Continuum Mechanics and the Finite Element Method

Assignment 2

◆ Due on March 2nd @ midnight

Suppose you want to simulate this...

The familiar mass-spring system

Spring length before/after $\mathbf{l} = |\mathbf{x} - \mathbf{y}_i|$ $\mathbf{l}_0 = |\mathbf{X} - \mathbf{y}_i|$

Deformation Measure Elastic Energy Forces $e = \left(\frac{l}{l_0} - 1\right)$ $W = \frac{1}{2}ke^2$ $f_{int} = -\frac{\partial W}{\partial x}$

$$\mathbf{f}_{\text{int}}(\mathbf{x}) = -k \left(\left(\frac{l}{l_0} - 1 \right) \frac{\mathbf{x} - \mathbf{y}_i}{|\mathbf{x} - \mathbf{y}_i|} \right)$$

Mass Spring Systems

- Can be used to model arbitrary elastic/plastic objects, but...
 - Behavior depends on tessellation
 - Find good spring layout
 - Find good spring constants
 - Different types of springs interfere
 - No direct map to measurable material properties

Alternative...

- Start from continuum mechanics
- Discretize with Finite Elements
 - Decompose model into simple elements
 - Setup & solve system of algebraic equations
- Advantages
 - Accurate and controllable material behavior
 - Largely independent of mesh structure

Mass Spring vs Continuum Mechanics

Mass spring systems require:

- **1.** Measure of Deformation $\left(\frac{l}{l_0}-1\right)$
- **2.** Material Model k
- 3. Deformation Energy W
- 4. Internal Forces $f_{int} = -\frac{\partial W}{\partial x}$

$$\frac{W}{\partial W} = \frac{1}{2}ke^2$$

 We need to derive the same types of concepts using continuum mechanics principles

Continuum Mechanics: 3D Deformations

- For a deformable body, identify:
 - undeformed state $\Omega \subset \mathbf{R}^3$ described by positions X - deformed state $\Omega' \subset \mathbf{R}^3$ described by positions **x**
- Displacement field ${\bf u}$ describes Ω' in terms of Ω

$$\mathbf{u}: \Omega \to \Omega' \qquad \mathbf{x} = X + \mathbf{u}(X)$$

Continuum Mechanics: 3D Deformations

- Consider material points X_1 and X_2 such that $|\mathbf{d}|$ is infinitesimal, where $\mathbf{d} = X_2 X_1$
- Now consider deformed vector \mathbf{d}'

d

Deformation gradient
$$\mathbf{F} = \frac{\partial f}{\partial x}$$

 $\mathbf{F} = \mathbf{x}_2 - \mathbf{x}_1 \approx (\mathbf{I} + \nabla \mathbf{u}) d$

So...

Displacement field transforms points

 $\mathbf{x} = X + \mathbf{u}(X)$

 Jacobian of displacement field (deformation gradient) transforms differentials (infinitesimal vectors) from undeformed to deformed

$$\mathbf{d'} = (\mathbf{I} + \nabla \mathbf{u}) \mathbf{d} = \mathbf{F} \mathbf{d} \qquad \mathbf{F} = \frac{\partial \mathbf{X}}{\partial X}$$

$$egin{array}{ll} x &= X\cos heta &- Y\sin heta \ y &= X\sin heta &+ Y\cos heta \ \end{array}$$

$$\mathbf{F} = egin{bmatrix} \cos heta & -\sin heta \ \sin heta & \cos heta \end{bmatrix}$$

Measure of deformations

• Displacement field transforms points

$$\mathbf{x} = X + \mathbf{u}(X)$$

Jacobian of displacement field (deformation gradient) transforms vectors

$$\mathbf{d'} = (\mathbf{I} + \nabla \mathbf{u}) \mathbf{d} = \mathbf{F} \mathbf{d} \qquad \mathbf{F} = \frac{\partial \mathbf{x}}{\partial X}$$

How can we describe deformations?

Back to spring deformation

◆ Deformation measure (strain): $\left(\frac{l}{l_0} - 1\right)$ ◆ Undeformed spring: $\frac{l}{l_0} = 1$

Undeformed (infinitesimal) continuum volume:

$$\mathbf{F} = \mathbf{I}$$
?

Strain (description of deformation in terms of *relative* displacement**)**

• Deformation measure (strain): $\left(\frac{l}{l_0}-1\right)$

- Desirable property: if spring is undeformed, strain is 0 (no change in shape)
- Can we find a similar measure that would work for infinitesimal volumes?

3D Nonlinear Strain

Idea: to quantify change in shape, measure change in squared length for any arbitrary vector

$$|\mathbf{d}'|^2 - |\mathbf{d}|^2 = \mathbf{d}'^T \mathbf{d}' - \mathbf{d}^T \mathbf{d} = \mathbf{d}^T (\mathbf{F}^T \mathbf{F} - \mathbf{I}) \mathbf{d}$$

Strain (description of deformation in terms of *relative* displacement**)**

• Deformation measure (strain): $\left(\frac{l}{l_0}-1\right)$

 Desirable property: if spring is undeformed, strain is 0 (no change in shape)

Can we find a similar measure that would work for infinitesimal volumes?

Green strain
$$\mathbf{E} = \frac{1}{2} (\mathbf{F}^T \mathbf{F} - \mathbf{I})$$

3D Linear Strain

- Green strain is quadratic in displacements $\mathbf{E} = \frac{1}{2} (\mathbf{F}^T \mathbf{F} - \mathbf{I}) = \frac{1}{2} (\nabla \mathbf{u} + \nabla \mathbf{u}^T + \nabla \mathbf{u}^T \nabla \mathbf{u})$
- Neglecting quadratic term (small deformation assumption) leads to the linear

Cauchy strain (small strain) $\varepsilon = \frac{1}{2}(\nabla \mathbf{u} + \nabla \mathbf{u}^t) = \frac{1}{2}(\mathbf{F} + \mathbf{F}^t) - \mathbf{I}$

• Written out:

$$\varepsilon = \frac{1}{2} \begin{pmatrix} 2\partial_x u & \partial_y u + \partial_x v & \partial_z u + \partial_x w \\ \partial_x v + \partial_y u & 2\partial_y v & \partial_z v + \partial_y w \\ \partial_x w + \partial_z u & \partial_y w + \partial_z v & 2\partial_z w \end{pmatrix}$$

Notation
$$\mathbf{u}(\mathbf{x}) = \begin{pmatrix} u(x, y, z) \\ v(x, y, z) \\ w(x, y, z) \end{pmatrix}$$

3D Linear Strain

• Linear Cauchy strain

$$\mathcal{E} = \frac{1}{2} \begin{pmatrix} 2\partial_x u & \partial_y u + \partial_x v & \partial_z u + \partial_x w \\ \partial_x v + \partial_y u & 2\partial_y v & \partial_z v + \partial_y w \\ \partial_x w + \partial_z u & \partial_y w + \partial_z v & 2\partial_z w \end{pmatrix} =: \begin{pmatrix} \varepsilon_x & \gamma_{xy} & \gamma_{xz} \\ \gamma_{xy} & \varepsilon_y & \gamma_{yz} \\ \gamma_{xz} & \gamma_{yz} & \varepsilon_z \end{pmatrix}$$

 \mathcal{E}_i : normal strains \mathcal{Y}_i : shear strains

• Geometric interpretation

Cauchy vs. Green strain

Nonlinear Green strain is rotation-invariant

• Apply incremental rotation **R** to given deformation **F** to obtain $\mathbf{F}' = \mathbf{RF}$

• Then
$$\mathbf{E}' = \frac{1}{2} (\mathbf{F}'^T \mathbf{F}' - \mathbf{I}) = \mathbf{E}$$

◆ Linear Cauchy strain
 is not rotation-invariant
 ε' = ¹/₂ (**F**' + **F**'^t) ≠ ε
 → artifacts for larger rotations

Mass Spring vs Continuum **Mechanics**

Mass spring systems:

- 1. Measure of Deformation
- **2.** Material Model k

$$\left(\frac{l}{l_0} - 1\right)$$

- 3. Deformation Energy $W = \frac{1}{2}ke^2$ 4. Internal Forces $f_{int} = -\frac{\partial W}{\partial x}$

Continuum Mechanics:

1. Measure of Deformation: Green or Cauchy strain

2. Material Model

Material Model: linear isotropic material

- Material model links strain to energy (and stress)
- Linear isotropic material (*generalized Hooke's law*)
 - Energy density $\Psi = \frac{1}{2}\lambda tr(\boldsymbol{\varepsilon})^2 + \mu tr(\boldsymbol{\varepsilon}^2)$
 - Lame parameters λ and μ are material constants related to Poisson Ratio and Young's modulus
- Interpretation
 - $-\operatorname{tr}(\boldsymbol{\varepsilon}^2) = \|\boldsymbol{\varepsilon}\|_F^2$ penalizes all strain components equally
 - $\operatorname{tr}(\boldsymbol{\varepsilon})^2$ penalizes dilatations, i.e., volume changes

Volumetric Strain (dilatation, hydrostatic strain)

- Consider a cube with side length a
- For a given deformation ε, the volumetric strain is
 - $\Delta V/V0 = (a(1+\varepsilon_{11}) \cdot a(1+\varepsilon_{22}) \cdot a(1+\varepsilon_{33}) a^3)/a^3$ $= (\varepsilon_{11} + \varepsilon_{22} + \varepsilon_{33}) + O(\varepsilon^2) \approx \operatorname{tr}(\varepsilon)$

http://en.wikipedia.org/wiki/Infinitesimal_strain_theory

Linear isotropic material

Energy density:
$$\Psi = \frac{1}{2}\lambda tr(\boldsymbol{\varepsilon})^2 + \mu tr(\boldsymbol{\varepsilon}^2)$$

• Problem: Cauchy strain is not invariant under rotations \rightarrow artifacts for rotations

- Solutions:
 - Corotational elasticity
 - Nonlinear elasticity

Material Model: non-linear isotropic model

- ♦ Replace Cauchy strain with Green strain → St.
 Venant-Kirchhoff material (StVK)
- Energy density: $\Psi_{StVK} = \frac{1}{2}\lambda tr(\mathbf{E})^2 + \mu tr(\mathbf{E}^2)$
- Rotation invariant!

Problems with StVK

StVK softens under compression

$$\Psi_{StVK} = \frac{1}{2}\lambda tr(\mathbf{E})^2 + \mu tr(\mathbf{E}^2)$$

Advanced nonlinear materials

- Green Strain $\mathbf{E} = \frac{1}{2}(\mathbf{F}^t\mathbf{F} \mathbf{I}) = \frac{1}{2}(\mathbf{C} \mathbf{I})$
- ◆ Split into *deviatoric (i.e. shape changing/distortion)* and *volumetric (dilation, volume changing)* deformations
 Volumetric: J = det(F) Deviatoric: Ĉ = det(F)^{-2/3} C

Neo-Hookean material:

$$\Psi_{NH} = \frac{\mu}{2} \operatorname{tr} \left(\widehat{\mathbf{C}} - \mathbf{I} \right) - \mu \ln(J) + \frac{\lambda}{2} \ln(J)^2$$

Different Models

St. Venant-Kirchoff

Neo-Hookean

Linear

Mass Spring vs Continuum Mechanics

Mass spring systems:

- 1. Measure of Deformation
- **2.** Material Model k
- 3. Deformation Energy 4. Internal Forces $f_{int} = -\frac{\partial W}{\partial r}$

$$\left(\frac{l}{l_0} - 1\right)$$

 $\langle 1 \rangle$

$$W = \frac{1}{2}ke^2$$

Continuum Mechanics:

 Measure of Deformation: Green or Cauchy strain
 Material Model: linear, StVK, Neo-Hookean, etc
 From Energy Density to Deformation Energy: Finite Element Discretization

Finite Element Discretization

Divide domain into discrete elements, e.g.,

tetrahedra

- Explicitly store displacement values at nodes (\mathbf{x}_i) .
- Displacement field everywhere else obtained through interpolation: $\mathbf{x}(X) = \sum N_i(X)\mathbf{x}_i$
- Deformation Gradient: $\mathbf{F} = \frac{\partial \mathbf{x}(X)}{\partial X} = \sum_{i} \mathbf{x}_{i} \left(\frac{\partial N_{i}}{\partial X}\right)^{t}$

Basis Functions

- Basis functions (aka shape functions) $N_i(X_j): \mathbb{R}^3 \to \mathbb{R}$
- Satisfy delta-property: $N_i(X_j) = \delta_{ij}$
- Simplest choice: linear basis functions

$$N_i(\bar{x}, \bar{y}, \bar{z}) = a_i \bar{x} + b_i \bar{y} + c_i \bar{z} + d_i$$

• Compute N_i (and $\frac{\partial N_i}{\partial X}$) through

$$egin{pmatrix} x_1 & y_1 & z_1 & 1 \ x_2 & y_2 & z_2 & 1 \ x_3 & y_3 & z_3 & 1 \ x_4 & y_4 & z_4 & 1 \ \end{pmatrix} egin{pmatrix} a_i \ b_i \ c_i \ d_i \ \end{pmatrix} \ = \ egin{pmatrix} \delta_{1i} \ \delta_{2i} \ \delta_{3i} \ \delta_{4i} \ \end{pmatrix}$$

Constant Strain Elements (Linear Basis Functions)

- Displacement field is continuous in space
- Deformation Gradient, strain, stress are not
 - Constant Strain per element
- Deformation Gradient can be computed as
 - $\mathbf{F} = eE^{-1}$ where e and E are matrices whose columns are edge vectors in undeformed and deformed configurations

Constant Strain Elements: From energy density to deformation energy

• Integrate energy density over the entire element: $W^e = \int_{\Omega} \Psi(\mathbf{F})$

- If basis functions are linear:
 - \mathbf{F} is linear in \mathbf{x}_i
 - **F** is constant throughout element: $W^{e} = \int_{\Omega} \Psi(\mathbf{F}) = \Psi(\mathbf{F}) \cdot \overline{V}^{e}$
Mass Spring vs Finite Element Method

Mass spring systems:

- **1.** Measure of Deformation $\left(\frac{l}{l_0}-1\right)$
- **2.** Material Model k
- 3. Deformation Energy 4. Internal Forces $f_{int} = -\frac{\partial W}{\partial r}$

$$W = \frac{1}{2}ke^2$$

- Continuum Mechanics:
 - 1. Measure of Deformation: Green or Cauchy strain 2. Material Model: linear, StVK, Neo-Hookean, etc 3. Deformation Energy: integrate over elements 4. Internal Forces: $f_{int} = -\frac{\partial W}{\partial r}$

- Discretize into elements (triangles/tetraderons, etc)
- For each element
 - Compute deformation gradient $\mathbf{F} = eE^{-1}$
 - Use material model to define energy density $\Psi(\mathbf{F})$
 - Integrate over elements to compute energy: W
 - Compute nodal forces as: $f_{int} = -\frac{\partial W}{\partial x}$

St. Venant-Kirchhoff material

Neohookean elasticity

$$\mathbf{E} = \frac{1}{2} (\mathbf{F}^{\mathsf{T}} \mathbf{F} - \mathbf{I}) \qquad \qquad \mathbf{I}_1 = \|\mathbf{F}\|_F^2, \quad \mathbf{J} = \det \mathbf{F}$$
$$\Psi = \mu \|\mathbf{E}\|_F + \frac{\lambda}{2} \operatorname{tr}^2(\mathbf{E}) \quad \Psi = \frac{\mu}{2} (\mathbf{I}_1 - 3) - \mu \log(\mathbf{J}) + \frac{\lambda}{2} \log^2(\mathbf{J})$$

Area/volume of element
$$f = -\frac{\partial W}{\partial x} = -V \frac{\partial \Psi}{\partial F} \frac{\partial F}{\partial x}$$

First Piola-Kirchhoff stress tensor P

St. Venant-Kirchhoff material

Neohookean elasticity

$$\mathbf{E} = \frac{1}{2} (\mathbf{F}^{\mathsf{T}} \mathbf{F} - \mathbf{I}) \qquad \mathbf{I}_{1} = \|\mathbf{F}\|_{\mathsf{F}}^{2}, \quad \mathbf{J} = \det \mathbf{F}$$

$$\Psi = \mu \|\mathbf{E}\|_{\mathsf{F}} + \frac{\lambda}{2} \operatorname{tr}^{2}(\mathbf{E}) \qquad \Psi = \frac{\mu}{2} (\mathbf{I}_{1} - 3) - \mu \log(\mathbf{J}) + \frac{\lambda}{2} \log^{2}(\mathbf{J})$$

$$\mathbf{P} = \mathbf{F} [2\mu \mathbf{E} + \lambda \operatorname{tr}(\mathbf{E})\mathbf{I}] \qquad \mathbf{P} = \mu (\mathbf{F} - \mathbf{F}^{-\mathsf{T}}) + \lambda \log(\mathbf{J})\mathbf{F}^{-\mathsf{T}}$$
Area/volume of element
$$f = -\frac{\partial W}{\partial \mathbf{x}} = -V \frac{\partial \Psi}{\partial \mathbf{F}} \frac{\partial \mathbf{F}}{\partial \mathbf{x}}$$

First Piola-Kirchhoff stress tensor **P**

St. Venant-Kirchhoff material

Neohookean elasticity

$$\begin{split} \mathbf{E} &= \frac{1}{2} (\mathbf{F}^{\mathsf{T}} \mathbf{F} - \mathbf{I}) & I_1 = \|\mathbf{F}\|_{\mathsf{F}}^2, \ J = \det \mathbf{F} \\ \Psi &= \mu \|\mathbf{E}\|_{\mathsf{F}} + \frac{\lambda}{2} \mathrm{tr}^2(\mathbf{E}) & \Psi = \frac{\mu}{2} (I_1 - 3) - \mu \log(J) + \frac{\lambda}{2} \log^2(J) \\ \mathbf{P} &= \mathbf{F} \left[2\mu \mathbf{E} + \lambda \mathrm{tr}(\mathbf{E}) \mathbf{I} \right] & \mathbf{P} = \mu (\mathbf{F} - \mathbf{F}^{-\mathsf{T}}) + \lambda \log(J) \mathbf{F}^{-\mathsf{T}} \end{split}$$

For a tetrahedron, this works out to:

$$[f_1 \ f_2 \ f_3] = -VPE^{-T}; f_4 = -f_1 - f_2 - f_3$$

Additional reading: http://www.femdefo.org/

Material Parameters

St. Venant-Kirchhoff material

Neohookean elasticity

$$\begin{split} \mathbf{E} &= \frac{1}{2} (\mathbf{F}^{\mathsf{T}} \mathbf{F} - \mathbf{I}) & \mathbf{I}_1 = \|\mathbf{F}\|_F^2, \ \mathbf{J} = \det \mathbf{F} \\ \Psi &= \mu \|\mathbf{E}\|_F + \frac{\lambda}{2} \mathrm{tr}^2 (\mathbf{E}) & \Psi = \frac{\mu}{2} (\mathbf{I}_1 - 3) - \mu \log(\mathbf{J}) + \frac{\lambda}{2} \log^2(\mathbf{J}) \end{split}$$

Lame parameters λ and μ are material constants related to the fundamental physical parameters: Poisson's Ratio and Young's modulus (http://en.wikipedia.org/wiki/Lamé_parameters)

Young's Modulus and Poisson Ratio

Lame parameters λ and μ are material constants related to the fundamental physical parameters: Poisson's Ratio and Young's modulus (http://en.wikipedia.org/wiki/Lamé_parameters)

Young's modulus (E), measure of stiffness Poisson's ratio (v), relative transverse to axial deformation

Stiffness is pretty intuitive

Poisson's Ratio controls volume preservation

Poisson's Ratio controls volume preservation

Poisson's Ratio controls volume preservation

Poisson's Ratio controls volume preservation

OBJECT

PR = 0.5

Poisson's ratio is between -1 and 0.5

Negative Poisson's Ratio

Measurement

Where do material parameters come from?

Simple Measurement: Stiffness

What's the Force (Stress)? What's the Deformation (Strain)?

How do we get the stiffness ?

How do we get the stiffness ?

How do we get the stiffness ?

Compute changes in width and height

Measurement Devices

Simulating Elastic Materials with CM+FEM

 You now have all the mathematical tools you need

Suppose you want to simulate this...

Plastic and Elastic Materials

Elastic Materials

- Objects return to their original shape in the absence of other forces
- Plastic Deformations:
 - Object does not always return to its original shape

Example: Crushing a Coke Can

Old Reference State

New Reference State

Example: Crushing a van

A Simple Model For Plasticity

- Recall our model for strain: $\frac{1}{2} (\mathbf{F}^T \mathbf{F} \mathbf{I})$
- Let's consider how to encode a change of reference shape into this metric
 - Changing undeformed mesh is not easy!
- \blacklozenge We want to exchange F with $_p^w {\bf F}$, a deformation gradient that takes into account the new shape of our object

New Reference State

Continuum Mechanics: Deformation

 deformation gradient maps undeformed vectors (local) to deformed (world) vectors

deformation gradient maps undeformed vectors (reference) to deformed (world) vectors

 F transforms a vector from Reference space to World Space

Introduce a new space

 $\begin{array}{ccc} \bullet & \text{Our goal is to use} & {}^w_p \mathbf{F} & \text{but we only have} \\ \text{access to} & {}^w_r \mathbf{F} & \\ & {}^w_p \mathbf{F} = {}^w_r \mathbf{F}{}^p_r \mathbf{F}{}^{-1} \\ & {}^w_p \mathbf{F} = {}^w_r \mathbf{F}{}^p_r \mathbf{F}{}^{-1} \end{array}$

• Keep an estimate of ${}^{p}_{r}\mathbf{F}^{-1}$ per element, built incrementally

How to Compute the Plastic Deformation Gradient

- We compute the strain/stress for each element during simulation
- When it gets above a certain threshold store F as ${}^p_{rr}\mathbf{F}$

How to Compute the Plastic Deformation Gradient

- We compute the strain/stress for each element during simulation
- When it gets above a certain threshold store F as ${}^p_{rr}\mathbf{F}$

How to Compute the Plastic Deformation Gradient

- Each subsequent simulation step uses
 - $_{p}^{w}\mathbf{F} =_{r}^{w}\mathbf{F}_{r}^{p}\mathbf{F}^{-1}$

So now you too can simulate this...

Questions?