Mass-Spring Systems

What we've seen so far

Individual particles moving under the influence of various types of forces

Material diversity

- Deformable objects
 - deform under applied forces
 - resist deformation

Common material properties

- Elastic: deformations are reversible
- Viscous: amplitude of oscillations is reduced
- **Plastic**: irreversible deformations
- Different combinations, different extents

Model diversity

Cloth simulation

Bridson et al., 2002

Hair simulation

Selle et al., 2008

Model diversity

Thin Shells

Rods

[Bridson et al. '03]

[Bergou et al. '08]

Diversity of phenomena

Adaptive Tearing and Cracking of Thin Sheets

Tobias Pfaff Rahul Narain Juan Miguel de Joya James F. O'Brien

UC Berkeley

Beyond passive objects

Muscles & biological tissues

Forming a fist

[Sachdeva et al. '15]

[Sifakis et al. '15]

Modeling complex phenomena

Spatial discretization: sample object with mass points

- ♦ Total mass of object: M
- Number of mass points: p
- Mass of each point: m=M/p (uniform distribution)
- Each point is a particle, just like before. It has
- Mass m_i
- Position $\mathbf{x}_i(t)$
- Velocity $\mathbf{v}_i(t)$

External forces

- Gravity
- Contact & Collision Forces

Internal forces

- Elastic spring forces
- Viscous damping forces
- Should always sum up to zero!

"Mass-spring" systems in the wild

"Mass-spring" systems in the wild

External forces

- Gravity
- Contact & Collision Forces

Internal forces

- Elastic spring forces
- Viscous damping forces
- Should always sum up to zero!

Zero length spring $F_{spring} = -k(x_i - x_j)$ Non-zero length spring $F_{spring} = -k\left(\frac{|x_i - x_j|}{L} - 1\right)\frac{x_i - x_j}{|x_i - x_j|}$

Initial spring lengthLSpring stiffnessk

16

н-////////--

Modularity is key here. If you know how to model one spring, you know how to model complex objects!

Back to Equations of Motion

Back to Equations of Motion

 $a = M^{-1}F(x, v)$

 $a^{i} = \frac{1}{m^{i}} \sum f^{i}(x^{i}, v^{i}) = \frac{1}{m^{i}} F^{i}(x^{i}, v^{i})$

Symplectic Euler

1) Compute & sum up forces: $F(x_n, v_n)$ 2) Update velocities: $v_{n+1} = v_n + hM^{-1}F(x_n, v_n)$ 3) Update positions: $x_{n+1} = x_n + hv_{n+1}$

Backward Euler

Recall need to solve:

$$x_{n+1} = x_n + hv_{n+1}$$
$$v_{n+1} = v_n + hM^{-1}F(x_{n+1}, v_{n+1})$$

• which boils down to solving systems of linear equations:

$$\underbrace{\begin{pmatrix} M - h\frac{\partial F}{\partial v} - h^2\frac{\partial F}{\partial x} \\ A & X = \end{pmatrix}}_{A} \Delta v = M\left(v_n - v^k\right) + hF$$

• We've seen what *F* is and how it is computed. What are $\frac{\partial F}{\partial x}$ and $\frac{\partial F}{\partial y}$?

A bit of tensor calculus overview:

 $\frac{\partial \alpha}{\partial \beta}$

derivative of every component of α with respect to every component of β , where α and β can be scalars, vectors or matrices

What is $\frac{\partial A}{\partial x}$? A vector of matrices... we will see it soon enough...

- So, what does $\frac{\partial F}{\partial x}$ represent?
- Much more convenient to think in terms of blocks of the Jacobian:

$$\frac{\partial F_i}{\partial x_j}$$

- - Need to look at derivatives of individual spring forces

But first, some useful derivatives

 $\frac{dx^T A x}{2} = x^T (A + A^T)$ $\frac{dA}{\partial x} = 0$ $u = x_i - x_i$ $\frac{du}{\partial x_i} = -\frac{du}{\partial x_i} = I$ $\frac{dx}{\partial x} = I$ $\frac{dx^T x}{\partial x} = 2x^T$ $\frac{d|u|}{\partial x_i} = \frac{u}{|u|}$ $\frac{dAx}{\partial x} = A$ $\frac{da^T x}{\partial x} = \frac{dx^T a}{\partial x} = a^T$ $\frac{du \times v}{\partial x_i} = -v_{\times}$ $\frac{dx^T A}{dx^T A} = A^T$ v_{\star} is a skew-symmetric cross product matrix

Zero length spring

$$F = -k(x_i - x_j)$$

$$\frac{\partial F}{\partial x_i} = -\frac{\partial F}{\partial x_j} = -kI$$

Non-zero Length Spring

- Analytic formulas
- Numerical Approach
 - Finite Differences, very useful for prototyping/debugging
- Automatic & Symbolic differentiation
 - e.g. Maple

We now know how to compute individual entries of the Jacobian, but what does it look like globally?

Block *i*,*j* is non-zero only if there is a spring between particles *i* and *j*. In general, connectivity structure is very sparse - most entries are therefore zero!

Backward Euler

 Boils down to solving systems of linear equations:

$$\underbrace{\begin{pmatrix} M - h\frac{\partial F}{\partial v} - h^2\frac{\partial F}{\partial x} \\ A & X = \end{pmatrix}}_{A} \Delta v = M\left(v_n - v^k\right) + hF$$

- Matrix A is large, sparse, symmetric, (sometimes positive definite)
 - these characteristics will inform the choice of algorithm we can/should use to solve the systems of equations