
Partial Differential Equations
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Next week

Tuesday: guest lecture (Prof. Keenan Crane)

Thursday: in-class test
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Recap

ODEs: implicitly define a function through its 
time derivative
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Recap

What does an ODE for exponential decay 
look like?

• It could be a very crude model for how the 
temperature of a particle changes through 
time…

• But where does the heat go?
 It’s a PDE!
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Partial Differential Equations
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PDEs: implicitly define a function through its 
derivatives with respect to time and space

Most physical phenomena and processes can 
be described by partial differential equations



Partial Differential Equations
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Partial Differential Equations

ODEs: want to solve for function of time

PDEs: want to solve for function of time and 
space
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Example PDE: 



Partial Differential Equations

Definition of PDE

Function implicitly given in terms of derivatives
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Any combination of time derivatives

Plus any combination of space derivatives



Partial Differential Equations

Abbreviation

Linear vs non-linear PDEs

Order of a PDE: how many derivatives in space 
and time?

- wave equation: 2nd order in time, 2nd order in space

- Burger’s equation: 1st order in time, 2nd order in space
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Nonlinear example

Burgers’ equation

xxxt uuuu 

Linear example

wave equation

xxtt cuu 



PDEs: a first example

A linear, first order PDE: 1D advection
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Weather forecast: simulate temperature evolution.

T

x

cT0(x)

Given: initial temperature distribution 𝑇0 𝑥 = 𝑇 𝑥, 0 , wind speed c. 

Find: temperature distribution 𝑇(𝑥, 𝑡) for any 𝑡, 𝑥.

One space dimension + time



PDEs: a first example
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• How does the temperature change over a time interval 

Dt?
T

x

c
T(x,t)

T(x,t+Dt)
T(x-cDt,t)

cDt-cDt

At a given location in space, some time 

later, what will the temperature be?

Where was this air front at time t?



PDEs: a first example
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1D advection equation

• How does the temperature change over a time interval 

Dt?

DT
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PDEs: a first example

Analytical solution:

• Want a function T(x,t) that satisfies 
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• The solution also needs to satisfy the initial condition:

)()0,( 0 xTxT 

• The solution is thus )(),( 0 ctxTtxT 

Note: only simple PDEs can be solved analytically!

)(),( ctxftxT • Any T(x,t) of the form will work! How do 

we choose one of the many options?
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PDEs: a first example

Numerical solution:

• Want to approximate function T(x,t) by discretizing 
in space and time (estimate T(x,t) at different (xi,ti))
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PDEs: a first example

• Sample temperature T(x,t) on

• Discretize derivatives with finite differences (space & time) 
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D• Solving for Tt+1[i]

yields update rule

• Provide initial values T0[i]

• Need some boundary conditions Tt[0]!
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PDEs: a first example

Eulerian vs Lagrangian viewpoint
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T

x

cT0(x)
T
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…

Monitor temperature at 

fixed locations in space

Release weather balloons and see 

where they end up (the temperature 

they record does not change)!



Basic Recipe for solving PDEs 

numerically

Pick a spatial discretization 

Pick a time discretization (forward Euler, 
backward Euler, etc)

Run a time-stepping algorithm using resulting 
update rule

We will see a few more examples…
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Mathematical Background

Many, many types of PDEs

2nd order linear PDEs are most important for us

They involve the Laplace operator (“average” 
curvature)

• Nabla operator 
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PDE classification
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• 2nd order linear PDEs are of highest practical 

relevance dedicated classification

- Hyperbolic B2-AC > 0 (Wave equation)

- Parabolic B2-AC = 0 (Heat equation) 

- Elliptic B2-AC < 0 (Laplace equation)
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• A 2nd order linear PDE in 2 variables (x,y) has the form

• A 2nd order linear PDE in 2 variables is



Elliptic PDEs

Elliptic 2nd –order PDEs ( B2-AC < 0 )
 describe static problems (systems in equilibrium) 

Prototype: 0)(   D xuLaplace Equation

Applications

• Steady-state solutions to parabolic PDEs

• Equilibrium problems



What is the smoothest function given boundary 
data? Think elastic membrane clamped at 
boundaries.

How do we solve it?
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Laplace Equation
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Laplace Equation
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Discretizing on a grid with cell size h:

- Solution: each point must be equal to average of “neighbors”

- Can iteratively keep setting to average of neighbor values 

(Jacobi method!) or set up a linear system. Very easy!
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Boundary Conditions

What happens at the “edges” of the simulation 
domain?

• Need additional information

• For ODEs, we had an initial value

• For PDEs, we also need boundary conditions

Two common choices:

• Dirichlet – boundary data specifies values

• Neumann – boundary data specifies derivatives
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Boundary Conditions

Dirichlet Boundary Conditions: 

Many possible functions! The Laplace 
equation gives the smoothest one.
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Boundary Conditions

Neumann Boundary Conditions: 

Again, many possible functions! 

Some combinations of PDEs + boundary 
conditions may not have solutions!
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Parabolic PDEs

Applications

• Heat conduction and general diffusion processes

Parabolic 2nd –order PDEs ( B2-AC = 0 )
 Are typically time dependent problems

 Solutions smooth out as time increases

Prototype: Heat Equation

 thermal diffusivitytemperature,u
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The Heat Equation

How does an initial distribution of heat 
spread out over time? After a long enough 
time, solution is the same as the Laplace 
equation.
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The Heat Equation

Know how to discretize the Laplacian

Know how to discretize time (e.g. forward Euler)

Can easily put the two together…
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Hyperbolic PDEs
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Hyperbolic 2nd –order PDEs ( B2-AC > 0 )
 time dependent problems

 Retain & propagate disturbances present in initial 
data

Prototype: ),(
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Wave Equation

Applications

• Simulate wave propagation for sound, light, and 

water

• Mechanics (oscillatory motion, vibrating strings)

c propagation speedamplitude,u



The Wave Equation

How does a wave front propagate over time?
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