Mass-Spring Systems - Part 2

Schedule for the next few weeks

Start thinking of topics for the final project. Form teams. Talk to us as soon as possible.

Backward Euler - from last class

Boils down to solving systems of linear equations:

$$
\underbrace{\left(M-h \frac{\partial F}{\partial v}-h^{2} \frac{\partial F}{\partial x}\right)}_{\mathrm{A}} \underbrace{\Delta v}_{x=}=\underbrace{M\left(v_{n}-v^{k}\right)+h F}_{\mathrm{b}}
$$

- Matrix A is large, sparse, symmetric, (sometimes positive definite)
- these characteristics will inform the choice of algorithm we can/should use to solve the systems of equations

Symmetric Positive Definiteness

- Some solvers only work if \mathbf{A} is symmetric positive definite:

$$
\mathbf{v}^{\mathrm{t}} \mathbf{A} \mathbf{v}>0 \forall \mathbf{v} \neq \mathbf{0}
$$

Think of a quadratic energy function (e.g. potential energy stored in spring):

Negative Definite
Indefinite

Analogy: Compressed Springs

$\Rightarrow \mathbf{A}$ is indefinite, we are at a saddle point! How can you tell which way particle should go?

Solving linear systems

$A x=b$

Direct Methods:

- Explicitly compute inverse (e.g. via Gaussian Elimination)
- decompose A (LU, LDL', etc), solve by exploiting structure

Solving linear systems

LU decomposition:

$$
\begin{aligned}
& A=L U \\
& {\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right]=\left[\begin{array}{ccc}
l_{11} & 0 & 0 \\
l_{21} & l_{22} & 0 \\
l_{31} & l_{32} & l_{33}
\end{array}\right]\left[\begin{array}{ccc}
u_{11} & u_{12} & u_{13} \\
0 & u_{22} & u_{23} \\
0 & 0 & u_{33}
\end{array}\right] .} \\
& A x=L U x=L y=b \\
& U x=y
\end{aligned}
$$

Solving linear systems

- If A is symmetric, LU decomposition is unique, and is called Cholesky decomposition:

$$
\begin{gathered}
A=L D L^{T} \\
\left(\begin{array}{rrr}
4 & 12 & -16 \\
12 & 37 & -43 \\
-16 & -43 & 98
\end{array}\right)=\left(\begin{array}{ccc}
1 & & \\
3 & 1 & \\
-4 & 5 & 1
\end{array}\right)\left(\begin{array}{lll}
4 & & \\
& 1 & \\
& & 9
\end{array}\right)\left(\begin{array}{rrr}
1 & 3 & -4 \\
& 1 & 5 \\
& & 1
\end{array}\right)
\end{gathered}
$$

//compute $x=A^{\wedge}-1 * b$
Eigen::SimplicialLDLT<SparseMatrix> solver;
solver.compute(A);
x = solver.solve(b);

Solving linear systems

$A x=b$

Direct Methods:

- Gaussian Elimination
- decompose A (LU, LDL', etc), solve by exploiting structure
- Exact solution $\sim \mathrm{O}\left(\mathrm{n}^{3}\right)$ for dense matrices, constant varies

Solving linear systems

$A x=b$

- Indirect Methods:
- Iteratively improve approximate solution x^{k+1}
- Can terminate when result is "good enough"
- Gauss-Seidel \& the Jacobi Method

Solving linear systems

- Gauss-Seidel
$A=L_{*}+U \quad$ where $\quad L_{*}=\left[\begin{array}{cccc}a_{11} & 0 & \cdots & 0 \\ a_{21} & a_{22} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ a_{n 1} & a_{n 2} & \cdots & a_{n n}\end{array}\right], \quad U=\left[\begin{array}{cccc}0 & a_{12} & \cdots & a_{1 n} \\ 0 & 0 & \cdots & a_{2 n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 0\end{array}\right]$.

$$
L_{*} \mathbf{x}^{(k+1)}=\mathbf{b}-U \mathbf{x}^{(k)},
$$

- x^{k+1} can be computed in place, only one storage vector required

Solving linear systems

- Gauss-Seidel
$A=L_{*}+U \quad$ where $\quad L_{*}=\left[\begin{array}{cccc}a_{11} & 0 & \cdots & 0 \\ a_{21} & a_{22} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ a_{n 1} & a_{n 2} & \cdots & a_{n n}\end{array}\right], \quad U=\left[\begin{array}{cccc}0 & a_{12} & \cdots & a_{1 n} \\ 0 & 0 & \cdots & a_{2 n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 0\end{array}\right]$.

$$
L_{*} \mathbf{x}^{(k+1)}=\mathbf{b}-U \mathbf{x}^{(k)}
$$

- x^{k+1} can be computed in place, only one storage vector required
converges if A is symmetric positive-definite
think of it as an iterative constraint solver

Solving linear systems

- Jacobi Method
$A=D+R \quad$ where $\quad D=\left[\begin{array}{cccc}0 & a_{22} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & a_{n n}\end{array}\right]$ and $R=\left[\begin{array}{cccc}a_{21} & 0 & \cdots & a_{2 n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n 1} & a_{n 2} & \cdots & 0\end{array}\right]$

$$
\mathbf{x}^{(k+1)}=D^{-1}\left(\mathbf{b}-R \mathbf{x}^{(k)}\right)
$$

- x^{k+1} cannot be computed in place
- equivalent to solving each equation independently
- parallelizable

Solving linear systems

$A x=b$

- Indirect Methods:
- Iteratively improve approximate solution x^{k+1}
- Can terminate when result is "good enough"
- Gauss-Seidel \& the Jacobi Method
- Gradient Descent \& Conjugate Gradient Method

Solving linear systems

- Gradient Descent:

$$
\begin{gathered}
\min _{x} \frac{1}{2} x^{T} A x-x^{T} b \\
r^{k}=b-A x^{k} \\
x^{k+1}=x^{k}+\alpha r^{k}
\end{gathered}
$$

- Slow convergence, too much backtracking...

Solving linear systems

- The Conjugate Gradient Method

Main idea:

- find basis (p_{1}, p_{2}, \ldots) of conjugate search directions (orthogonal with respect to generalized dot product $a^{\top} A b=0$)
- compute step α (independently!) along each direction such that

$$
x=\sum \alpha_{i} p_{i}
$$

- Build basis iteratively. E.g, if first step was along direction p_{1} and gradient at step 2 is $r_{2}=\alpha \mathrm{A} p_{1}-\mathrm{b}$, direction for step 2 is:

$$
p_{2}=r_{2}-\frac{p_{1}^{T} A r_{2}}{p_{1}^{T} A p_{1}}
$$

Solving linear systems

- Gradient Descent vs Conjugate Gradients

"An Introduction to the Conjugate Gradient Method Without the Agonizing Pain"

- Jonathan Richard Shewchuk

Solving linear systems

$$
A x=b
$$

- Indirect Methods:
- Iteratively improve approximate solution x^{k+1}
- Can terminate when result is "good enough"
- Gauss-Seidel \& the Jacobi Method
- Gradient Descent \& Conjugate Gradient Method
- Some methods do not require matrix to be explicitly built

Questions so far?

Assignment 1 - the fun part!

- How would you model...
- cloth

Assignment 1 - the fun part!

- How would you model...
- cloth

What types of springs are required?

Stretching

Diagonal
Springs

Shearing

Assignment 1 - the fun part!

- How would you model...
- shells

Assignment 1 - the fun part!

- How would you model...
- shells

What types of springs are required?

Stretching

Shearing

Interleaved Springs

Bending

Assignment 1 - the fun part!

- How would you model...
- fur and hairs

Assignment 1 - the fun part!

- How would you model...
- contacts and friction

Simple Collision Response

- If in contact, project back on surface, find normal n
- For ground, $\mathrm{n}=(0,1,0)$
- Filter velocities. First, decompose into
- normal component $\mathrm{v}_{\mathrm{N}}=(\mathrm{v} \cdot \mathrm{n}) \mathrm{n}$ and
- tangential component $\mathrm{V}_{\mathrm{T}}=\mathrm{V}-\mathrm{V}_{\mathrm{N}}$
- Normal response: $\quad v_{N}^{\text {after }}=-\varepsilon v_{N}^{\text {before }}, \quad \varepsilon \in[0,1]$
- $\varepsilon=0$ is fully inelastic
- $\varepsilon=1$ is elastic
- Tangential response
- Simple model of friction: $v_{T}^{\text {after }}=\alpha v_{T}^{\text {before }}, \alpha \in[0,1]$

Then reassemble velocity $\mathrm{v}=\mathrm{v}_{\mathrm{N}}+\mathrm{v}_{\mathrm{T}}$

Assignment 1 - the fun part!

- How would you model...
- a squishy object

Assignment 1 - the fun part!

- How would you model...
- plastic deformations

Assignment 1 - the fun part!

- How would you model...
- viscous materials

Assignment 1 - the fun part!

- How would you model...
- a rigid body
- an articulated rigid body structure

Assignment 1 - the fun part!

- How would you model...
- a tensegrity structure

Assignment 1 - the fun part!

- How would you model...
- Fracture, cutting, etc

Start early. Ask questions. Have fun!!!

