Forces and Practical Guide to
Numerical Integration




Brief Recap

¢ \What we’ve seen so far:

* System of p particles, each with state (Xi : Vi)
=Note: V=X,a=X

* Arbitrary number of forces acting on each particle
* For each particle, acceleration is:

qi — 1i Zfi(xi,vi)

m



Forces

& \We've seen: Gravitational forces

F o =—GmM, —— ¢

gravity

\x—&f

¢ When M, >> m, and vector X-X, Is approximately
constant, this reduces to the familiar:

F =mg

gravity

|g|=9.8m/s?, g points down




Forces

¢ \We've seen: Air drag

* Aka Stokes' drag: objects
moving relatively slowly
through low Reynold number
fluids

F —Dv
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Drag forces
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Forces

Shape Drag
Coefficient

¢ We've seen: Air drag sprere —= () 047

* Aka Stokes' drag: objects Half-sphere — ( 0.42
moving relatively slowly -
through low Reynold number
ﬂUldS Cube — = 1.05

Angled
F g = —DV Qe
dl’a o Long
g Cylinder I Lhll

¢ D I1s a complex function of i oy R
Shape Str%anrgrl'fined_h_(:} 0 04

Streamlined

Half-body — ™ Lo

Measured Drag Coefficients



Spring Forces

¢ Forces governed by Hooke’s law:
¢ Ut tensio, sic vis. (Hooke, 1678)
¢ "as the extension, so the force"
AX

F oo =—K(X=x))

spring

®* X, IS the attachment point of the spring

* Could be a fixed point in the world, or the mouse
cursor, or another particle (but add equal and
opposite force!)

* When is this force zero?

= Zero rest length spring!



Nonzero Rest Length Spring

¢ Better to measure “strain’:

* stretch/deformation relative to rest length L
* K Is a material property, rather than an object

prope
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Spring Damping

¢ Simple spring damping:
Fiy =—D(V—V,)

damp

* But this damps rotation too!
¢ Better spring damping:

F...=—Due(v—v,)u

damp

* Here u is (X-Xp)/|X-X,|, the spring direction



Forces, Forces

¢ \What we've seen so far: o
* System of p particles, each with state (XI : V')
=Note: V=X,d=1X
* Arbitrary number of forces acting on each particle
* For each particle, acceleration is:

i_i i i i_i i i i
a —miZf (x,v)_miF(x,v)

* Too tedious to consider one particle at a time. Need
a concise formulation!
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Matrix form

a=M"F(x,V)



Symplectic Euler

d(x) v
a[v] - [I\/I 1F(x,v)j

1) Compute & sum up forces: F(X,,V,
2) Update velocities: v_, =v_+hM "F(x_,V.)
3) Update positions: X ., =X +hv_ .

¢ Easy!
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Backward Euler

¢ A bit more interesting...
¢ Recall need to solve:

X +1 — Xn + hvn+1

n

-1
Vn+1 — Vn T hM F (Xn+1’vn+1)

¢ In general, forces are non-linear functions
of positions/velocities
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Setting Up Backward Euler —
Newton’s Method for root finding

¢ Eliminate positions, solve for velocities:
V.,,—V. —hM *F(x +hv_,,v ., )=0
¢ Linearize around guess V (g(V +Av) = g(V) +dg / dv(V)):
V+Av—Vv_—hM 1(F + hiAVJriAvj =0
K N

F &

¢ Where force F and Jacobians et are evaluated at:

X=X +hv,v=V

¢ Re-arrange to get: (I\/I —h%—hZ%)AVZ M (v, —v* )+ hF
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Setting Up Backward Euler

¢ Start with initial guess V =V,

— & Evaluate F, éF F at x= X +hv,v=v
X A

¢ Solve for Av (linear system of equations)

(M —hﬁ—hzd:)Av I\/I(v —V )+hF
(N a/ @(l \ J

A b
_ & Update guess V =V + AV, repeat until |AvV |z 0
)

—~—

eSetV .=V, =X, +hv_,
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Newton’s Method

Solve for g(v)=0

-

Solve forAv

% o) |
|

Update
V=V+AV
B

g(v)

g
0,




Newton’s Method

¢ Newton’s method is great when it works, but it
might not always work ®
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Newton’s Method

g(v)
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Newton’s Method

¢ Newton’s method is great when it works, but it
might not always work ®

¢ Try using a line search
* Recall, we are looking for Av s.t. g(v+Av)=0

* Take a step scaled by o s.t. |g(V+aAv)|<| g(V)|
* Bisection approach is a good start
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Newton’s Method
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Newton’s Method

¢ Newton’s method is great when it works, but it
might not always work ®

¢ Try using a line search
* Recall, we are looking for Av s.t. g(v+Av)=0
* Take a step scaled by a s.t. |g(vV+aAv)|<| g(Vv)]
* Bisection approach is a good start

¢ Local extrema are bad!
* Smaller time steps to make the problem easier to solve?
* Change model?
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