
Mass-Spring 

Systems



What we’ve seen so far
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Individual particles moving under the influence of various 
types of forces



What if we wanted to simulate physical 

phenomena that are more complex?

Material diversity
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 Deformable objects 
• deform under applied forces

• resist deformation

 Common material properties
• Elastic:     deformations are reversible

• Viscous:   amplitude of oscillations is reduced

• Plastic:     irreversible deformations

• Different combinations, different extents
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What if we wanted to simulate physical 

phenomena that are more complex?
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What if we wanted to simulate physical 

phenomena that are more complex?

Model diversity

Cloth simulation

Bridson et al., 2002

Hair simulation

Selle et al., 2008
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What if we wanted to simulate physical 

phenomena that are more complex?

Model diversity

[Bergou et al. ‘08]

Thin Shells Rods

[Bridson et al. ‘03]
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What if we wanted to simulate physical 

phenomena that are more complex?

Diversity of phenomena
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What if we wanted to simulate physical 

phenomena that are more complex?

Beyond passive objects

[Sifakis et al. ‘15]

Muscles & biological tissues

[Sachdeva et al. ‘15]



Modeling complex phenomena
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We can model many complex phenomena 

using mass-spring systems
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Spatial discretization: sample 
object with mass points

 Total mass of object: M

 Number of mass points: p

 Mass of each point: m=M/p

(uniform distribution)

Each point is a particle, just like 
before. It has

 Mass

 Position

 Velocity 
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We can model many complex phenomena 

using mass-spring systems



We can model many complex phenomena 

using mass-spring systems
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External forces 

– Gravity

– Contact & Collision Forces

Internal forces

– Elastic spring forces

– Viscous damping forces

– Should always sum up to zero!

(F ) i = mi



“Mass-spring” systems in the 

wild
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“Mass-spring” systems in the 

wild



We can model many complex phenomena 

using mass-spring systems
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External forces 

– Gravity

– Contact & Collision Forces

Internal forces

– Elastic spring forces

– Viscous damping forces

– Should always sum up to zero!

(F ) i = mi
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Initial spring length L
Spring stiffness k
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We can model many complex phenomena 

using mass-spring systems



We can model many complex phenomena 

using mass-spring systems

17

Modularity is key here. If you know how 

to model one spring, you know how to 

model complex objects!



Back to Equations of Motion
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Back to Equations of Motion
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Symplectic Euler

1) Compute & sum up forces: 

2) Update velocities:

3) Update positions:
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Backward Euler

Recall need to solve:

which boils down to solving systems of 
linear equations:
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Forces & Force Jacobians

We’ve seen what F is and how it is

computed. What are       and      ?

A bit of tensor calculus overview:
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 derivative of every component of α with 

respect to every component of β, where α

and β can be scalars, vectors or matrices

:



Forces & Force Jacobians
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 What is        ?

A vector of matrices… we will see it soon enough…



Forces & Force Jacobians

So, what does       represent?

Much more convenient to think in terms of 
blocks of the Jacobian:

 “how does the net force on particle i change 
when the position of particle j changes”

• Need to look at derivatives of individual spring 
forces
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But first, some useful derivatives
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Forces & Force Jacobians
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cross product matrix



Zero length spring

Non-zero Length Spring

Forces & Force Jacobians
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Forces & Force Jacobians

Analytic formulas

Numerical Approach

• Finite Differences, very useful for 
prototyping/debugging

Automatic & Symbolic differentiation

• e.g. Maple
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We now know how to compute individual 
entries of the Jacobian, but what does it 
look like globally?
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Forces & Force Jacobians
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Block i,j is non-zero only if there is a 
spring between particles i and j. In 
general, connectivity structure is very 
sparse - most entries are therefore zero!
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Forces & Force Jacobians



Backward Euler

Boils down to solving systems of linear 
equations:

Matrix A is large, sparse, symmetric, 
(sometimes positive definite)
• these characteristics will inform the choice of algorithm we 

can/should use to solve the systems of equations
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