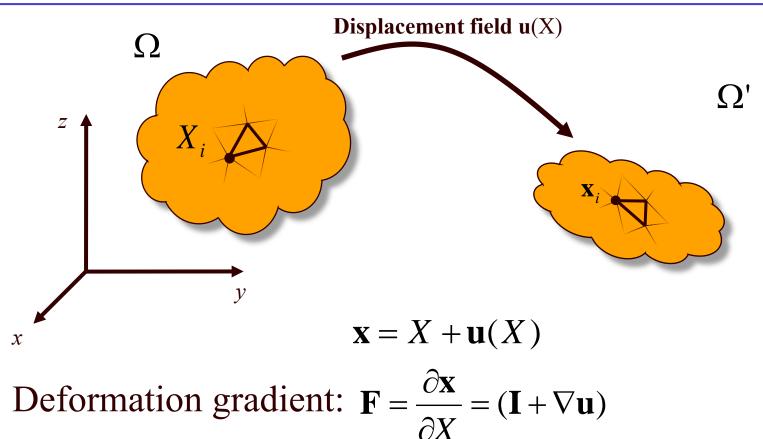
Fun With Elastica

Assignment 2

Due on March 2 @ midnight 10th

Continuum Mechanics And the Finite Element Method



If strain assumed constant per element: $\mathbf{F} = \boldsymbol{e}\boldsymbol{E}^{-1}$

FEM recipe

St. Venant-Kirchhoff material

Neohookean elasticity

$$\mathbf{E} = \frac{1}{2} (\mathbf{F}^{\mathsf{T}} \mathbf{F} - \mathbf{I}) \qquad I_1 = \|\mathbf{F}\|_F^2, \quad \mathbf{J} = \det \mathbf{F}$$

$$\Psi = \mu \|\mathbf{E}\|_F + \frac{\lambda}{2} \operatorname{tr}^2(\mathbf{E}) \qquad \Psi = \frac{\mu}{2} (I_1 - 3) - \mu \log(\mathbf{J}) + \frac{\lambda}{2} \log^2(\mathbf{J})$$

$$\mathbf{P} = \mathbf{F} [2\mu \mathbf{E} + \lambda \operatorname{tr}(\mathbf{E})\mathbf{I}] \qquad \mathbf{P} = \mu (\mathbf{F} - \mathbf{F}^{-\mathsf{T}}) + \lambda \log(\mathbf{J})\mathbf{F}^{-\mathsf{T}}$$
Area/volume of element
$$f = -\frac{\partial W}{\partial x} = -V \frac{\partial \Psi}{\partial F} \frac{\partial F}{\partial x}$$
First Piola-Kirchhoff stress tensor **P**

FEM recipe

St. Venant-Kirchhoff material

Neohookean elasticity

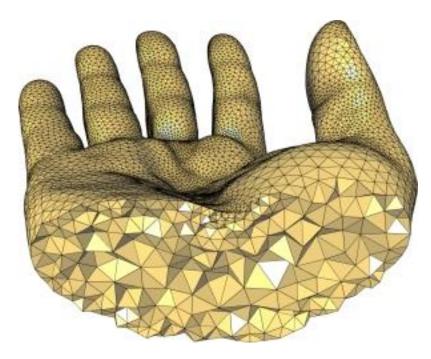
$$\begin{split} \mathbf{E} &= \frac{1}{2} (\mathbf{F}^{\mathsf{T}} \mathbf{F} - \mathbf{I}) & I_1 = \|\mathbf{F}\|_{\mathsf{F}}^2, \ J = \det \mathbf{F} \\ \Psi &= \mu \|\mathbf{E}\|_{\mathsf{F}} + \frac{\lambda}{2} \mathrm{tr}^2(\mathbf{E}) & \Psi = \frac{\mu}{2} (I_1 - 3) - \mu \log(J) + \frac{\lambda}{2} \log^2(J) \\ \mathbf{P} &= \mathbf{F} \left[2\mu \mathbf{E} + \lambda \mathrm{tr}(\mathbf{E}) \mathbf{I} \right] & \mathbf{P} = \mu (\mathbf{F} - \mathbf{F}^{-\mathsf{T}}) + \lambda \log(J) \mathbf{F}^{-\mathsf{T}} \end{split}$$

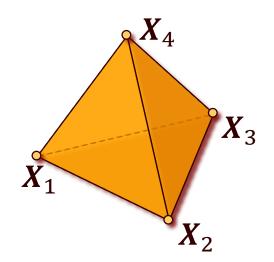
For a tetrahedron, this works out to:

$$[f_1 \ f_2 \ f_3] = -VPE^{-T}; f_4 = -f_1 - f_2 - f_3$$

Additional reading: http://www.femdefo.org/

Tetrahedral Meshes





Statics Vs Dynamics

Principle of minimum potential energy

A mechanical system in static equilibrium will assume a state of minimum potential energy: find **x** to minimize W(**x**), or equivalently, such that $f_{int}(\mathbf{x}) + f_{ext} = 0$

Statics

Goal: find equilibrium configuration i.e., $\mathbf{f}_i = 0 \forall i$

Given x with $f(x) \neq 0$, find Δx such that $f(x + \Delta x) = 0$ $f(x + \Delta x) = f(x) + K\Delta x + O(\Delta x^2)$ \Box Solve $K\Delta x = -f(x)$ for Δx $K = \frac{\partial f}{\partial f}$

Statics

 $\min W(x) + x^T f$ X

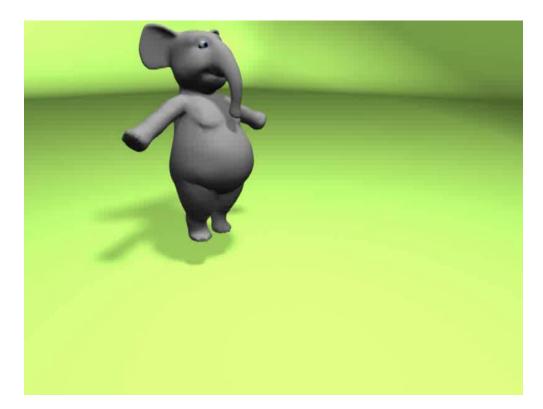
Dynamics – a variational formulation

$$\min_{x} \frac{h^2}{2} a^T M a + W(x) + x^T f$$

$$a = \frac{(x - x_{old})}{h^2} - \frac{v_{old}}{h}$$

Fun things to do with simulation

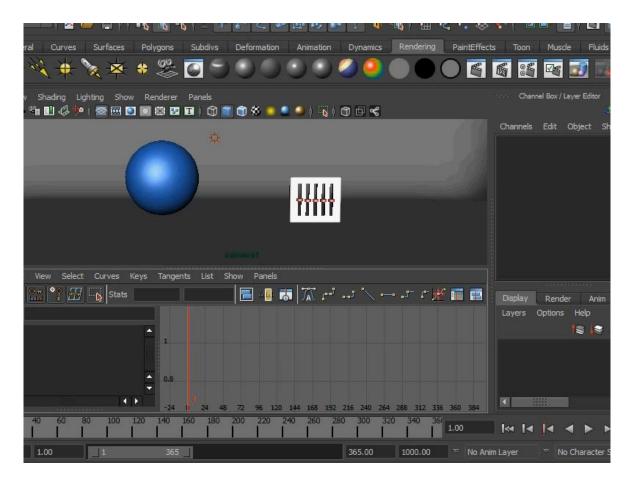
Relatively easy to run physics-based simulations, but...



no artist control

different workflow

Animation rig



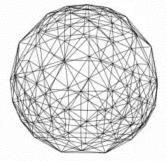
Goal: Bring benefits of physical simulation to traditional animation pipeline

Rig-Space Physics, Hahn et al., 2012

Method overview

Input 1:

physical model, 3D FEM

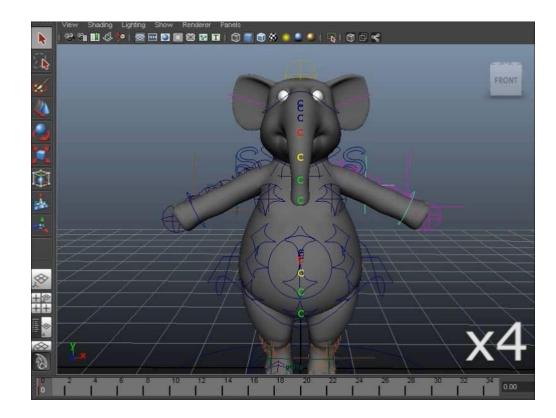


Rig-Space Physics, Hahn et al., 2012

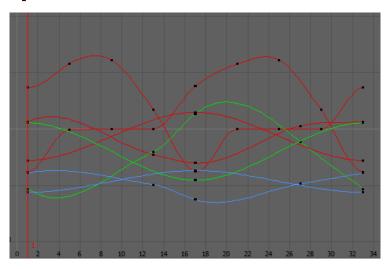
Method overview

Output: simulated animation curves for rig parameters

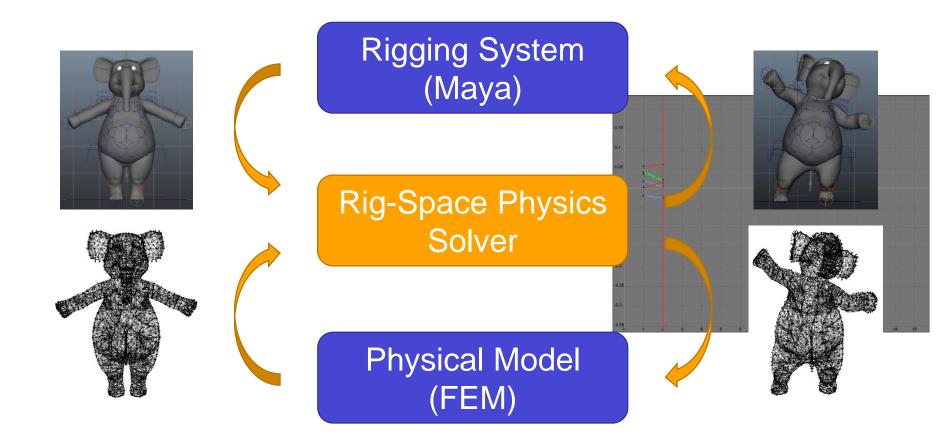
A more complex animation rig



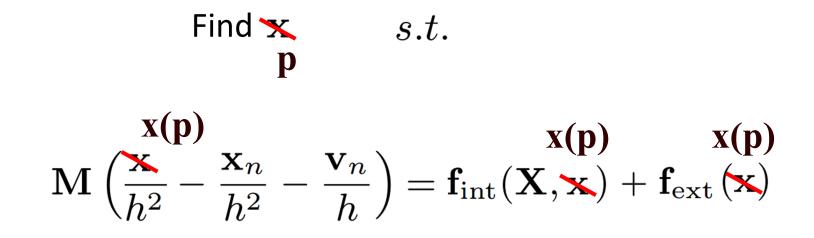
Animations created by keyframing rig parameters



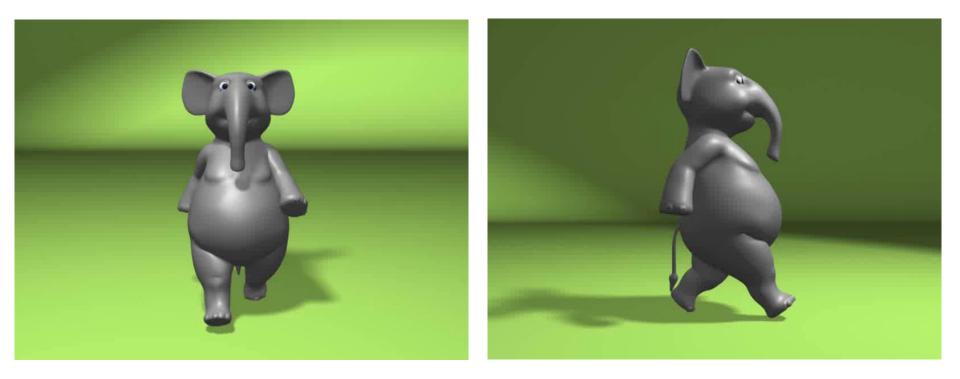
Physics in Rig-Space

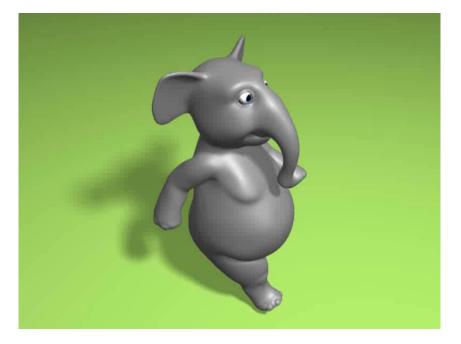


Subspace Simulation

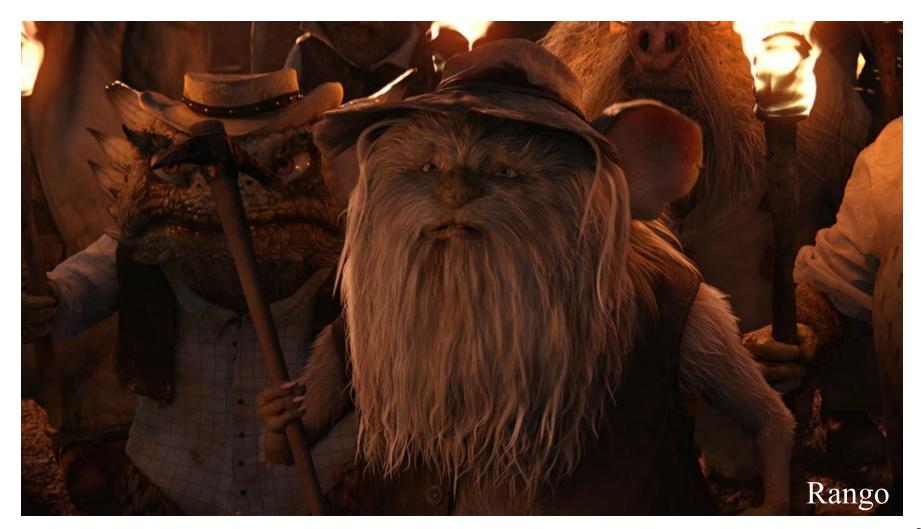


Physics in Rig-Space





Fun things to do with simulation



Sag-free simulations

Optimization for sag-free simulations, Twigg and Kačić-Alesić, 2011

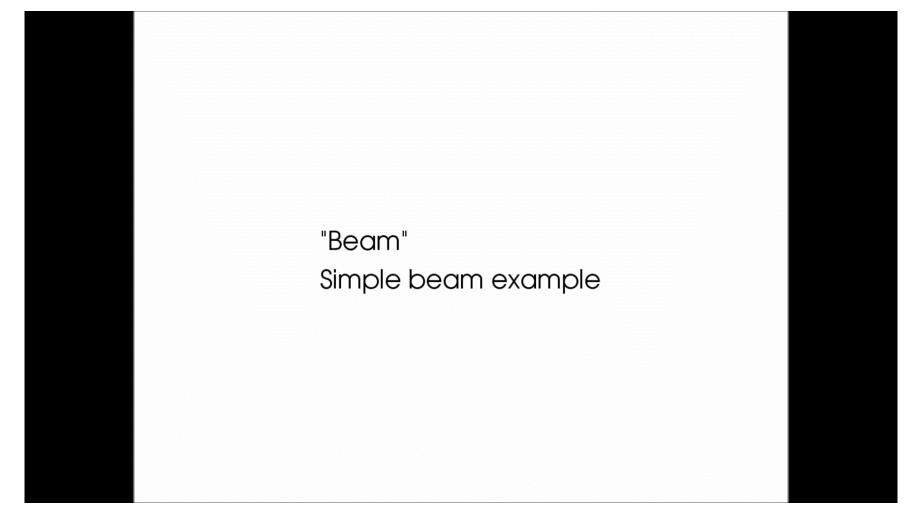
Sag-free simulations

$\min_{X} |\mathbf{x}' - \arg\min_{\mathbf{x}} W(\mathbf{x}, X) - \mathbf{x}^T f|_2^2$

But solve:

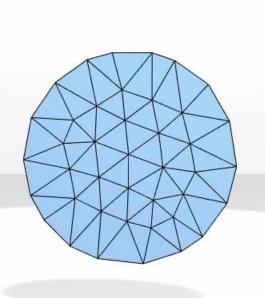
$\min_{X} |\mathbf{f}(\mathbf{x}', X)|_2^2$

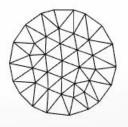
Sag-free simulations



Why stop here?

internal forces can be used to generate locomotion

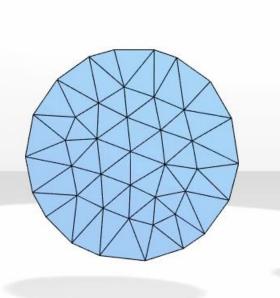




rest state

Dynamically changing rest pose leads to interesting behaviors

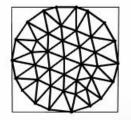
internal forces can be used to generate locomotion



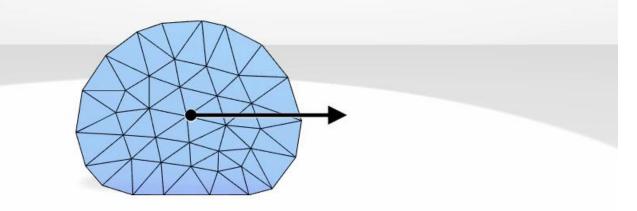
Dynamically changing rest pose leads to interesting behaviors

Deformable Objects Alive!, Coros et al., 2012

global center of mass velocity objectives



rest state



Problem Formulation

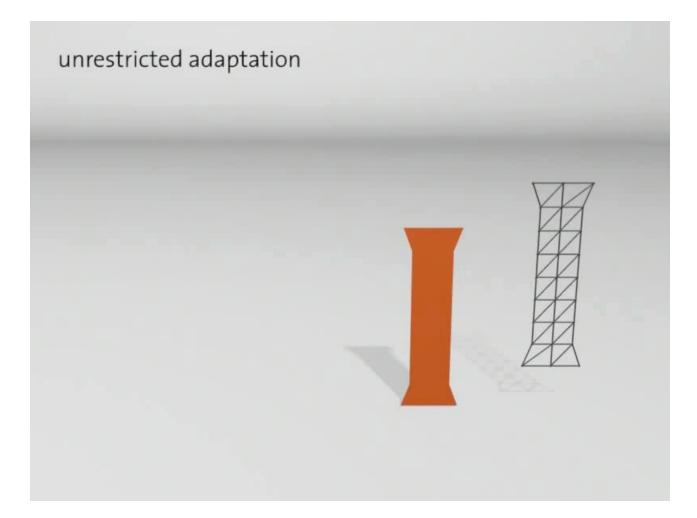
Find \mathbf{x} s.t.

$$\mathbf{M}\left(\frac{\mathbf{x}}{h^2} - \frac{\mathbf{x}_n}{h^2} - \frac{\mathbf{v}_n}{h}\right) = \mathbf{f}_{int}(\mathbf{X}, \mathbf{x}) + \mathbf{f}_{ext}(\mathbf{x})$$

Problem Formulation

Find \mathbf{x}, \mathbf{X} to minimize $\mathbf{g}(\mathbf{x}, t)$ s.t. $\mathbf{M}\left(\frac{\mathbf{x}}{h^2} - \frac{\mathbf{x}_n}{h^2} - \frac{\mathbf{v}_n}{h}\right) = \mathbf{f}_{\mathrm{int}}(\mathbf{X}, \mathbf{x}) + \mathbf{f}_{\mathrm{ext}}(\mathbf{x})$

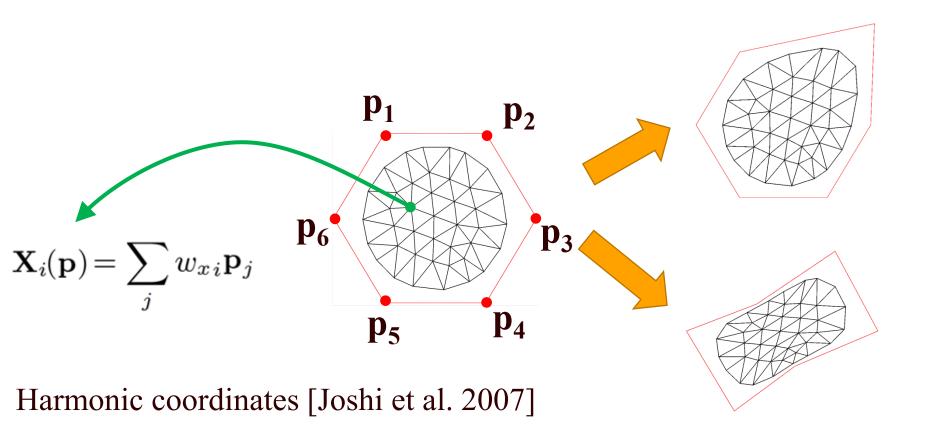
Rest shape adaptation



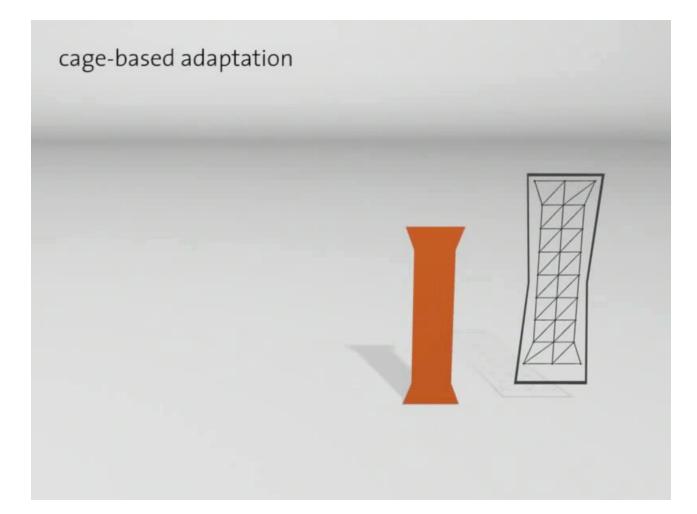
Rest shape adaptation

Find
$$\mathbf{x}, \mathbf{x}_{\mathbf{p}}$$
 to minimize $\mathbf{g}(\mathbf{x}, t)$
 $s.t.$
 $\mathbf{M}\left(\frac{\mathbf{x}}{h^2} - \frac{\mathbf{x}_n}{h^2} - \frac{\mathbf{v}_n}{h}\right) = \mathbf{f}_{\mathrm{int}}(\mathbf{X}, \mathbf{x}) + \mathbf{f}_{\mathrm{ext}}(\mathbf{x})$

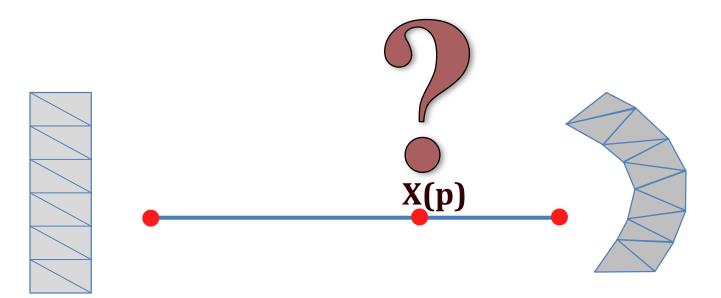
Cage-based rest shape adaptation



Cage-based rest shape adaptation

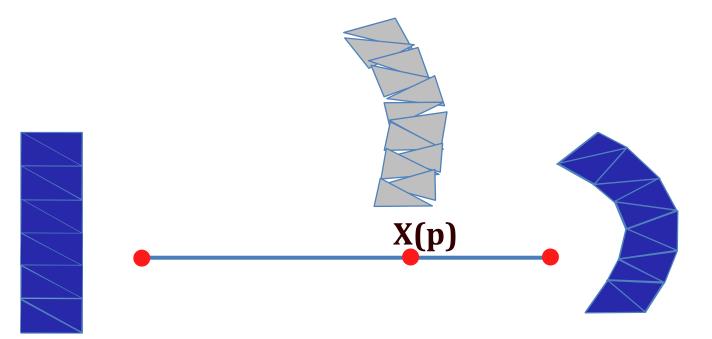


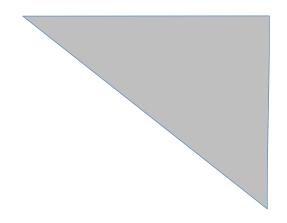
Example-based rest shape adaptation

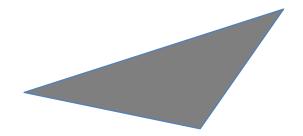


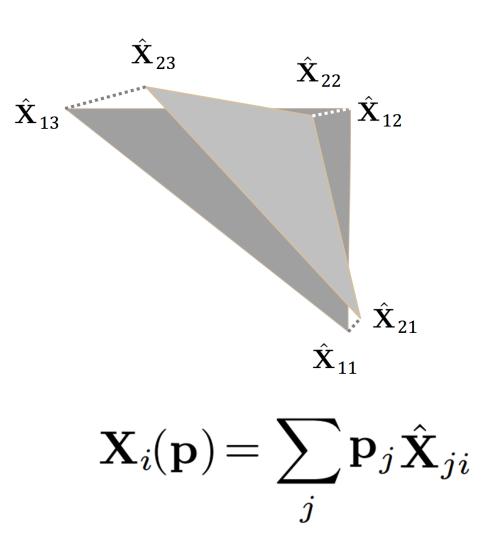


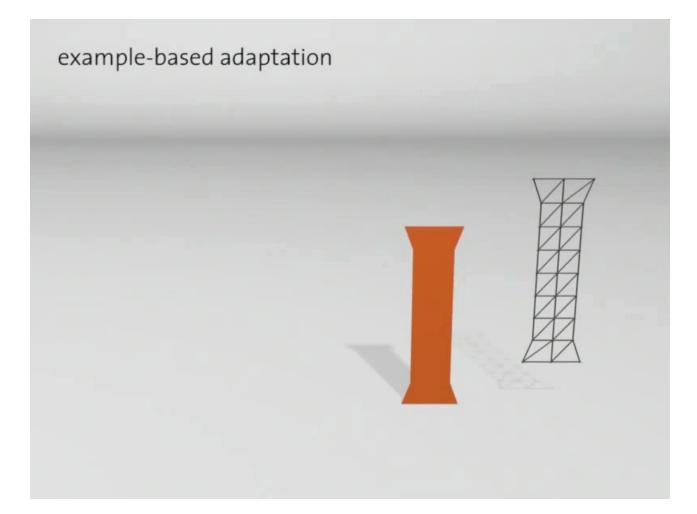
Internal potential energy $W(\mathbf{X}, \mathbf{x})$



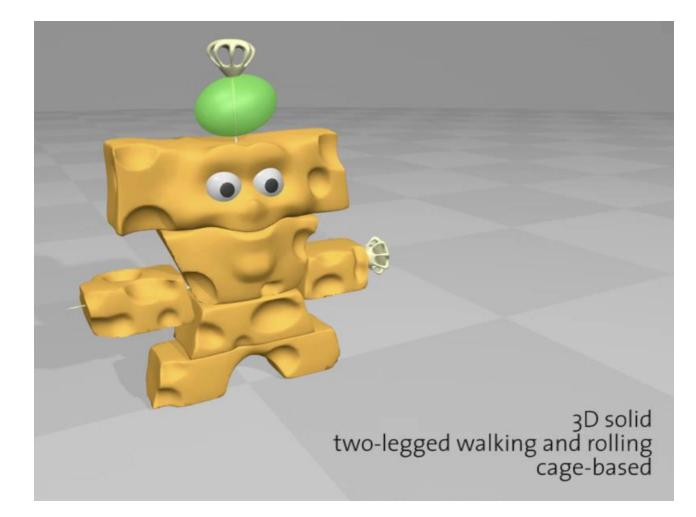






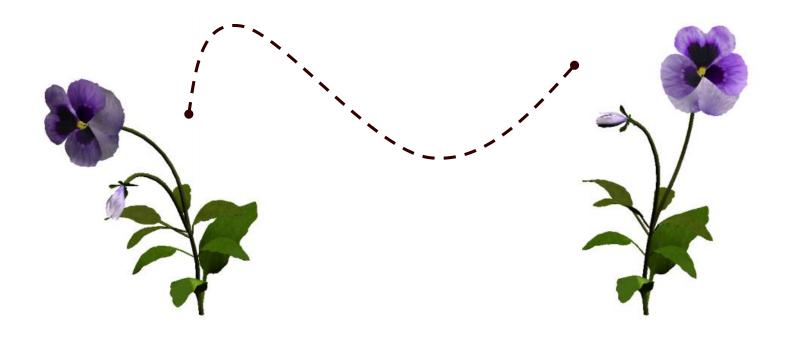


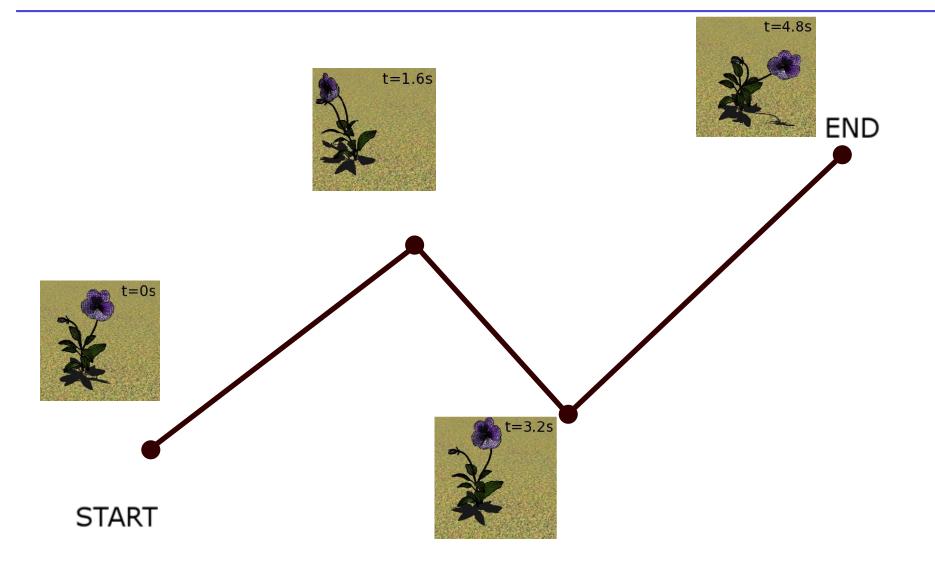
Example

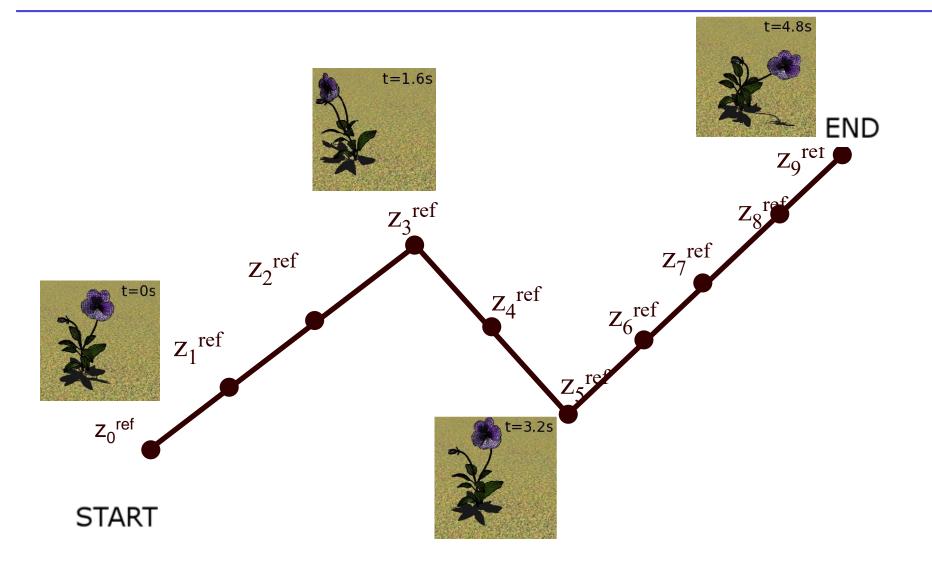


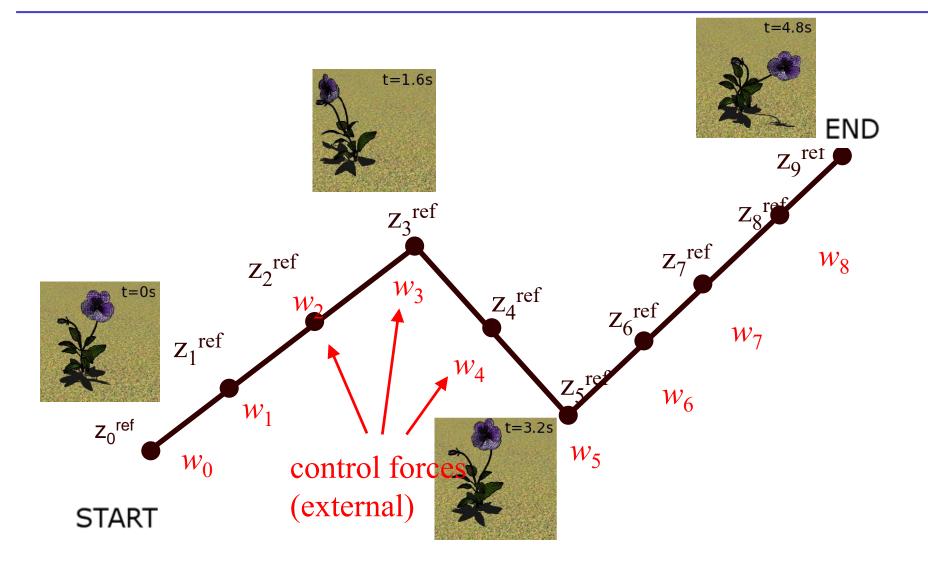
Increasing planning horizon

Deformable Object Animation Using Reduced Optimal Control, Barbic et al., 2009



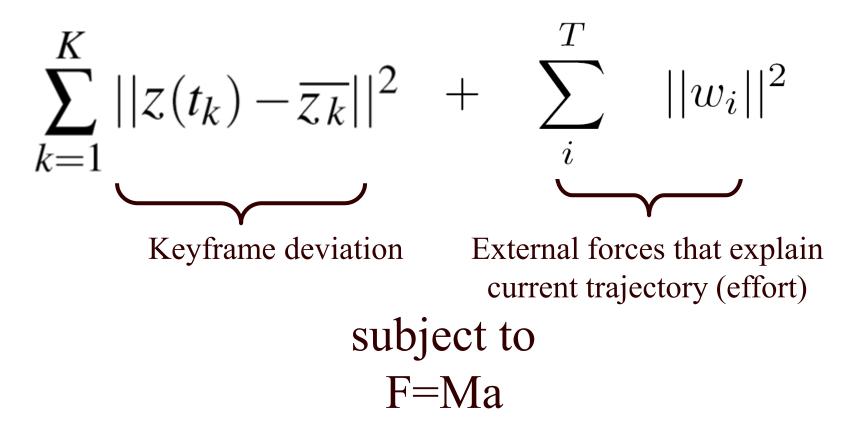


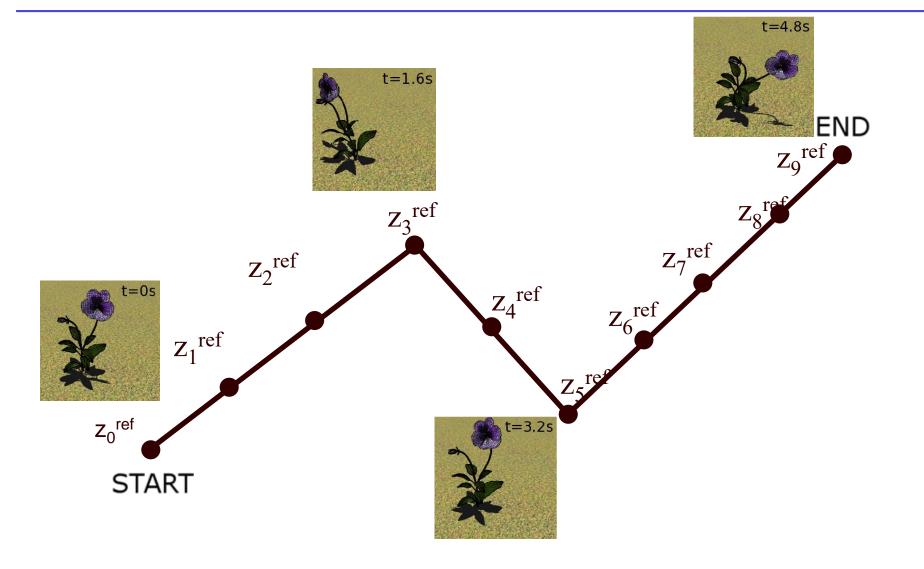


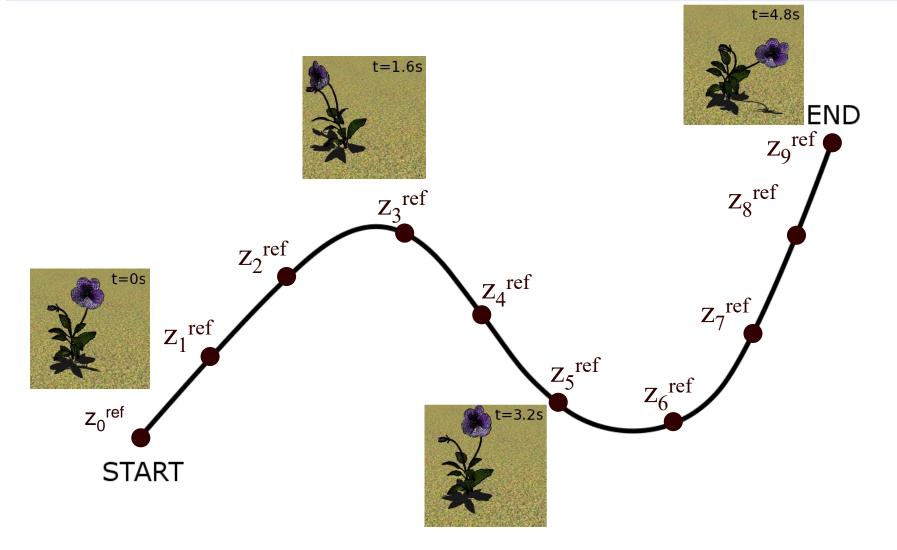


Spacetime optimization formulation:

Find Z(t) and w_i that minimizes







Example

On to the real world...

Why?

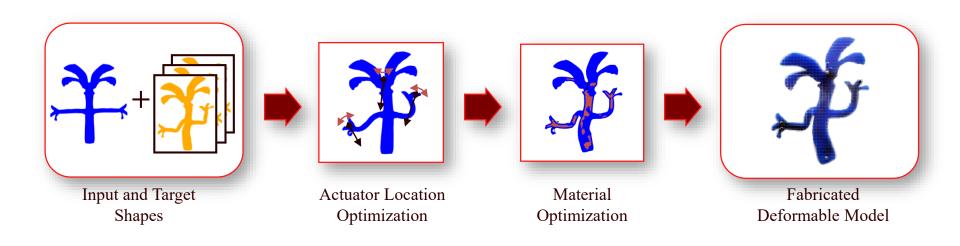
How would you get here?

Computational Design of Actuated Deformable Characters, Skouras et al., 2013

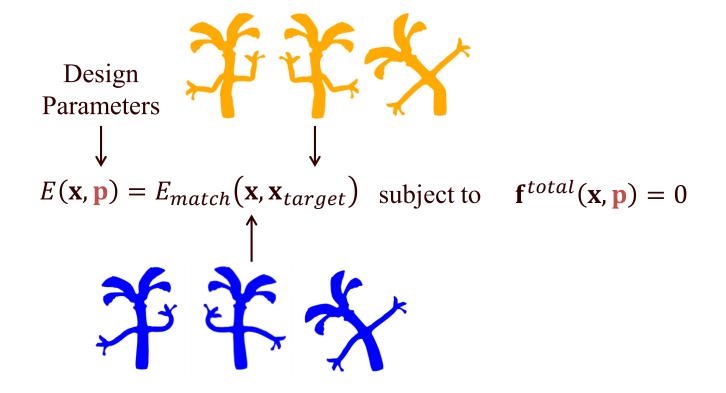
Input Animation

Fabricated Prototype

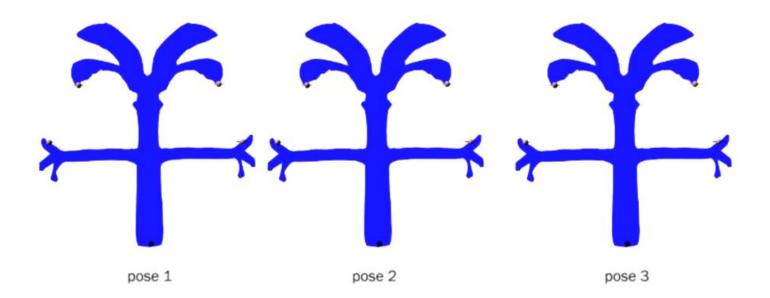
Pipeline



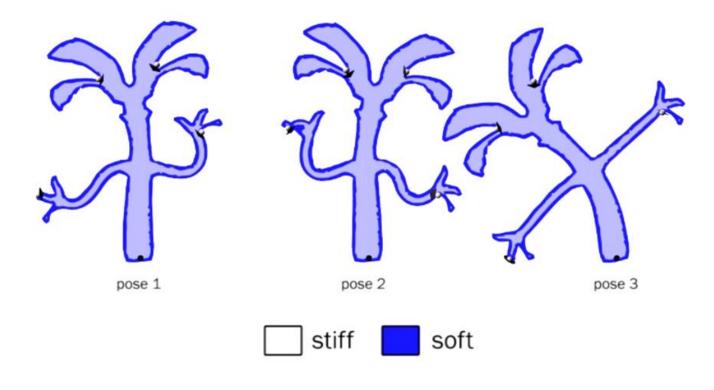
Mathematical Formulation



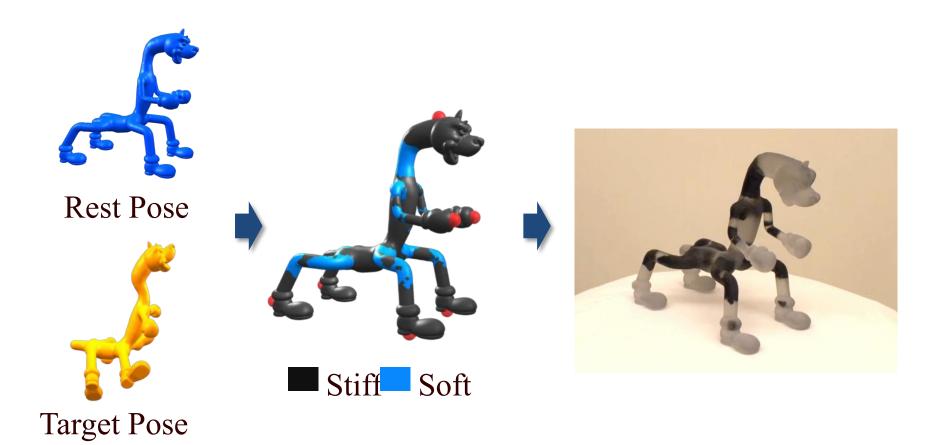
Actuator Location Optimization



Material Distribution Optimization



Results



That's it for today – questions?