Forces and Practical Guide to Numerical Integration

Brief Recap

-What we've seen so far:

- System of p particles, each with state $\left(x^{i}, v^{i}\right)$ - Note: $v=\dot{x}, a=\ddot{x}$
- Arbitrary number of forces acting on each particle
- For each particle, acceleration is:

$$
a^{i}=\frac{1}{m^{i}} \sum f^{i}\left(x^{i}, v^{i}\right)
$$

Forces

-We’ve seen: Gravitational forces

$$
F_{g r a v i t y}=-G m M_{0} \frac{x-x_{0}}{\left|x-x_{0}\right|^{3}}
$$

-When $\mathrm{M}_{0} \gg \mathrm{~m}$, and vector $\mathrm{x}-\mathrm{x}_{0}$ is approximately constant, this reduces to the familiar:

$$
F_{\text {gravity }}=m g
$$

$|g|=9.8 \mathrm{~m} / \mathrm{s}^{2}, \mathrm{~g}$ points down

Forces

-We've seen: Air drag

- Aka Stokes' drag: objects moving relatively slowly through low Reynold number fluids

$$
F_{d r a g}=-D v
$$

Drag forces

Forces

- We've seen: Air drag

- Aka Stokes' drag: objects moving relatively slowly through low Reynold number fluids

$$
F_{d r a g}=-D v
$$

$-D$ is a complex function of shape

Measured Drag Coefficients

Spring Forces

- Forces governed by Hooke's law:
- Ut tensio, sic vis. (Hooke, 1678)
- "as the extension, so the force"

$$
F_{\text {spring }}=-K{\overleftarrow{\left(x-x_{0}\right)}}_{\Delta x}^{(x)}
$$

- x_{0} is the attachment point of the spring
- Could be a fixed point in the world, or the mouse cursor, or another particle (but add equal and opposite force!)
- When is this force zero?
- Zero rest length spring!

Nonzero Rest Length Spring

- Better to measure "strain":
- stretch/deformation relative to rest length L
- K is a material property, rather than an object property!

$$
F_{\text {spring }}=-K\left(\frac{\left|x-x_{0}\right|}{L}-1\right) \frac{x-x_{0}}{\left|x-x_{0}\right|}
$$

Spring Damping

- Simple spring damping:

$$
F_{\text {damp }}=-D\left(v-v_{0}\right)
$$

- But this damps rotation too!
- Better spring damping:

$$
F_{\text {damp }}=-D u \bullet\left(v-v_{0}\right) u
$$

- Here u is $\left(x-x_{0}\right) /\left|x-x_{0}\right|$, the spring direction

Forces, Forces

-What we've seen so far:

- System of p particles, each with state $\left(x^{i}, v^{i}\right)$
- Note: $v=\dot{x}, a=\ddot{x}$
- Arbitrary number of forces acting on each particle
- For each particle, acceleration is:

$$
a^{i}=\frac{1}{m^{i}} \sum f^{i}\left(x^{i}, v^{i}\right)=\frac{1}{m^{i}} F^{i}\left(x^{i}, v^{i}\right)
$$

- Too tedious to consider one particle at a time. Need a concise formulation!

Matrix form

$$
a=M^{-1} F(x, v)
$$

Symplectic Euler

- Easy!

$$
\frac{d}{d t}\binom{x}{v}=\binom{v}{M^{-1} F(x, v)}
$$

1) Compute \& sum up forces: $\quad F\left(x_{n}, v_{n}\right)$
2) Update velocities: $v_{n+1}=v_{n}+h M^{-1} F\left(x_{n}, v_{n}\right)$
3) Update positions:

$$
x_{n+1}=x_{n}+\tilde{h} v_{n+1}
$$

Backward Euler

- A bit more interesting...
- Recall need to solve:

$$
\begin{gathered}
x_{n+1}=x_{n}+h v_{n+1} \\
v_{n+1}=v_{n}+h M^{-1} F\left(x_{n+1}, v_{n+1}\right)
\end{gathered}
$$

- In general, forces are non-linear functions of positions/velocities

Setting Up Backward Euler Newton's Method for root finding

- Eliminate positions, solve for velocities:

$$
v_{n+1}-v_{n}-h M^{-1} F\left(x_{n}+h v_{n+1}, v_{n+1}\right)=0
$$

- Linearize around guess $\tilde{v}(g(\tilde{v}+\Delta v) \approx g(\tilde{v})+d g / d v(\tilde{v}))$:

$$
\tilde{v}+\Delta v-v_{n}-h M^{-1}\left(F+h \frac{\partial F}{\partial x} \Delta v+\frac{\partial F}{\partial v} \Delta v\right)=0
$$

- Where force F and Jacobians $\frac{\partial F}{\partial x}, \frac{\partial F}{\partial}$ are evaluated at:

$$
x=x_{n}+h \tilde{v}, v=\tilde{v}
$$

Re-arrange to get: $\left(M-h \frac{\partial F}{\partial v}-h^{2} \frac{\partial F}{\partial x}\right) \Delta v=M\left(v_{n}-v^{k}\right)+h F$

Setting Up Backward Euler

- Start with initial guess $\tilde{v}=v_{n}$
\longrightarrow Evaluate $F, \frac{\partial F}{\partial x}, \frac{\partial F}{\partial}$ at $x=x_{n}+h \tilde{v}, v=\tilde{v}$
- Solve for $\Delta \mathrm{v}$ (linear system of equations)

$$
\underbrace{\left(M-h \frac{\partial F}{\partial v}-h^{2} \frac{\partial F}{\partial x}\right)}_{\mathbf{A}} \Delta v=\underbrace{M\left(v_{n}-v^{k}\right)+h F}_{\mathbf{b}}
$$

- Update guess $\tilde{v}=\tilde{v}+\Delta v$, repeat until $|\Delta v| \approx 0$
-Set $v_{n+1}=\tilde{v}, x_{n+1}=x_{n}+h v_{n+1}$

Newton's Method

Solve for $g(v)=0$

Solve for Δv

Update
$\tilde{v}=\tilde{v}+\Delta v$

Newton's Method

- Newton's method is great when it works, but it might not always work $:$

Newton's Method

Newton's Method

- Newton's method is great when it works, but it might not always work $:$
- Try using a line search
- Recall, we are looking for Δv s.t. $g(\tilde{v}+\Delta v)=0$
- Take a step scaled by α s.t. $|g(\tilde{v}+\alpha \Delta v)|<|g(\tilde{v})|$
- Bisection approach is a good start

Newton's Method

Newton's Method

- Newton's method is great when it works, but it might not always work $:$
- Try using a line search
- Recall, we are looking for Δv s.t. $g(\tilde{v}+\Delta v)=0$
- Take a step scaled by α s.t. $|g(\tilde{v}+\alpha \Delta v)|<|g(\tilde{v})|$
- Bisection approach is a good start
- Local extrema are bad!
- Smaller time steps to make the problem easier to solve?
- Change model?

