lal Equations

Partial Different




Next week

¢ Tuesday: guest lecture (Prof. Keenan Crane)
¢ Thursday: in-class test



Recap

¢ ODEs: implicitly define a function through its
time derivative

q; q(t) =v(q,t)
Uo

time



Recap

¢ What does an ODE for exponential decay

look like?
* |t could be a very crude model for how the

temperature of a particle changes through
time...

* But where does the heat go?
" |t's a PDE!



Partial Differential Equations

¢ PDEs: implicitly define a function through its

derivatives wit
¢ Most physical

N respect to time and space

phenomena and processes can

be described by partial differential equations

ODE—rock flies through air PDE—rock lands in pond




Partial Differential Equations




Partial Differential Equations

& ODESs: want to solve for function of time

2
Example ODE: m dd)t(z(t) = F(x(t))

¢ PDEs: want to solve for function of time and
space

ou(t, x) :Cazu(t,x)

Example PDE: -
ot OX




Partial Differential Equations

¢ Definition of PDE
u(t, x)
¢ Function implicitly given in terms of derivatives

d

u, U, 3 u,... Any combination of time derivatives

ou o0°u 0 adu
OX, OX OX, OX,

. Plus any combination of space derivatives
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Partial Differential Equations

2 2
Abbreviation uttza—zu(t,..), Uy, = g
ot OX oy

u(x, y,..)

Linear vs non-linear PDEs

Linear example Nonlinear example
u, =—cu u +u-u =u,

XX

wave equation Burgers’ equation

Order of a PDE: how many derivatives in space
and time?

- wave equation: 2" order in time, 2"d order in space
- Burger’s equation: 15t order in time, 2"d order in space



PDEs: a first example

¢ A linear, first order PDE: 1D advection
Weather forecast. simulate temperature evolution.

T
To(X) C . . .
> One space dimension + time

AFE

I == —

s A
s A a*;?i,{ =
v 1‘9?‘(“9 ,g %2 ,i =R

}%:ég {,JJ{’;L?D (‘}

Given: initial temperature distribution T,y = T (x, 0), wind speed C.
Find: temperature distribution T'(x, t) for any ¢, x.
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PDEs: a first example

« How does the temperature change over a time interval
AL?
Tt Tk ——

T(x—cAt,t)-ﬁ:\_/

T(x,t+A4t)

At a given location in space, some time
later, what will the temperature be?

Where was this air front at time ¢?
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PDEs: a first example

« How does the temperature change over a time interval

At?

T4

T(x-cat,t)

C

T(x,t)

@(,HM)]:[T(x—cAt,t)]
(ATET(x,t+At)-T(x,1)

T(x—cAt,t):—g—chHO(Atz) =T (x,t + A))

AT

At

z—Cg At —0 8T__C8T

OX E_ &

1D advection equation
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PDEs: a first example

Analytical solution:
O ytical solutio N -

* Want a function T(x,t) that satisfles —=-C—
ot OX

« Any T(x,t) of'the form T(x,t) = f (x—ct) will work! How do
we choose one of the many options?

« The solution also needs to satisfy the initial condition:
T(X,0) =Ty (x)

« The solution is thus T(x,t) =T, (x—ct)

Note: only simple PDEs can be solved analytically!
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PDEs: a first example

& Numerical solution:

* \Want to approximate function T(x,t) by discretizing
In space and time (estimate T(x,t) at different (x,1))

T4

L N

X
t
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PDEs: a first example

« Sample temperature T(x,t) on o ' .
1D grids T[[]=T(i-h,t-At) Ty OO e
with ie(,..,n),te(012.) L (0] RNV SR e )

 Discretize derivatives with finite differences (space & time)
oT  oT THO-T'[]  TU[1-T'[i-1]
- =—C— —
ot OX :> At ‘ h
» Solving for T*[i] T]-T'[i 1]
yields update rule

THi]=T'[i]- At-c

 Provide initial values T[i]

» Need some boundary conditions T[0]!



PDEs: a first example

¢ Eulerian vs Lagrangian viewpoint

T
To(X) C
/‘\v;>
s S :‘1; . X

po— - "
A e =
—F a e

( ﬂ:rf'i)’)/’g ,1*’1?,,; ’“«L'\
e }’?,‘(ﬂ{,}j‘ ny> }/‘* =

Release weather balloons and see
Monitor temperature at where they end up (the temperature
fixed locations in space they record does not change)! 16



Basic Recipe for solving PDEs
numerically

¢ Pick a spatial discretization

¢ Pick a time discretization (forward Euler,
backward Euler, etc)

¢ Run a time-stepping algorithm using resulting
update rule

¢ \We will see a few more examples...
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Mathematical Background

¢ Many, many types of PDEs
& 24 order linear PDEs are most important for us

¢ They involve the Laplace operator (“average”
curvature)

(in d dimensions)



PDE classification

« 2"d order linear PDEs are of highest practical
relevance dedicated classification

» A 2" order linear PDE in 2 variables (x,y) has the form
Au, +2Bu,, +Cu, =F(xy,u,u,u,)

e A 2nd order linear PDE in 2 variables is

- Hyperbolic B?*AC=>0 (Wave equation)
- Parabolic B2-AC =0 (Heat equation)
- Elliptic B2-AC <0 (Laplace equation)

19



Elliptic PDESs

Elliptic 2"d —order PDES (B2-AC<0)
¢ describe static problems (systems in equilibrium)

Prototype: | Laplace Equation Au(x) =0

Applications
« Steady-state solutions to parabolic PDEs
* Equilibrium problems



Laplace Equation

¢ \What Is the smoothest function given boundary
data? Think elastic membrane clamped at
boundaries.

. A A b

".

¢ How do we solve It?
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Laplace Equation

2

Au(X,y) = —u(x y)+—u(x y)=0

Discretizing on a grid with cell size /4:

Ui j Uiy T U+ U — AU
Au; ;= 2 =0

- Solution: each point must be equal to average of “neighbors™
- Can 1teratively keep setting to average of neighbor values
(Jacobi method!) or set up a linear system. Very easy!
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Boundary Conditions

¢ \What happens at the “edges” of the simulation
domain?
* Need additional information
* For ODEs, we had an initial value
* For PDEs, we also need boundary conditions

¢ Two common choices:
* Dirichlet — boundary data specifies values
* Neumann — boundary data specifies derivatives
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Boundary Conditions

¢ Dirichlet Boundary Conditions: ¢(0)=a,¢(1) =b

¢(x)] ;
jb

; — X
0 1

¢ Many possible functions! The Laplace
equation gives the smoothest one.
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Boundary Conditions

¢ Neumann Boundary Conditions:¢'(0) =u,¢'(1) =V

¢(x) |

¢ Again, many possible functions!

¢ Some combinations of PDEs + boundary
conditions may not have solutions!
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Parabolic PDEs

Parabolic 2" —order PDEs (B2-AC=0)
¢ Are typically time dependent problems
¢ Solutions smooth out as time increases

AUX,E) _ c2py(x,1)

- | Heat Equati
Prototype: eat L.quation ot

U temperature, o thermal diffusivity

Applications
« Heat conduction and general diffusion processes



The Heat Equation

¢ How does an initial distribution of heat
spread out over time? After a long enough
time, solution Is the same as the Laplace
eguation.
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The Heat Equation

¢ Know how to discretize the Laplacian

i+1, +ui,j—1_4ui,j

I, ] h2

¢ Know how to discretize time (e.g. forward Euler)

ut =u + AtAu]

¢ Can easily put the two together...
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Hyperbolic PDEs

Hyperbolic 2"d —order PDEs (B2-AC>0)

¢ time dependent problems

¢ Retain & propagate disturbances present in initial
data

= Cc’Au(X,t)

o°u(x,t)
2

Prototype: | Wave Equation o

. . u 1' C 5
Applications amplitude, C propagation speed

« Simulate wave propagation for sound, light, and
water

« Mechanics (oscillatory motion, vibrating strings)
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The Wave Equation

¢ How does a wave front propagate over time?
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