes advantage of the structure in archi-
tectural scenes so that only a sparse set of photographs can be used to recover both the geometry and the ap-
pearance of an architectural scene. Asan example, the approach was able to create avirtua fly-around of the
UC Berkeley bell tower and the surrounding campus from just twenty photographs (see the following slides
and the web site http://www.cs.berkel ey.edu/~debevec/ Campanile).

Some research done concurrently with the work presented here [3] also shows that taking advantage of
architectural constraints can simplify image-based scene modeling. Thiswork specifically explored the con-
straints associated with the cases of parallel and coplanar edge segments.

An interesting aspect of image-based modeling and rendering is that the accuracy of the geometry can
traded off withthe number of images acquired and thefreedom of movement attainable. [40] for exampl e, uses
no explicit geometry but rather a set of correspondences between two views of a scene to generate arbitrary
viewsintermediateto thetwo origina ones. And[20, 28] blend between avery largearray images of an object
or scene in aview-dependent manner to create the appearance of a3D object, when the actual geometry being
used can be as simple as a single plane passing through the object.

3 Conclusion

The philosophy of the work presented here is that geometry is a good thing to have, and that it should be
acquired as accurately as possible. The particular techniques presented here make it possible to acquire the
basic geometry for many sorts of architectural scenes, using just aset of till photographsand some effort by a
trained user of the system. With the geometry recovered, thefull realism of the scene can be rendered by pro-
jecting theorigina photographsonto the geometry, preferably combining themwith aform of view-dependent
texture mapping. Note that this technique can only render the scene in the origind lighting conditions, and
that it will not be able to convincingly render particularly shiny surfaces, which change in appearance too
much with angle to be captured adequately in a sparse set of views. Addressing these problems requires ob-
taining estimates of the lighting conditionsand materia properties of the scene, which isthe subject of work
in image-based lighting[11, 9], BRDF recovery [7, 37], and Inverse Global Illumination [54].

More extensive information on Image-Based Modeling, Rendering, and Lighting and how it relates to
3D Photography may be found in the SIGGRAPH 99 Course notesfor Course #39, “Image-Based Modeling,
Rendering, and Lighting”.
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