Rigid Body Dynamics

Project Proposal Presentation

- Plan for 20 min presentation if solo, 30 min if you are working in a team
- Problem and motivation
- Background
- Choose 1-2 related research papers, and describe in detail - talk to us if unsure which papers to look at
- Proposed technical method
- Expected results (low and high bar)

Project Proposal Presentation Schedule

March 29: Ziqi Guo + Jun Huo, Ye Yuan + Shuang Su

March 31: Che-Yuan Liang, Frances Tso, Blair Emanuel

April 5: Nick Sharp, Jordan Tick, Michael Rivera
April 7: James Bern, Vidya Narayanan, ShihTsui Kuo

Rigid Bodies

Rigid Bodies

Eric G. Parker and James F. O'Brien. "Real-Time Deformation and Fracture in a Game Environment". Symposium on Computer Animation, 2009.

A rigid body

- Collection of particles
- Distance between any two particles is always constant
- What types of motions preserve these constraints?
- Translation, rotation

Rigid Body Parameterization

(reduced coordinates)

body space

$$
\boldsymbol{p}(t)=\boldsymbol{x}(t)+\boldsymbol{R}(t) \boldsymbol{p}_{0}
$$

world space

$x(t) \in R^{3} \quad$ position
$R(t) \in R^{3 x 3}$ orientation

Body Orientation

- Rotates vectors from body to world coordinates - Columns of $\boldsymbol{R}(t)$ encode world coordinates of body axes

Center of Mass (COM)

\bullet Geometric center of the body

- $(0,0,0)$ in body coordinates
- $x(t)$ in world coordinates

Geometric center: $\sum m_{i} \boldsymbol{p}_{0 i}:=(0,0,0)$
$M=\sum m_{i}$
$\operatorname{com}: \frac{\sum m_{i} \boldsymbol{p}_{i}(\boldsymbol{t})}{M}=\boldsymbol{x}(\boldsymbol{t})$

Body velocities

- How do the COM position and orientation change with time?

Linear velocity: $\boldsymbol{v}(t)=\frac{d x(t)}{d t}=\dot{\boldsymbol{x}}(t)$
Angular velocity: $\boldsymbol{\omega}(t)=$?
$\boldsymbol{\omega}(t)$ encodes spin direction and magnitude What is the relationship between $\boldsymbol{\omega}(t)$ and $\boldsymbol{R}(t)$?

Angular velocity

\bullet Consider vector $\boldsymbol{r}(t)$. What is $\dot{\boldsymbol{r}}(t)$?

$$
\dot{\boldsymbol{r}}(t)=\boldsymbol{\omega}(t) \times \boldsymbol{r}(t)
$$

\bullet Relation to $\dot{\boldsymbol{R}}(\boldsymbol{t})=\frac{d \boldsymbol{R}(t)}{d t} ?$

Angular Velocity

- \mathbf{R} rotates vectors from body to world coords
- Columns of $\boldsymbol{R}(t)$: world coordinates of body axes
- Columns of $\dot{\boldsymbol{R}}(t)$: change of body axes world coordinates wrt time

$$
\begin{aligned}
\dot{\boldsymbol{x}}^{\prime}(t) & =\boldsymbol{\omega}(t) \times \boldsymbol{x}^{\prime}(t) \\
\dot{\boldsymbol{y}}^{\prime}(t) & =\boldsymbol{\omega}(t) \times \boldsymbol{y}^{\prime}(t) \\
\dot{\mathbf{z}}^{\prime}(t) & =\boldsymbol{\omega}(t) \times \boldsymbol{z}^{\prime}(t)
\end{aligned}
$$

Putting these all together:

$$
\dot{\boldsymbol{R}}(t)=\boldsymbol{\omega}(t)_{\times} \boldsymbol{R}(t)
$$

Recall

$$
\begin{aligned}
& a \times b=\left(\begin{array}{c}
a_{y} b_{z}-b_{y} a_{z} \\
-a_{x} b_{z}+b_{x} a_{z} \\
a_{x} b_{y}-b_{x} a_{y}
\end{array}\right) \\
&=\left(\begin{array}{ccc}
0 & -a_{z} & a_{y} \\
a_{z} & 0 & -a_{x} \\
-a_{y} & a_{x} & 0
\end{array}\right)\left(\begin{array}{l}
b_{x} \\
b_{y} \\
b_{z}
\end{array}\right) \\
& \boldsymbol{a}_{\times}
\end{aligned}
$$

Summary

- Kinematics: how does the body move?

$$
\begin{array}{ll}
\boldsymbol{p}(t), \boldsymbol{R}(t) & \boldsymbol{p}(t)=\boldsymbol{x}(t)+\boldsymbol{R}(t) \boldsymbol{p}_{0} \\
\boldsymbol{v}(t)=\frac{d \boldsymbol{x}(t)}{d t}=\dot{\boldsymbol{x}}(t) & \begin{array}{l}
\dot{\boldsymbol{p}}(t)=\dot{\boldsymbol{x}}(t)+\boldsymbol{\omega}(t)_{\times} \boldsymbol{R}(t) \boldsymbol{p}_{0} \\
=\dot{\boldsymbol{x}}(t)+\boldsymbol{\omega}(t)_{\times}(\boldsymbol{p}(t)-\boldsymbol{x}(t))
\end{array} \\
\dot{\boldsymbol{R}}(t)=\boldsymbol{\omega}(t)_{\times} \boldsymbol{R}(t) &
\end{array}
$$

- Dynamics: what causes this motion?

Forces and Torques

- External forces: acting on individual particles

Net force on body: $\boldsymbol{F}=\sum \boldsymbol{F}_{\boldsymbol{i}}$
-Conservation of linear momentum (Newton's $2^{\text {nd }}$ law):

$$
\boldsymbol{p}=M \boldsymbol{v} ; \dot{\boldsymbol{p}}=\boldsymbol{F}
$$

- Analogous concepts for angular motion

Forces and Torques

- Forces on individual particles generate torques - (consequence of constant inter-particle distance)

Net torque on body: $\boldsymbol{\tau}=\sum \boldsymbol{\tau}_{i}=\sum \boldsymbol{r}_{\boldsymbol{i}} \times \boldsymbol{f}_{i}$

Forces and Torques

- Forces on individual particles generate torques
- (consequence of constant inter-particle distance)

Net torque on body: $\boldsymbol{\tau}=\sum \boldsymbol{\tau}_{i}=\sum \boldsymbol{r}_{\boldsymbol{i}} \times \boldsymbol{f}_{i}$
-Conservation of angular momentum:

$$
L=I \omega ; \dot{L}=\tau
$$

\bullet What is $I ?$

- Moment of Inertia tensor

The Inertia Tensor

- Analogous to mass, but for rotational motions
- quantifies distribution of mass as a $2^{\text {nd }}$ order tensor

$$
\begin{aligned}
& \boldsymbol{I}=\boldsymbol{R} \boldsymbol{I}_{\boldsymbol{b}} \boldsymbol{R}^{T} \\
& \boldsymbol{I}_{b}=\sum_{i} m_{i}\left(\boldsymbol{p}_{0 i}^{T} \boldsymbol{p}_{0 i} \mathbf{1}-\boldsymbol{p}_{0 i} \boldsymbol{p}_{0 i}{ }^{T}\right)
\end{aligned}
$$

- Body-coords MOI is constant, can be precomputed
- World-cords MOI changes with time!

Conservation of Linear and Angular Momenta

- Linear Momentum:

$$
\boldsymbol{p}=M \boldsymbol{v} ; \dot{\boldsymbol{p}}=\boldsymbol{F} ; \dot{\boldsymbol{v}}=\frac{1}{\boldsymbol{M}} \boldsymbol{F}
$$

- Angular Momentum:

$$
L=I \omega ; \dot{L}=\tau ; \dot{\omega}=I^{-1}(\tau-\omega \times I \omega)
$$

- Note: they are decoupled!

Numerical Integration

\bullet COM Acceleration \rightarrow Velocity \rightarrow Position

- Easy: $\boldsymbol{v}_{t+1}=v_{t}+\Delta t \dot{\boldsymbol{v}} ; \boldsymbol{x}_{t+1}=\boldsymbol{x}_{t}+\Delta t \boldsymbol{v}_{t+1}$
\bullet Angular Acceleration \rightarrow Angular Velocity
- Easy: $\omega_{t+1}=\omega_{t}+\Delta t \dot{\omega}$
- Angular Velocity to Rotations?
- A bit trickier: $\boldsymbol{R}_{t+1}=\boldsymbol{R}_{t}+\Delta t \dot{\boldsymbol{R}}_{t+1}$?

Updating Rotations

$\diamond \boldsymbol{R}_{t+1}=\boldsymbol{R}_{t}+\Delta t \dot{\boldsymbol{R}}_{t+1}$

$$
=\boldsymbol{R}_{t}+\Delta t \boldsymbol{\omega}_{t+1 \times} \boldsymbol{R}_{t}=\left(I+\Delta t \boldsymbol{\omega}_{t+1_{\times}}\right) \boldsymbol{R}_{t}
$$

- No longer a rotation matrix!
- Option 1: orthonormalize (Gram-Schmidt)
- Option 2: explicitly compute rotation $\boldsymbol{R}_{\Delta t}$ due to spinning with angular speed $\boldsymbol{\omega}_{t+1}$ for Δt seconds, apply incremental rotations: $\boldsymbol{R}_{t+1}=\boldsymbol{R}_{\Delta t} \boldsymbol{R}_{t}$
- NOTE: same concept applies if other rotation parameterizations (i.e. quaternions) are employed

Quaternions

Generalization of complex numbers: $\boldsymbol{q}=s+x \boldsymbol{i}+y \boldsymbol{j}+z \boldsymbol{k}=[\mathbf{s}, \boldsymbol{v}]$

$$
\begin{aligned}
& -\quad \boldsymbol{i} * \boldsymbol{i}=\boldsymbol{j} * \boldsymbol{j}=\boldsymbol{k} * \boldsymbol{k}=\boldsymbol{i} \boldsymbol{j} \boldsymbol{k}=-\mathbf{1} ; \boldsymbol{i} * \boldsymbol{j}=-\boldsymbol{j} * \boldsymbol{i}=\boldsymbol{k} ; \boldsymbol{j} * \boldsymbol{k}=-\boldsymbol{k} * \boldsymbol{j}=\boldsymbol{i} ; \boldsymbol{k} * \boldsymbol{i}=-\boldsymbol{i} * \boldsymbol{k}=\boldsymbol{j} \\
& -\quad \boldsymbol{q}_{1} * \boldsymbol{q}_{2}=\left[s_{1} s_{2}-\boldsymbol{v}_{1} \cdot \boldsymbol{v}_{2}, s_{1} \boldsymbol{v}_{2}+s_{2} \boldsymbol{v}_{1}+\boldsymbol{v}_{1} \times \boldsymbol{v}_{2}\right]
\end{aligned}
$$

Much more compact parameterization for rotations

- $\boldsymbol{q}=\left[\cos \frac{\varphi}{2}, \sin \frac{\varphi}{2} \boldsymbol{a}\right]$
- $\quad \operatorname{Rot}(\boldsymbol{q}, \boldsymbol{v})=\boldsymbol{q} * \boldsymbol{v} * \boldsymbol{q}^{-1}$

Compositions of rotations is given by quaternion multiplication:

$$
\boldsymbol{q}_{t+1}=\left[\cos \frac{\Delta t\left|\boldsymbol{\omega}_{t+1}\right|}{2}, \sin \frac{\Delta t\left|\boldsymbol{\omega}_{t+1}\right|}{2} \frac{\boldsymbol{\omega}_{t+1}}{\left|\boldsymbol{\omega}_{t+1}\right|}\right] \boldsymbol{q}_{t}
$$

You might encounter:

$$
\dot{\boldsymbol{q}}=\frac{1}{2} \omega \boldsymbol{q} ; \boldsymbol{q}_{t+1}=\boldsymbol{q}_{t}+\Delta t \dot{\boldsymbol{q}}_{t+1}
$$

