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Particle Fluids



Spatial Discretization
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Fluid is discretized using 
particles



Particles = Molecules?

Particle approaches: 

 Molecular Dynamics: relates each particle to one molecule

- Can model molecular forces, integrate

- 1 liter of water contains about 1025 molecules

 SPH: particle represents volume -> continuum assumptions apply

- Properties such as density, pressure, etc are assumed to vary 
continuously in space

- field quantities defined at discrete particle locations, use interpolation 
to evaluate anywhere
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• Fluid volume is discretized 
by particles

• Each particles represents a 
certain amount of fluid volume:

• Note: mass is constant, density 
is not

𝑉𝑖 =
𝑚𝑖

𝜌𝑖

Smoothed Particle Hydrodynamics (SPH)
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• To evaluate an attribute, take 
weighted average of particle 
values within a neighborhood

• Particles store attributes

• Smoothing kernel W prescribes 
interpolation weights

Smoothed Particle Hydrodynamics (SPH)



Kernel Properties
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• Typically radially symmetric

r: offset from kernel center

• Normalization condition:

• If W is even (W(r,h)=W(-r,h)): 
second order accuracy

• Compact support

න𝑊 𝒓 𝑑𝒓 = 1

𝑊 𝒓, ℎ = 0 𝑤ℎ𝑒𝑛 𝒓 > ℎ
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• Computing some quantity A at an 
arbitrary position in space

x

Sum over all 
neighbor particles j 
within h

Particle 
volume

Smoothing kernelQuantity A at 
arbitrary position x

Quantity A of 
particle j

• Sum up contribution of 
neighboring particles j

SPH Summation Equation

𝐴(𝒙) =

𝑗

𝑚𝑗

𝜌𝑗
𝐴𝑗𝑊(𝒙 − 𝒙𝑗 , ℎ)
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• A quantity A of particle i can be 
computed by summing up the 
contributions from neighbors j:

Note: Neighborhood j includes particle i

x
i

SPH Summation Equation



Differentiation
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• Gradient and Laplacian can be easily calculated



Numerical Solution to NS Equations
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Diffusion / V
Pressure 
Force / V

Body Force 
/ V

Neighbor 
Search

Density, 
Pressure



Estimating Density
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• Attribute A is now density

Larger density Smaller density



From Density to Pressure
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• Pressure is computed through the ideal gas law:

Rest density of fluid
(water: 1000)

Stiffness parameter
(~Specific Gas Constant)

• Modified version gives pressure of particle i:

• Modified pressure is proportional to density deviation

• Gradient (forces) should not be affected by offset, but SPH 
approximation is numerically more stable

• Stiffness k defines speed of response 
(note: stiff system -> smaller time step)



Density and Pressure -

Example
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Example:

Larger density Smaller density

Larger pressure Smaller pressure Negative pressure
Density below rest density



Pressure Force Density
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Larger density Smaller density

Larger pressure Smaller pressure Negative pressure
Density below rest density

Larger repulsion forces Smaller repulsion forces Attraction forces



Pressure Force Density
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Larger density Smaller density

Larger pressure Smaller pressure Negative pressure
Density below rest density

Larger repulsion forces Smaller repulsion forces Attraction forces

• Pressure force aims to restore the rest state of the fluid 
(where                   )



Attraction Forces
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Negative pressure
Density below rest density

Attraction forces

• Attraction forces can lead to 
numerical instability

• Typically, only repulsion forces are used:



Pressure Force Density

For particle i evaluates to:
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p1 p2

if p1 != p2: forces not 
symmetric!

Note: Kernel is multiplied by 
distance vector x_ij

Pressure force acts along vector between particles!



Pressure Force Density
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• Non-symmetric forces violate Newton’s 3rd law 
action = reaction

• Use arithmetic mean of pressure values

p1 p2



Incompressibility

 The stiffer the fluid (the larger k), the less compression
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• Incompressibility by using very (!) large k 
(density variation < 1%)



Viscosity Force Density

 For particle i, evaluates to :
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Note: Viscosity is always needed to stabilize the particle system

• Once again need to make forces symmetric. Insight: 
viscosity forces are only dependent on velocity 
differences, not on absolute velocities



Zero Viscosity vs Normal 

Viscosity vs High Viscosity



Gravitational Force Density

 For particle i we get:
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• Other forces can easily be included (collision forces, 
boundary forces, user interaction, etc.)



Kernel Function

 Different kernels can be used, see for example 
[Müller03]

 Choice of kernel affects stability, accuracy and 
speed of SPH methods

 Poly6 kernel: use for everything but pressure forces 
& viscosity
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Kernel Function

 Different kernels can be used, see for example 
[Müller03]

 Choice of kernel affects stability, accuracy and 
speed of SPH methods

 Spiky kernel: use for pressure forces
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Kernel Function

 Different kernels can be used, see for example 
[Müller03]

 Choice of kernel affects stability, accuracy and 
speed of SPH methods

 Viscosity kernel: Laplacian is always positive!
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Time Integration

 Symplectic Euler scheme:

- New velocity:

- New position:
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• Total force density:

• Acceleration:



Neighbor Search

 3D: 30-40 neighbors per particle
→Neighbor computation is 

most expensive part
→ we need fast data structures
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• Domain partitioning into cells of 
size h

• Potential neighbors in 27 cells

• Create grid, insert particles, 
compute neighbors



How to get started with SPH...

 Start with simple implementation, worry about 
performance/optimizations once it works

 Define walls/boundary conditions geometrically  simple 
collision tests 
(if x[y] < 0 then x[y] = 0)
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Debugging 1: Visualize particles / quantities (densities, velocities)

Debugging 2: Viscosity const large enough? Time step small enough?



Algorithm
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Multiple Fluids

 Particles carry different attributes
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- Gas constant (stiffness)

- Color attributes

- Temperature

- Mass

- Rest density 

- Viscosity coefficient

• Buoyancy emerges from individual rest densities (note:V1=V2)



Fun with SPH
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Solids with SPH

 Unified model for fluids, solids, 
elastic objects -> phase changes

 Displacement from undeformed 
shape 
-> strain, stress, elastic forces
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Position-Based Dynamics
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Position-Based Dynamics

Physics-inspired*: everything is a set of 
particles connected by constraints

• Replace forces & numerical integration by 
constraint projection

Very fast, very stable, simple, plausible results

• used in video games
 Nvidia PhysX

 T. Jakobsen, Advanced Character Physics, Game 
Developer Conference, 2001.

• used in Autodesk’s Maya: 
https://autodeskresearch.com/publications/nucleus

http://www.pagines.ma1.upc.edu/~susin/files/AdvancedCharacterPhysics.pdf


Position-Based Dynamics
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Many references, but start here:

• “Position-Based Simulation Methods in 
Computer Graphics”, Bender, Muller and 
Macklin, Eurographics 2015
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Position-Based Dynamics
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Position-Based Dynamics

Setup similar to mass-spring systems

• Discretize using mass points: mass mi, position xi, 
velocity vi

Rather than forces, use constraints:

• distance constraint, area preservation, etc



PBD: constraints
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PBD: main loop
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PBD: constraint projection
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𝐶 𝒑𝒊, 𝒑𝒋 = |𝒑𝒊 − 𝒑𝒋| − d
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PBD: constraint projection



PBD: constraint projection
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Taylor expansion (per constraint):

Step must be in direction of constraint Jacobian:

Putting it all together:



PBD: constraint projection
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Is momentum conserved?



PBD: constraint projection

45

Conservation of linear momentum:

Scale updates by inverse mass 𝑤𝑖 = 1/𝑚𝑖
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PBD: constraint projection



PBD: constraint projection

47



PBD: main loop
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Collision constraints

Assume: collisions already detected

Simple objects/particles: easy

Collision response:

Unilateral constraints (inequality)

Potentially changing at every time-step



Collision constraints

𝒙

𝒑

𝒒𝒄



Collision constraints

𝒙

𝒑

𝒒𝒄

𝒏𝒄



Collision constraints

𝒙

𝒑

𝒒𝒄

𝒏𝒄



Collision constraint

Unilateral:   𝐶 𝒑 ≥ 0

Project only if violated



PBD: main loop
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PBD: main loop

Not a traditional time-stepping scheme

• Predictor-Corrector approach

Stability due to constraint projection which 
acts directly on positions

• note: no internal forces!
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PBD: can you see any 

downsides to this approach?
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Other types of constraints?
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 Position-based Fluids
“Position Based Fluids”, Macklin & Muller, 2014



Assignment 2

Out today

Due on March 2nd @ midnight

58



Reminder

Project Ideas 

• Brief descriptions due today (or plan to talk to us 
this week)
 Team info, topic, etc.
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