Mass-Spring
Systems — Part 2




Schedule for the next few
weeks

A1l will be out tonight

l

January 28
February 2 4 |9 11 |16

] Al due Feb 15 at 11:59pm.
In-class test | | Demos and brief presentation during

class on Feb 16. Cool prize for
contest winner.

Start thinking of topics for the final project. Form teams. Talk to us
as soon as possible.



Backward Euler — from last class

¢ Bolls down to solving systems of linear
eguations:

(M —hi—hzﬁjAv: I\/I(vn —vk)+hF
N X

Y

A X = b

¢ Matrix A is large, sparse, symmetric,
(sometimes positive definite)

* these characteristics will inform the choice of algorithm we
can/should use to solve the systems of equations



Symmetric Positive Definiteness

¢ Some solvers only work if A Is symmetric
positive definite:

VI AV > 0VvVvV =0

¢ Think of a quadratic energy function (e.g.
potential energy stored In spring):.

Positive Definite Negative Definite Indefinite




Analogy: Compressed Springs

viAv, > 0

compressive compressive

force —F a E force F

v3Av, < 0

—> A is indefinite, we are at a saddle point!
How can you tell which way particle should go?
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Solving linear systems

AX =D

¢ Direct Methods:

* Explicitly compute inverse (e.g. via Gaussian
Elimination)

* decompose A (LU, LDL, etc), solve by exploiting
structure



Solving linear systems

¢ LU decomposition:

A=LU

11 12 013 lhy 0 0 U1 Uz Uqy
a1 Gz Qgz| = |log laa O 0wy up|.
31 @3z a3 lay lap laa 0 0 ua

Ax=LUx=Ly=0Db
Ux=1y



Solving linear systems

¢ If Ais symmetric, LU decomposition IS unique,
and Is called Cholesky decomposition:

A=LDL'

4 12 -16 1 4 1 3 -4
12 37 —-43 | = 3 1 1 1 5
—16 —-43 98 —4 5 1 il 1

//compute x = A*-1 * b
Eigen::SimpliciallLDLT<SparseMatrix> solver;
solver.compute(A);

x = solver.solve(b);



Solving linear systems

AX =D

¢ Direct Methods:
* Gaussian Elimination
* decompose A (LU, LDL, etc), solve by exploiting
structure

* Exact solution ~O(n3) for dense matrices, constant
varies



Solving linear systems

AX =D

¢ Indirect Methods:

* |teratively improve approximate solution Yl
= Can terminate when result is “good enough”

* Gauss-Seidel & the Jacobi Method
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Solving linear systems

¢ Gauss-Seidel

(ay, 0 - 0] 0 app ---
) 1 5 B D ; D D
A=L.+4+U where L. = _ _ _ S, u=1. .
fp1 pa - nn D D

L*}:{Fﬂ-l-ljl - h' . er{k],

o X" canbe computed in place, only one
storage vector required




Solving linear systems

¢ Gauss-Seidel

(ay, 0 - 0] 0 app ---
) 1 5 B D ; D D
A=L.+4+U where L. = _ _ _ S, u=1. .
fp1 pa - nn D D

L*}:{Fﬂ-l-ljl - h' . er{k],

o X" canbe computed in place, only one
storage vector required

¢ converges If A Is symmetric positive-definite
¢ think of It as an Iiterative constraint solver




Solving linear systems

¢ Jacobi Method

11 0 0 0 (112 (1n

0 an --- 0 = 0 --- ap,
A=D+R where D=1 _22 _ | and R = A ’

0 0 "t lpp (lp1  Opz - 0

x5 = p~(b — Rx"™),

¢ X' cannot be computed In place
¢ equivalent to solving each equation independently
< parallelizable
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Solving linear systems

AX =D

¢ Indirect Methods:

* |teratively improve approximate solution Yl
= Can terminate when result is “good enough”

* Gauss-Seidel & the Jacobi Method
* Gradient Descent & Conjugate Gradient Method
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Solving linear systems

¢ Gradient Descent:

min%xT Ax—X'b

rk:b—AXk & .
K

X = x* +art

¢ Slow convergence, too much backtracking...
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Solving linear systems

¢ The Conjugate Gradient Method

Main idea:

- find basis (p,, p,,-..) of conjugate search directions
(orthogonal with respect to generalized dot product a’Ab=0)

- compute step a (independently!) along each direction
such that .
X = Z a; P

- Build basis iteratively. E.qg, if first step was along direction p,
and gradient at step 2 is r,= a A p, - b, direction for step 2 is:

 p A,
p, Ap,

P, =1,
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Solving linear systems

¢ Gradient Descent vs Conjugate Gradients

“An Introduction to the Conjugate
Gradient Method Without the
Agonizing Pain”

- Jonathan Richard Shewchuk
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Solving linear systems

AX =D

¢ Indirect Methods:

* |teratively improve approximate solution Yl
= Can terminate when result is “good enough”

* Gauss-Seidel & the Jacobi Method
* Gradient Descent & Conjugate Gradient Method

* Some methods do not require matrix to be explicitly
built
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Questions so far?
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Assignment 1 —the fun part!

¢ How would you model...
* cloth




Assignment 1 —the fun part!

¢ How would you model...
* cloth
What types of springs are required?

{H Structural  Diagonal
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Assignment 1 —the fun part!

¢ How would you model...
* shells

/I




Assignment 1 —the fun part!

¢ How would you model...
* shells
What types of springs are required?

;— >>>>>> ‘r Structural Diagonal Interleaved
£ I 1 i ______ : Springs Springs Springs
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e @

Stretching Shearing Bending



Assignment 1 —the fun part!

¢ How would you model...
* fur and hairs




Assignment 1 —the fun part!

¢ How would you model...
* contacts and friction




Simple Collision Response

¢ If In contact, project back on surface, find normal n
* For ground, n=(0,1,0)
¢ Filter velocities. First, decompose into

* normal component vy=(ven)n and
* tangential component v;=V-Vv,
& Normal response: v« =-ev™, &€ [01]
* =0 is fully inelastic
* ¢=1 is elastic
¢ Tangential response
: iy after before
* Simple model of friction: v2"™" = o™ o <[0,1]

¢ Then reassemble velocity v=vy+v;
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Assignment 1 —the fun part!

¢ How would you model...
* a squishy object




Assignment 1 —the fun part!

¢ How would you model...
* plastic deformations




Assignment 1 —the fun part!

¢ How would you model...
® viScous materials




Assignment 1 —the fun part!

¢ How would you model...
* arigid body
* an articulated rigid body structure




Assignment 1 —the fun part!

¢ How would you model...
* atensegrity structure




Assignment 1 —the fun part!

¢ How would you model...
* Fracture, cutting, etc




Start early. Ask questions. Have fun!!!




