
Forces and Practical Guide to

Numerical Integration

1

Brief Recap

What we’ve seen so far:

• System of p particles, each with state
 Note:

• Arbitrary number of forces acting on each particle

• For each particle, acceleration is:

2

),(
1 iii

i

i vxf
m

a

),(ii vx
xaxv   ,

Forces

3

We’ve seen: Gravitational forces

 When M0 >> m, and vector x-x0 is approximately
constant, this reduces to the familiar:

|g|=9.8m/s2, g points down



Fgravity  GmM0

x  x0

x  x0

3

mgFgravity 

Forces

We’ve seen: Air drag

• Aka Stokes' drag: objects
moving relatively slowly
through low Reynold number
fluids

DvFdrag 

Drag forces

5

Forces

We’ve seen: Air drag

• Aka Stokes' drag: objects
moving relatively slowly
through low Reynold number
fluids

D is a complex function of
shape

DvFdrag 

7

Spring Forces

 Forces governed by Hooke’s law:
 Ut tensio, sic vis. (Hooke, 1678)

 "as the extension, so the force"

• x0 is the attachment point of the spring

• Could be a fixed point in the world, or the mouse
cursor, or another particle (but add equal and
opposite force!)

• When is this force zero?
 Zero rest length spring!

)(0xxKFspring 

x

8

Nonzero Rest Length Spring

Better to measure “strain”:

• stretch/deformation relative to rest length L

• K is a material property, rather than an object
property!



Fspring  K
x  x0

L
1











x  x0

x  x0

9

Spring Damping

Simple spring damping:

• But this damps rotation too!

Better spring damping:

• Here u is (x-x0)/|x-x0|, the spring direction

)(0vvDFdamp 

uvvDuFdamp)(0

Forces, Forces

What we’ve seen so far:

• System of p particles, each with state
 Note:

• Arbitrary number of forces acting on each particle

• For each particle, acceleration is:

• Too tedious to consider one particle at a time. Need
a concise formulation!

10

),(
1

),(
1 iii

i

iii

i

i vxF
m

vxf
m

a  

),(ii vx
xaxv   ,

Matrix form

),(1 vxFMa 

Symplectic Euler

Easy!

1) Compute & sum up forces:

2) Update velocities:

3) Update positions:

12


















),(1 vxFM

v

v

x

dt

d

),(nn vxF

),(1

1 nnnn vxFhMvv 

 

11   nnn hvxx

Backward Euler

A bit more interesting…

Recall need to solve:

 In general, forces are non-linear functions
of positions/velocities

13

),(11

1

1 



  nnnn vxFhMvv

11   nnn hvxx

14

Setting Up Backward Euler –

Newton’s Method for root finding
 Eliminate positions, solve for velocities:

 Linearize around guess ():

 Where force and Jacobians , are evaluated at:

 Re-arrange to get:

  0, 11

1

1  



 nnnnn vhvxFMhvv

0~ 1 







  v

v

F
v

x

F
hFMhvvv n









  hFvvMv
x

F
h

v

F
hM k

n 















 2

x

F





vvvhxx n
~,~ 

v

F





v~

F

)~(/)~()~(vdvdgvgvvg 

15

Setting Up Backward Euler

 Start with initial guess

 Evaluate , , at

 Solve for ∆v (linear system of equations)

 Update guess , repeat until

 Set ,

vvv  ~~

  hFvvMv
x

F
h

v

F
hM k

n 















 2

A b

nvv ~

x

F



 vvvhxx n
~,~ 

v

F



F

0|| v

vvn
~

1  11   nnn hvxx

Newton’s Method

0)(vgSolve for

Update

vvv 
~~

1g

1
~v

1
Solve for v

)()(
~~
vgvv

dv

dg


1'g

1
~v

v

)(vg

2

Newton’s Method

17

 Newton’s method is great when it works, but it
might not always work 

Newton’s Method

18

v

)(vg

vv ~

Newton’s Method

19

 Newton’s method is great when it works, but it
might not always work 

 Try using a line search
• Recall, we are looking for s.t.

• Take a step scaled by s.t.

• Bisection approach is a good start

0)~( vvgv

|)~(||)~(| vgvvg 

Newton’s Method

20

v

)(vg

Newton’s Method

21

 Newton’s method is great when it works, but it
might not always work 

 Try using a line search
• Recall, we are looking for s.t.

• Take a step scaled by s.t.

• Bisection approach is a good start

 Local extrema are bad!
• Smaller time steps to make the problem easier to solve?

• Change model?

0)~( vvgv

|)~(||)~(| vgvvg 

