Continuum Mechanics and
the Finite Element Method




Assignhment 2

¢ Due on March 2" @ midnight



Suppose you want to simulate
this...

Time = 1} Fringe Levels
Contours of Effective Stress [v-m)
max ipt. value 5.000e402 _
min=0, at elem# 1 4.500e+02
max=1.99413¢-08, at elem# 14513 1
4.000e+02 _

3.500e+02 _
3.000e+02
2.500e+02 _

2.000e+02 _

1.500e+02 _
1.000e402 _
5.000e+01 _
0.000e+00 _




The familiar mass-spring
system
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Mass Spring Systems

¢ Can be used to model arbitrary elastic/plastic
objects, but...

* Behavior depends on tessellation
" Find good spring layout
" Find good spring constants
= Different types of springs interfere
= No direct map to measurable
material properties




Alternative...

e Start from continuum mechanics

 Discretize with Finite Elements

— Decompose model into simple elements
— Setup & solve system of algebraic equations
« Advantages

— Accurate and controllable material behavior
— Largely independent of mesh structure




Mass Spring vs Continuum
Mechanics

& Mass spring systems require:

1. Measure of Deformation (i _ 1)

z
2. Material Model -k ’

3. Deformation Energy w =%kez

ow

4. Internal Forces  fio=-5-

¢ We need to derive the same types of
concepts using continuum mechanics
principles



Continuum Mechanics: 3D

Deformations

« For a deformable body, identify:

— undeformed state Q c R°described by positions X
— deformed state Q' R® described by positions X

 Displacement field u describes Q' in terms of Q

z
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u.-Q—-> Q" x=X+u(X)
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Continuum Mechanics: 3D

Deformations

« Consider material points X, and X, such that
|d | is infinitesimal, where d = X, — X,
* Now consider deformed vector d'

z

A

OX
Deformation gradient K= X
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So...

 Displacement field transforms points
X=X +U(X)

* Jacobian of displacement field (deformation
gradient) transforms differentials (infinitesimal
vectors) from undeformed to deformed

_8x

d'=(1+Vu)d=Fd  F-_



Displacement Field and
Deformation Gradient

¢ In general, displacement field is not explicitly
described. Nevertheless, toy examples:
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Displacement Field and
Deformation Gradient

¢ In general, displacement field is not explicitly
described. Nevertheless, toy examples:

r = Xcosf@ —Ysin6
y = Xsinf + Y cosf

— [cos@ —sin@]
sin @ cos 6



Displacement Field and
Deformation Gradient

¢ In general, displacement field

IS not explicitly

described. Nevertheless, toy examples:

y
A r =20X +00Y
._i--: y =00X +15Y
i P X 2.0 0.0
F = ' '
0.0 1.5




Displacement Field and

Deformation Gradient

¢ In general, displacement field is not explicitly
described. Nevertheless, toy examples:

r =1.0X +00Y
y =05X +10Y

F —

1.0 0.0

0.5 1.0_



Displacement Field and
Deformation Gradient

¢ In general, displacement field is not explicitly
described. Nevertheless, toy examples:
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Measure of deformations

 Displacement field transforms points
X=X +U(X)
» Jacobian of displacement field (deformation
gradient) transforms vectors

_8x

d=(1+Vuyd=Fd  F-_

How can we describe deformations?



Back to spring deformation

¢ Deformation measure (strain): (li — 1)
0

X

y Similar to F
¢ Undeformed spring: = |
o

¢ Undeformed (infinitesimal) continuum volume:

F=17?



Strain (description of deformation
In terms of relative displacement)

. . [
¢ Deformation measure (strain): (l_ — 1>
0

¢ Desirable property: if spring is undeformed,
strain is 0 (no change in shape)

¢ Can we find a similar measure that would
work for infinitesimal volumes?



3D Nonlinear Strain

Idea: to quantify change in shape, measure change in
squared length for any arbitrary vector

' —|dP=d"d' —dd =d"(F'F - 1)d

—> | Green strain E=3(F'F -1



Strain (description of deformation
In terms of relative displacement)

. . [
¢ Deformation measure (strain): <l_ — 1>
0

¢ Desirable property: if spring is undeformed,
strain is 0 (no change in shape)

¢ Can we find a similar measure that would
work for infinitesimal volumes?

Green strain E=Z(F'F —1)



3D Linear Strain

« Green strain Is quadratic in displacements
E=2(F'F -1)=2(Vu+Vu'+Vu'vu)

* Neglecting quadratic term (small deformation
assumption) leads to the linear

Cauchy strain
(small strain)

 Written out;

1
£=§(\7u+\7ut) =§(F+Ft)—l

20,U oyu+aoy  oJ,u+ow Notation : )
E :% oV + 0oy U 204V 0,V+ Oy W u(x) = ( v(migif?) )
O W +0,u OyW+ 0,V 20,W v (®3:7)




3D Linear Strain

* Linear Cauchy strain

20, U o,u+oyNy  o,u+ow £ ~
1 T TY Tz
E = E 5XV +8y u ZayV 0,V+ 8y w| = ( Yzy &y VYyz )

oW +0,uU oO,W+0,V 20,W Yoz Yyz Ex

&i+ normal strains

.. : Yi . shear strains
* Geometric interpretation
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Cauchy vs. Green strain

& Nonlinear Green strain is rotation-invariant

* Apply incremental rotation R to given deformation
F to obtain F' = RF

* Then E':%(F'TF'—I)zE

¢ Linear Cauchy strain e -
Is not rotation-invariant

1
g’ =§(F’+F’t) * £

— artifacts for larger rotations
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Mass Spring vs Continuum
Mechanics

& Mass spring systems:
1. Measure of Deformation (zi _ 1)
2. Material Model k :
3. Deformation Energy w = ke
4. Internal Forces f,, =-2%

- Ox
¢ Continuum Mechanics:

1. Measure of Deformation: Green or Cauchy strain
2. Material Model



Material Model: linear isotropic
material

» Material model links strain to energy (and stress)
* Linear isotropic material (generalized Hooke's law)

— Energy density W = %Atr(£)2+,utr(£2)
— Lame parameters A and u are material constants related to
Poisson Ratio and Young's modulus
* Interpretation
— tr(e?) = ||¢||% penalizes all strain components equally
— tr(€)? penalizes dilatations, i.e., volume changes



Volumetric Strain (dilatation,
hydrostatic strain)

¢ Consider a cube with side length a

& For a given deformation g, the volumetric
strain Is

AV/VO = (a(l+ &) ra(l+&y,) - a(l+ &3) —a’)/a®
= (&1 + &35 + £33) + 0(£%) =~ tr(e)

Fo Fo+ AV



Linear isotropic material

Energy density: W = %Atr(£)2+utr(£2)

¢ Problem: Cauchy strain is not invariant under rotations
— artifacts for rotations
¢ Solutions:
* Corotational elasticity — _ 4
* Nonlinear elasticity
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Material Model: non-linear
Isotropic model

& Replace Cauchy strain with Green strain — St
Venant-Kirchhoff material (StVK)

¢ Energy density: Yoy = %Atr(E)2+Mtl‘(E2)
¢ Rotation invariant!



Problems with StVK

¢ StVK softens under compression

1
Yoy = > Atr(E)?+utr(E?)

......................




Advanced nonlinear materials

¢ Green Strain E = %(FtF 1) = %(c —1)

& Split into dewviatoric (i.e. shape changing/distortion) and
volumetric (dilation, volume changing) deformations
Volumetric: | = det(F)  Deviatoric; € = det(F)=2/3 C
¢ Neo-Hookean material:

~ A
Wyy = %tr(C — 1) — un()) + EIHU)Z




Different Models

St. Venant-Kirchoff

Neo-Hookean

Linear




Mass Spring vs Continuum
Mechanics

& Mass spring systems:
1. Measure of Deformation (— _ 1)
2. Material Model -k
3. Deformation Energy  w = xe2

ow

4. Internal Forces fine = =

¢ Continuum Mechanics:
1. Measure of Deformation: Green or Cauchy strain
2. Material Model: linear, StVK, Neo-Hookean, etc
3. From Energy Density to Deformation Energy:
Finite Element Discretization



Finite Element Discretization

¢ Divide domain mto discrete elements e.g.,
tetrahedra 2 %

 Explicitly store displacement values at nodes (x;).

* Displacement field everywhere else obtained
through interpolation: x(X) = Y N;(X)x;

. , e 0x(X) ON; t
Deformation Gradient: F = o 2 X; (ax)



Basis Functions

Basis functions (aka shape functions) N;(X;):R® - R
Satisfy delta-property: N;(X;) = &;;
Simplest choice: linear basis functions

N;(%,9,2) = a;% + by + c;Z + d;

ON;
0X

Compute N; (and ) through

L1 Y1 21 1
o Y2 22 1
Tz Ys 23 1

1

T4 Ys 24



Constant Strain Elements
(Linear Basis Functions)

« Displacement field is continuous in space

 Deformation Gradient, strain, stress are not

— Constant Strain per element
« Deformation Gradient can be computed as
- F = eE-'where e and E are matrices whose

columns are edge vectors in undeformed and
deformed configurations



Constant Strain Elements: From
energy density to deformation energy

Integrate energy density over the entire element:

we=| W)
Q,

If basis functions are linear:
— F is linear In x;
— F is constant throughout element:

we=| W) =W(F)- V°
Q



Mass Spring vs Finite Element
Method

& Mass spring systems:
1. Measure of Deformation (— _ 1)
2. Material Model -k
3. Deformation Energy  w = L ke?

aWw
4. Internal Forces fine = =

¢ Continuum Mechanics:
1. Measure of Deformation: Green or Cauchy strain
2. Material Model: linear, StVK, Neo-Hookean, etc
3. Deformation Energy: integrate over elements

4. Internal Forces:  _ _9%

int o dx



FEM recipe

¢ Discretize into elements (triangles/tetraderons,
etc)

¢ For each element
* Compute deformation gradient F = eE*
* Use material model to define energy density ¥(F)
* Integrate over elements to compu‘}Ve energy: W

* Compute nodal forces as: fie = ——-



FEM recipe

l St. Venant-Kirchhoff material | Neohookean elasticity

E=J(FF-I) [ = |F|% ]=detF
Y= wE[r + 3tr2(E) ¥=5(1; -3) - ulog(]) + 5 log(])

Area/volume of element
ow B oV OF

 9x  OF ox

First Piola-Kirchhoff stress tensor P



FEM recipe

l St. Venant-Kirchhoff material | Neohookean elasticity

F—

Y=u
P=F

3 (FTF -1) ) = F|}}, J=detF
Elr +3t(E) W= %I —3) - pulog(]) + $log’(])

WE+AMr(E)]  P=wF-F")+Aog(J)F"
Area/volume of element
ow B oY OF

 9x  OF ox

First Piola-Kirchhoff stress tensor P



FEM recipe

l St. Venant-Kirchhoff material | Neohookean elasticity

F—

Y=u
P=F

JuE + Mr(E)] P

3 (FTF -1) ) = F|}}, J=detF
Elr +3t(E) W= %I —3) - pulog(]) + $log’(])
W(F —FT) + Mog(J)F "

For a tetrahedron, this works out to:

1f1 f2 [l =_VPE_T3f4=_f1_f2_f3

Additional reading: http://www.femdefo.org/



Material Parameters

l St. Venant-Kirchhoff material | Neohookean elasticity

E=J(FF-I) [ = F|3, ]=detF
Y=l + 5tr?(E) Y= 4(11 —3) - ulog(]) + § log”(])

Lame parameters 4 and u are material constants related to the
fundamental physical parameters: Poisson’s Ratio and Young's
modulus (http://en.wikipedia.org/wiki/Lamé_parameters)



Young’s Modulus and Poisson
Ratio

Lame parameters 4 and u are material constants related to the
fundamental physical parameters: Poisson’s Ratio and Young's
modulus (http://en.wikipedia.org/wiki/Lamé_parameters)

Young's modulus (E), Poisson’s ratio (v), relative
measure of stiffness transverse to axial deformation



What Do These Parameters
Mean

¢ Stiffness Is pretty intuitive

Pascals = force/area

OBJECT

E=10000000
GPa
E=60 KPa




What Do These Parameters
Mean

Poisson’s Ratio controls volume preservation

—_

OBJECT Ay
A1

—

\ }

f
|
OBJECT




What Do These Parameters
Mean

Poisson’s Ratio controls volume preservation

OBJECT 1= Ay
Ax

— 1/2



What Do These Parameters
Mean

Poisson’s Ratio controls volume preservation

OBJECT 1= Ay
Ax

Poisson’s Ratio (/) = ?

— 1/2




What Do These Parameters
Mean

Poisson’s Ratio controls volume preservation

OBJECT

PR =0.5

Poisson’s Ratio (/) = 0.5

2
A

OBJECT
PR =0.5 — 1/2




What Do These Parameters
Mean

Poisson’s ratio is between -1 and 0.5

OBJECT
PR =0.5

Poisson’s Ratio (/) =-0.5

OBJECT
PR =0.5




10

Isson’s Rati

Po

Negative




Measurement

¢ \Where do material parameters come
from?



Simple Measurement: Stiffness

OBJECT




Simple Measurement

What’s the Force (Stress)?
What’s the Deformation (Strain)?

1kg

OBJECT




Simple Measurement

1kg

OBJECT




Simple Measurement

OBJECT >lo Py

ﬂ o

- E



Simple Measurement

3kg o

OBJECT ®




Simple Measurement

[ n

l OBJECT




Simple Measurement

How do we get the stiffness ?

[ n

l OBJECT




Simple Measurement

How do we get the stiffness ?

n\ O-
l —lo

l OBJECT
- E




Simple Measurement

How do we get the stiffness ?

B o
oy Stiffness
[ 0

I OBJECT
- E




Simple Measurement: Poisson’s
Ratio

OBJECT




Simple Measurement: Poisson’s
Ratio




Simple Measurement: Poisson’s
Ratio

Compute changes in width and height

Al

A




Simple Measurement: Poisson’s
Ratio

Al
- A
\

Poisson’s Ratio

UV

ALY
lo
A

lo




Measurement Devices




Simulating Elastic Materials
with CM+FEM

¢ You now have all the mathematical tools
you nheed



Suppose you want to simulate
this...

Time = 1} Fringe Levels
Contours of Effective Stress [v-m)
max ipt. value 5.000e402 _
min=0, at elem# 1 4.500e+02
max=1.99413¢-08, at elem# 14513 1
4.000e+02 _

3.500e+02 _
3.000e+02
2.500e+02 _

2.000e+02 _

1.500e+02 _
1.000e402 _
5.000e+01 _
0.000e+00 _




Plastic and Elastic Materials

¢ Elastic Materials

* Objects return to their original shape in the
absence of other forces

¢ Plastic Deformations:

* Object does not always return to its original
shape



Example: Crushing a Coke Can

Old Reference State New Reference State



Example: Crushing a van




A Simple Model For Plasticity

¢ Recall our model for strain: % (F'F - 1)

¢ Let’'s consider how to encode a change of
reference shape into this metric
* Changing undeformed mesh is not easy!

¢ We want to exchange F with Y F', a

deformation gradient that takes into
account the new shape of our object

New Reference State



Continuum Mechanics:
Deformation

¢ deformation gradient maps undeformed
vectors (local) to deformed (world) vectors

Reference Space World Space

dx ~ FdX



Continuum Mechanics:
Deformation

¢ deformation gradient maps undeformed
vectors (reference) to deformed (world)
vectors

Reference Space World Space

dx ~” FdX



Continuum Mechanics:
Deformation

¢ F transforms a vector from Reference
space to World Space

w

, "

X2

Xi—>Xoy /

X1

Reference Space World Space



Continuum Mechanics:
Deformation

¢ Introduce a new space

g 1)

Reference Space

Plastic Space World Space
I




Continuum Mechanics:
Deformation

¢Ourgoalistouse 'F butwe only have
accessto .| F

W
w
e =
X2
X1%X2 X1%X2 /
X1
Refere@)ace PlaAs'tic Sp{ \AV'orld Space
PR el 2

T P



Continuum Mechanics:
Deformation

¢Ourgoalistouse 'F butwe only have
accessto .| F

WL _ W TP 1
e
r
e —
X2
X1%X2 X1%X2 /
X1
Refere@)ace PlaAs'th Sp{ \AV'orld Space
PR el 2

T P



Continuum Mechanics:
Deformation

¢Ourgoalistouse 'F butwe only have

accessto .| F
wF _w FpF 1

¢ Keep an estimate of 2F ™' per element,
built iIncrementally



How to Compute the Plastic
Deformation Gradient

« We compute the strain/stress for each element during

simulation

* When it gets above a certain threshold store F as Z;F

2.2
2.0
18
16

14
1.2
1.0
i 0.8

0.6
0.4
0.2
0




How to Compute the Plastic
Deformation Gradient

« We compute the strain/stress for each element during

simulation

* When it gets above a certain threshold store F as Z;F

2.2
2.0
18
16

14
1.2
1.0
i 0.8

0.6
0.4
0.2
0




How to Compute the Plastic
Deformation Gradient

« Each subsequent simulation step uses

wF _w FpF 1




So now you too can simulate
this...

Time = 1} Fringe Levels
Contours of Effective Stress [v-m)
max ipt. value 5.000e402 _
min=0, at elem# 1 4.500e+02
max=1.99413¢-08, at elem# 14513 1
4.000e+02 _

3.500e+02 _
3.000e+02
2.500e+02 _

2.000e+02 _

1.500e+02 _
1.000e402 _
5.000e+01 _
0.000e+00 _




Questions?
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