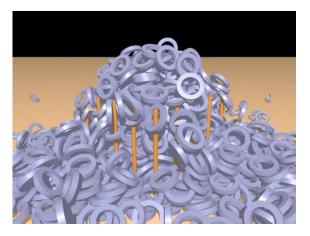
Rigid Body Dynamics



Project Proposal Presentation

- Plan for 20 min presentation if solo, 30 min if you are working in a team
 - Problem and motivation
 - Background
 - Choose 1-2 related research papers, and describe in detail – talk to us if unsure which papers to look at
 - Proposed technical method
 - Expected results (low and high bar)

Project Proposal Presentation Schedule

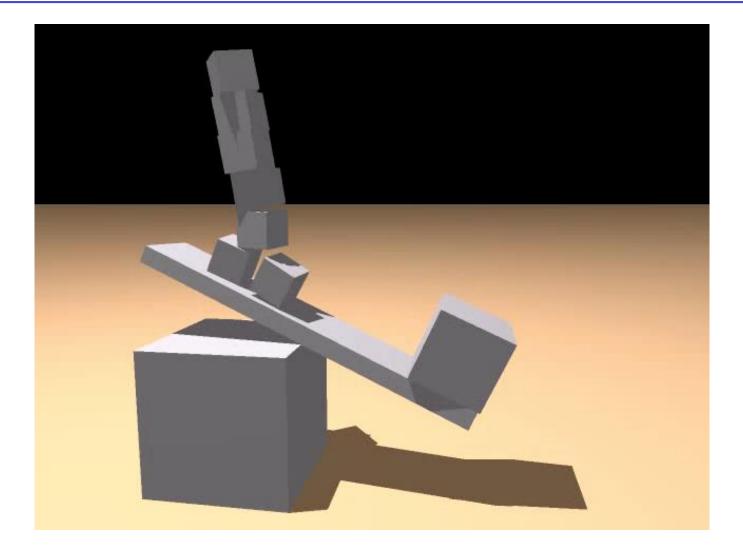
March 29: Ziqi Guo + Jun Huo, Ye Yuan + Shuang Su

March 31: Che-Yuan Liang, Frances Tso, Blair Emanuel

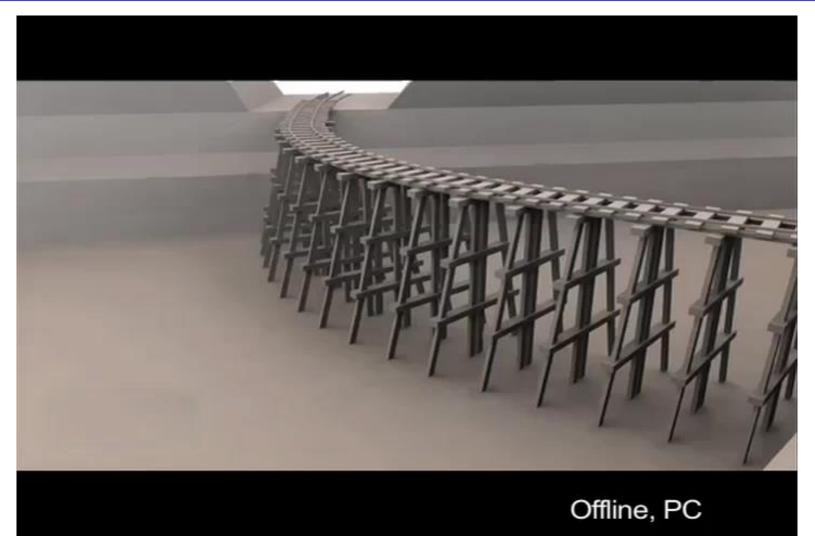
April 5: Nick Sharp, Jordan Tick, Michael Rivera

April 7: James Bern, Vidya Narayanan, Shih-Tsui Kuo

Rigid Bodies

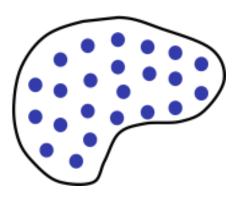


Rigid Bodies



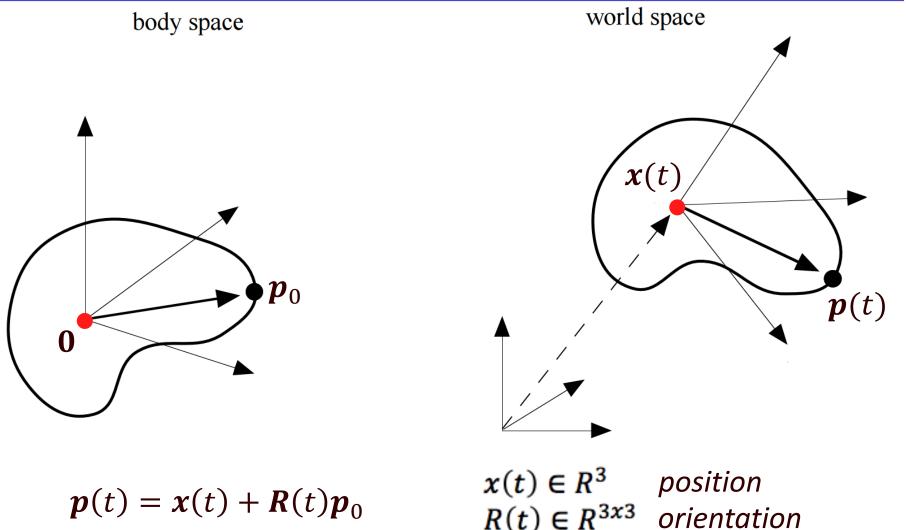
Eric G. Parker and James F. O'Brien. "Real-Time Deformation and Fracture in a Game Environment". Symposium on Computer Animation, 2009.

A rigid body



- Collection of particles
- Distance between any two particles is always constant
- What types of motions preserve these constraints?
 - Translation, rotation

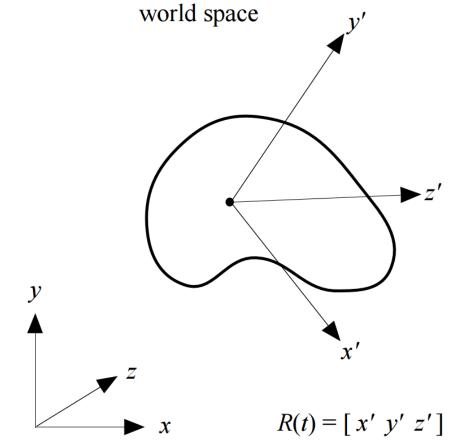
Rigid Body Parameterization (reduced coordinates)



Body Orientation

Rotates vectors from body to world coordinates

• Columns of R(t) encode world coordinates of body axes world space



Center of Mass (COM)

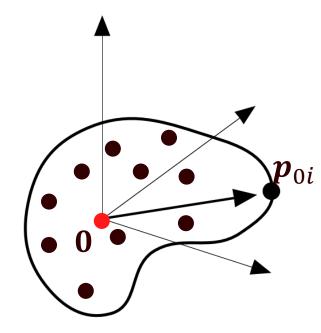
Geometric center of the body

- (0,0,0) in body coordinates
- x(t) in world coordinates

Geometric center: $\sum m_i \boldsymbol{p}_{0i} \coloneqq (0,0,0)$

$$M = \sum m_i$$

$$COM: \frac{\sum m_i p_i(t)}{M} = x(t)$$



Body velocities

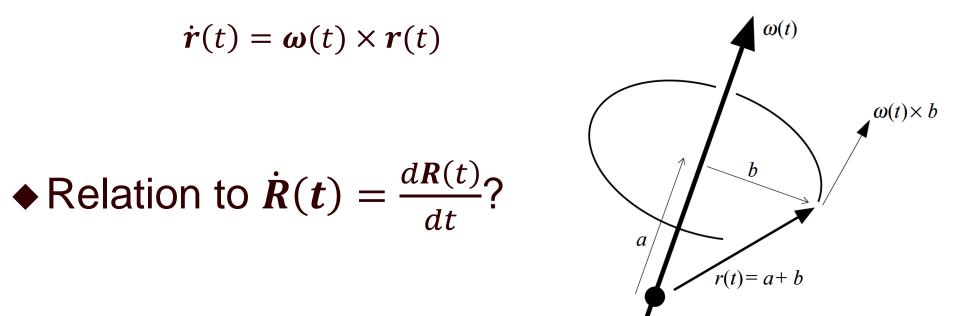
How do the COM position and orientation change with time?

Linear velocity:
$$\boldsymbol{v}(t) = \frac{d\boldsymbol{x}(t)}{dt} = \dot{\boldsymbol{x}}(t)$$

Angular velocity: $\boldsymbol{\omega}(t) = ?$ $\boldsymbol{\omega}(t)$ encodes spin direction and magnitude What is the relationship between $\boldsymbol{\omega}(t)$ and $\boldsymbol{R}(t)?$

Angular velocity

• Consider vector r(t). What is $\dot{r}(t)$?



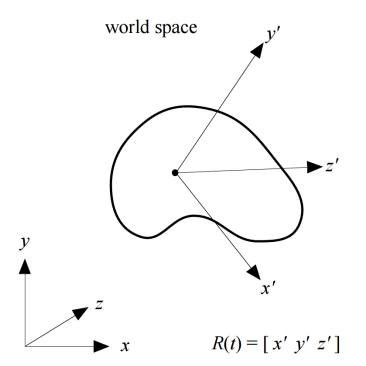
Angular Velocity

R rotates vectors from body to world coords

- Columns of R(t): world coordinates of body axes
- Columns of $\dot{\mathbf{R}}(t)$: change of body axes world coordinates wrt time

$$\dot{x}'(t) = \boldsymbol{\omega}(t) \times \boldsymbol{x}'(t)$$
$$\dot{y}'(t) = \boldsymbol{\omega}(t) \times \boldsymbol{y}'(t)$$
$$\dot{z}'(t) = \boldsymbol{\omega}(t) \times \boldsymbol{z}'(t)$$

Putting these all together: $\dot{R}(t) = \omega(t)_{\times} R(t)$



Recall

$$a imes b = egin{pmatrix} a_y b_z - b_y a_z \ -a_x b_z + b_x a_z \ a_x b_y - b_x a_y \end{pmatrix} \ = egin{pmatrix} 0 & -a_z & a_y \ a_z & 0 & -a_x \ -a_y & a_x & 0 \end{pmatrix} egin{pmatrix} b_x \ b_y \ b_z \end{pmatrix}$$

 a_{\times}

Summary

Kinematics: how does the body move?

 $p(t), \mathbf{R}(t) \qquad p(t) = \mathbf{x}(t) + \mathbf{R}(t)\mathbf{p}_0$ $v(t) = \frac{d\mathbf{x}(t)}{dt} = \dot{\mathbf{x}}(t) \qquad \dot{\mathbf{p}}(t) = \dot{\mathbf{x}}(t) + \boldsymbol{\omega}(t)_{\times}\mathbf{R}(t)\mathbf{p}_0$ $= \dot{\mathbf{x}}(t) + \boldsymbol{\omega}(t)_{\times}(\mathbf{p}(t) - \mathbf{x}(t))$ $\dot{\mathbf{R}}(t) = \boldsymbol{\omega}(t)_{\times}\mathbf{R}(t)$

• Dynamics: what causes this motion?

Forces and Torques

External forces: acting on individual particles

Net force on body:
$$F = \sum F_i$$

Conservation of linear momentum (Newton's 2nd law):

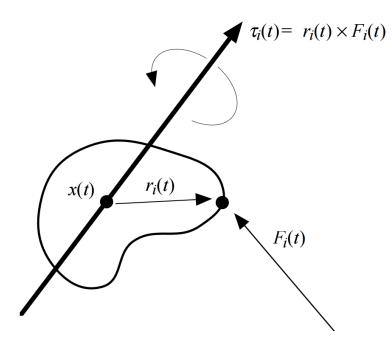
$$\boldsymbol{p}=M\boldsymbol{v};\,\dot{\boldsymbol{p}}=\boldsymbol{F}$$

Analogous concepts for angular motion

Forces and Torques

- Forces on individual particles generate torques
 - (consequence of constant inter-particle distance)

Net torque on body: $\boldsymbol{\tau} = \sum \boldsymbol{\tau}_i = \sum \boldsymbol{r}_i \times \boldsymbol{f}_i$



Forces and Torques

- Forces on individual particles generate torques
 - (consequence of constant inter-particle distance)

Net torque on body: $\boldsymbol{\tau} = \sum \boldsymbol{\tau}_i = \sum \boldsymbol{r}_i \times \boldsymbol{f}_i$

Conservation of angular momentum:

$$L=I\omega$$
; $\dot{L}= au$

♦ What is *I*?

Moment of Inertia tensor

The Inertia Tensor

Analogous to mass, but for rotational motions

• quantifies distribution of mass as a 2nd order tensor

$$I = RI_b R^T$$

$$I_b = \sum_{i} m_i (p_{0i}^T p_{0i} \mathbf{1} - p_{0i} p_{0i}^T)$$

 Body-coords MOI is constant, can be precomputed

World-cords MOI changes with time!

Conservation of Linear and Angular Momenta

Linear Momentum:

$$\boldsymbol{p} = \boldsymbol{M}\boldsymbol{v}; \, \dot{\boldsymbol{p}} = \boldsymbol{F}; \, \, \dot{\boldsymbol{v}} = \frac{1}{\boldsymbol{M}}\boldsymbol{F}$$

Angular Momentum:

$$L = I\omega; \dot{L} = \tau; \dot{\omega} = I^{-1}(\tau - \omega \times I\omega)$$

Note: they are decoupled!

Numerical Integration

- ♦ COM Acceleration \rightarrow Velocity \rightarrow Position
 - Easy: $v_{t+1} = v_t + \Delta t \dot{v}$; $x_{t+1} = x_t + \Delta t v_{t+1}$
- \bullet Angular Acceleration \rightarrow Angular Velocity
 - Easy: $\boldsymbol{\omega}_{t+1} = \boldsymbol{\omega}_t + \Delta t \dot{\boldsymbol{\omega}}$
- Angular Velocity to Rotations?
 - A bit trickier: $\mathbf{R}_{t+1} = \mathbf{R}_t + \Delta t \dot{\mathbf{R}}_{t+1}$?

Updating Rotations

$$\mathbf{A}_{t+1} = \mathbf{R}_t + \Delta t \dot{\mathbf{R}}_{t+1} = \mathbf{R}_t + \Delta t \boldsymbol{\omega}_{t+1\times} \mathbf{R}_t = (I + \Delta t \boldsymbol{\omega}_{t+1\times}) \mathbf{R}_t$$

No longer a rotation matrix!

- Option 1: orthonormalize (Gram–Schmidt)
- Option 2: explicitly compute rotation $R_{\Delta t}$ due to spinning with angular speed ω_{t+1} for Δt seconds, apply incremental rotations: $R_{t+1} = R_{\Delta t}R_t$
- NOTE: same concept applies if other rotation parameterizations (i.e. quaternions) are employed

Quaternions

Generalization of complex numbers: q = s + xi + yj + zk = [s, v]

$$i * i = j * j = k * k = ijk = -1; i * j = -j * i = k; j * k = -k * j = i; k * i = -i * k = j$$

- $q_1 * q_2 = [s_1 s_2 - v_1 \cdot v_2, s_1 v_2 + s_2 v_1 + v_1 \times v_2]$

Much more compact parameterization for rotations

-
$$q = [\cos\frac{\varphi}{2}, \sin\frac{\varphi}{2}a]$$

- Rot
$$(q, v) = q * v * q^{-1}$$

Compositions of rotations is given by quaternion multiplication:

$$\boldsymbol{q}_{t+1} = \left[\cos\frac{\Delta t|\boldsymbol{\omega}_{t+1}|}{2}, \sin\frac{\Delta t|\boldsymbol{\omega}_{t+1}|}{2}, \frac{\boldsymbol{\omega}_{t+1}}{|\boldsymbol{\omega}_{t+1}|}\right]\boldsymbol{q}_t$$

You might encounter:
$$\dot{\boldsymbol{q}} = \frac{1}{2}\boldsymbol{\omega}\boldsymbol{q}; \boldsymbol{q}_{t+1} = \boldsymbol{q}_t + \Delta t \dot{\boldsymbol{q}}_{t+1}$$