Forces and Practical Guide to Numerical Integration

Brief Recap

What we've seen so far:

- System of p particles, each with state (xⁱ, vⁱ)
 Note: v = x, a = x
- Arbitrary number of forces acting on each particle
- For each particle, acceleration is:

$$a^{i} = \frac{1}{m^{i}} \sum f^{i}(x^{i}, v^{i})$$

Forces

We've seen: Gravitational forces

$$F_{gravity} = -GmM_0 \frac{x - x_0}{\left|x - x_0\right|^3}$$

When M₀ >> m, and vector x-x₀ is approximately constant, this reduces to the familiar:

$$F_{gravity} = mg$$

|g|=9.8m/s², g points down

Forces

We've seen: Air drag

 Aka Stokes' drag: objects moving relatively slowly through low Reynold number fluids

$$F_{drag} = -Dv$$

Drag forces

Forces

• We've seen: Air drag

 Aka Stokes' drag: objects moving relatively slowly through low Reynold number fluids

$$F_{drag} = -Dv$$

 D is a complex function of shape

Measured Drag Coefficients

Spring Forces

Forces governed by Hooke's law:

- Ut tensio, sic vis. (Hooke, 1678)
- "as the extension, so the force"

$$F_{spring} = -K(x - x_0)$$

۸ ...

- x₀ is the attachment point of the spring
- Could be a fixed point in the world, or the mouse cursor, or another particle (but add equal and opposite force!)
- When is this force zero?
 - Zero rest length spring!

Nonzero Rest Length Spring

Better to measure "strain":

- stretch/deformation *relative* to rest length L
- K is a material property, rather than an object property!

$$F_{spring} = -K \left(\frac{|x - x_0|}{L} - 1 \right) \frac{|x - x_0|}{|x - x_0|}$$

Spring Damping

Simple spring damping:

$$F_{damp} = -D(v - v_0)$$

But this damps rotation too!
Better spring damping:

$$F_{damp} = -Du \bullet (v - v_0)u$$

• Here u is $(x-x_0)/|x-x_0|$, the spring direction

Forces, Forces

What we've seen so far:

- System of p particles, each with state (xⁱ, vⁱ)
 Note: v = x, a = x
- Arbitrary number of forces acting on each particle
- For each particle, acceleration is:

$$a^{i} = \frac{1}{m^{i}} \sum f^{i}(x^{i}, v^{i}) = \frac{1}{m^{i}} F^{i}(x^{i}, v^{i})$$

 Too tedious to consider one particle at a time. Need a concise formulation!

Matrix form

 $a = M^{-1}F(x,v)$

Symplectic Euler

$$\frac{d}{dt} \begin{pmatrix} x \\ v \end{pmatrix} = \begin{pmatrix} v \\ M^{-1}F(x,v) \end{pmatrix}$$

1) Compute & sum up forces: $F(x_n, v_n)$ 2) Update velocities: $v_{n+1} = v_n + hM^{-1}F(x_n, v_n)$ 3) Update positions: $x_{n+1} = x_n + hv_{n+1}$

Backward Euler

A bit more interesting...
Recall need to solve:

$$x_{n+1} = x_n + hv_{n+1}$$
$$v_{n+1} = v_n + hM^{-1}F(x_{n+1}, v_{n+1})$$

 In general, forces are non-linear functions of positions/velocities

Setting Up Backward Euler – Newton's Method for root finding

Eliminate positions, solve for velocities:

$$v_{n+1} - v_n - hM^{-1}F(x_n + hv_{n+1}, v_{n+1}) = 0$$

• Linearize around guess $\widetilde{v} (g(\widetilde{v} + \Delta v) \approx g(\widetilde{v}) + dg / dv(\widetilde{v}))$:

$$\widetilde{v} + \Delta v - v_n - hM^{-1} \left(F + h \frac{\partial F}{\partial x} \Delta v + \frac{\partial F}{\partial v} \Delta v \right) = 0$$

• Where force *F* and Jacobians $\frac{\partial F}{\partial x}$, $\frac{\partial F}{\partial v}$ are evaluated at: $x = x_n + h\tilde{v}, v = \tilde{v}$

• **Re-arrange to get:** $\left(M - h\frac{\partial F}{\partial v} - h^2\frac{\partial F}{\partial x}\right)\Delta v = M\left(v_n - v^k\right) + hF$

Setting Up Backward Euler

• Start with initial guess $\tilde{v} = v_n$

• Evaluate
$$F, \frac{\partial F}{\partial x}, \frac{\partial F}{\partial v}$$
 at $x = x_n + h\tilde{v}, v = \tilde{v}$

• Solve for Δv (linear system of equations)

$$\underbrace{\begin{pmatrix} M - h\frac{\partial F}{\partial v} - h^2 \frac{\partial F}{\partial x} \end{pmatrix}}_{\mathbf{A}} \Delta v = \underbrace{M(v_n - v^k) + hF}_{\mathbf{b}}$$

• Update guess $\widetilde{v} = \widetilde{v} + \Delta v$, repeat until $|\Delta v| \approx 0$

• Set
$$v_{n+1} = \widetilde{v}$$
, $x_{n+1} = x_n + hv_{n+1}$

♦ Newton's method is great when it works, but it might not always work ☺

- ♦ Newton's method is great when it works, but it might not always work ☺
- Try using a line search
 - Recall, we are looking for Δv s.t. $g(\tilde{v} + \Delta v) = 0$
 - Take a step scaled by α s.t. $|g(\tilde{v} + \alpha \Delta v)| < |g(\tilde{v})|$
 - Bisection approach is a good start

- ♦ Newton's method is great when it works, but it might not always work ☺
- Try using a line search
 - Recall, we are looking for Δv s.t. $g(\tilde{v} + \Delta v) = 0$
 - Take a step scaled by α s.t. $|g(\tilde{v} + \alpha \Delta v)| < |g(\tilde{v})|$
 - Bisection approach is a good start
- Local extrema are bad!
 - Smaller time steps to make the problem easier to solve?
 - Change model?