
Mass-Spring 

Systems – Part 2



Schedule for the next few 

weeks
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January 14 19 21 26 28

February 2 4 9 11 16

A1 will be out tonight

A1 due Feb 15 at 11:59pm. 

Demos and brief presentation during 

class on Feb 16. Cool prize for 

contest winner.

In-class test

Start thinking of topics for the final project. Form teams. Talk to us

as soon as possible.



Backward Euler – from last class

Boils down to solving systems of linear 
equations:

Matrix A is large, sparse, symmetric, 
(sometimes positive definite)
• these characteristics will inform the choice of algorithm we 

can/should use to solve the systems of equations
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Symmetric Positive Definiteness

Some solvers only work if A is symmetric 
positive definite:

Think of a quadratic energy function (e.g. 
potential energy stored in spring):
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𝐯t𝐀𝐯 > 0 ∀ 𝐯 ≠ 𝟎

Positive Definite Negative Definite Indefinite



Analogy: Compressed Springs
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compressive 

force 𝑭
compressive 

force −𝑭

𝐯𝟏
𝐭𝐀𝐯𝟏 > 𝟎

𝐯𝟐
𝐭𝐀𝐯𝟐 < 𝟎

𝐯𝟐

𝐯𝟏

is indefinite, we are at a saddle point! 

How can you tell which way particle should go?

𝐀



Solving linear systems
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bAx 

Direct Methods: 

• Explicitly compute inverse (e.g. via Gaussian 
Elimination)

• decompose A (LU, LDL’, etc), solve by exploiting 
structure



Solving linear systems
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LU decomposition:

LUA 

bLyLUxAx 
yUx 



Solving linear systems
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 If A is symmetric, LU decomposition is unique, 
and is called Cholesky decomposition:

TLDLA 

//compute x = A^-1 * b
Eigen::SimplicialLDLT<SparseMatrix> solver;
solver.compute(A);
x = solver.solve(b);



Solving linear systems
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bAx 

Direct Methods: 

• Gaussian Elimination

• decompose A (LU, LDL’, etc), solve by exploiting 
structure

• Exact solution ~O(n3) for dense matrices, constant 
varies



Solving linear systems
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bAx 

 Indirect Methods: 

• Iteratively improve approximate solution 
 Can terminate when result is “good enough”

• Gauss-Seidel & the Jacobi Method

1kx



Solving linear systems
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Gauss-Seidel

 can be computed in place, only one 
storage vector required

1kx



Solving linear systems
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Gauss-Seidel

 can be computed in place, only one 
storage vector required

converges if A is symmetric positive-definite

 think of it as an iterative constraint solver

1kx



Solving linear systems
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Jacobi Method

 cannot be computed in place

 equivalent to solving each equation independently

parallelizable 

1kx



Solving linear systems
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bAx 

 Indirect Methods: 

• Iteratively improve approximate solution 
 Can terminate when result is “good enough”

• Gauss-Seidel & the Jacobi Method

• Gradient Descent & Conjugate Gradient Method

1kx



Gradient Descent:

Slow convergence, too much backtracking…
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Solving linear systems
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The Conjugate Gradient Method
Main idea: 

- find basis (p1, p2,…) of conjugate search directions 
(orthogonal with respect to generalized dot product aTAb=0)

- compute step α (independently!) along each direction 

such that 

- Build basis iteratively. E.g, if first step was along direction p1

and gradient at step 2 is r2= α A p1 - b, direction for step 2 is:
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Solving linear systems
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Gradient Descent vs Conjugate Gradients
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Solving linear systems

“An Introduction to the Conjugate 

Gradient Method Without the 

Agonizing Pain”
- Jonathan Richard Shewchuk



Solving linear systems
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bAx 

 Indirect Methods: 

• Iteratively improve approximate solution 
 Can terminate when result is “good enough”

• Gauss-Seidel & the Jacobi Method

• Gradient Descent & Conjugate Gradient Method

• Some methods do not require matrix to be explicitly 
built

1kx



Questions so far?
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Assignment 1 – the fun part!

How would you model…

• cloth
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Assignment 1 – the fun part!

How would you model…

• cloth

What types of springs are required?

Structural 

Springs

Stretching

Diagonal 

Springs

Shearing



Assignment 1 – the fun part!

How would you model…

• shells



Assignment 1 – the fun part!

How would you model…

• shells

What types of springs are required?

Structural 

Springs

Stretching

Diagonal 

Springs

Shearing

Interleaved 

Springs

Bending



Assignment 1 – the fun part!

How would you model…

• fur and hairs
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Assignment 1 – the fun part!

How would you model…

• contacts and friction
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 If in contact, project back on surface, find normal n
• For ground, n=(0,1,0)

 Filter velocities. First, decompose into
• normal component vN=(v•n)n and

• tangential component vT=v-vN

 Normal response:
• =0 is fully inelastic

• =1 is elastic

 Tangential response
• Simple model of friction:

 Then reassemble velocity v=vN+vT



vN

after  vN

before ,   0,1 

 1,0,   before

T

after

T vv

Simple Collision Response



Assignment 1 – the fun part!

How would you model…

• a squishy object
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Assignment 1 – the fun part!

How would you model…

• plastic deformations



Assignment 1 – the fun part!

How would you model…

• viscous materials
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Assignment 1 – the fun part!

How would you model…

• a rigid body

• an articulated rigid body structure
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Assignment 1 – the fun part!

How would you model…

• a tensegrity structure
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Assignment 1 – the fun part!

How would you model…

• Fracture, cutting, etc
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Start early. Ask questions. Have fun!!!


