Modeling Humans & Animals

But first, final projects

- Final Project (50%)
 - Paper presentation & project proposal (20%)
 - Final report & presentation (30%)
 - Progress Report Presentation, next class (10%)
 - Final Report (20%) due latest on May 9
 - 1-2 page write-up, final video demonstration

Alexandre Ferreira / CC-BY-2.0

Simulation Model

Physics-based Animation

Posture Control

Under actuated Inherently unstable

$$= k_{p}(q_{b}^{d} - q_{b}) + k_{d}(\dot{q}_{b}^{d} - \dot{q}_{b}) + k_{ff}$$

$$\underbrace{\begin{bmatrix}I & I & \cdots & I\\r_{0} \times & r_{1} \times & \cdots & r_{m} \times \end{bmatrix}}_{A} \begin{pmatrix} F_{0} \\ F_{1} \\ \vdots \\ F_{m} \end{pmatrix} = \begin{pmatrix} F_{B} \\ T_{B} \end{pmatrix}$$

$$\frac{\min(Ax - b)^{T}(Ax - b)}{F_{i}}$$

$$F_{i} \quad \text{subject to } F_{i}^{n} \geq F_{min}^{n}$$

$$-\mu F_{i}^{n} \leq F_{i}^{t} \leq \mu F_{i}^{n}$$

 $egin{bmatrix} m{F}^d\ m{T}^d\end{bmatrix}$

$oldsymbol{ au}=J^Toldsymbol{F}$

Walking

 Described temporally in terms of stride duration and its two components per leg, swing time and stance time

Walking

 Described temporally in terms of stride duration and its two components per leg, swing time and stance time, and spatially in terms of foot placement locations

Foot Placement Control

$$d = d_f(v_d) + (v - v_d) \sqrt{\frac{h}{g}}$$

Foot Placement Control

Towards Increasingly Complex Motor Skills

Quadrupedal Gaits

Trot

Canter

Controller Parameterization

	\leftarrow
rearRight	
frontRight	~~~~>
frontLeft	
rearLeft	

Motion Data

After Learning

walk

Locomotion Control for Legged Robots

Locomotion Control for Legged Robots

Towards increasingly accurate biomechanical models

Flexible Muscle-Based Locomotion for Bipedal Creatures

SIGGRAPH ASIA 2013

Thomas Geijtenbeek Michiel van de Panne Frank van der Stappen

Towards increasingly accurate biomechanical models

Realistic Biomechanical Simulation and Control of Human Swimming

Weiguang Si* Sung-Hee Lee[†] Eftychios Sifakis[‡] Demetri Terzopoulos^{*}

*University of California, Los Angeles [†]Korea Advanced Institute of Science and Technology [‡]University of Wisconsin, Madison

Questions?