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Brief Recap

What we’ve seen so far:

• System of p particles, each with state 
 Note:

• Arbitrary number of forces acting on each particle

• For each particle, acceleration is:
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Forces
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We’ve seen: Gravitational forces

 When M0 >> m, and vector x-x0 is approximately 
constant, this reduces to the familiar:

|g|=9.8m/s2, g points down



Fgravity  GmM0

x  x0

x  x0
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Forces

We’ve seen: Air drag 

• Aka Stokes' drag: objects 
moving relatively slowly 
through low Reynold number 
fluids

DvFdrag 



Drag forces
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Forces

We’ve seen: Air drag 

• Aka Stokes' drag: objects 
moving relatively slowly 
through low Reynold number 
fluids

D is a complex function of 
shape

DvFdrag 
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Spring Forces

 Forces governed by Hooke’s law: 
 Ut tensio, sic vis. (Hooke, 1678)

 "as the extension, so the force"

• x0 is the attachment point of the spring

• Could be a fixed point in the world, or the mouse 
cursor, or another particle (but add equal and 
opposite force!)

• When is this force zero?
 Zero rest length spring!
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Nonzero Rest Length Spring

Better to measure “strain”:

• stretch/deformation relative to rest length L

• K is a material property, rather than an object 
property!



Fspring  K
x  x0

L
1
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x  x0

x  x0
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Spring Damping

Simple spring damping: 

• But this damps rotation too!

Better spring damping:

• Here u is (x-x0)/|x-x0|, the spring direction

)( 0vvDFdamp 
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Forces, Forces

What we’ve seen so far:

• System of p particles, each with state 
 Note:

• Arbitrary number of forces acting on each particle

• For each particle, acceleration is:

• Too tedious to consider one particle at a time. Need 
a concise formulation!
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Matrix form

),(1 vxFMa 



Symplectic Euler

Easy!

1) Compute & sum up forces: 

2) Update velocities:

3) Update positions:
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Backward Euler

A bit more interesting…

Recall need to solve:

 In general, forces are non-linear functions 
of positions/velocities
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Setting Up Backward Euler –

Newton’s Method for root finding
 Eliminate positions, solve for velocities:

 Linearize around guess    (                                       ):

 Where force     and Jacobians     ,     are evaluated at:

 Re-arrange to get:
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Setting Up Backward Euler

 Start with initial guess

 Evaluate    ,     ,       at

 Solve for ∆v (linear system of equations)

 Update guess                     , repeat until

 Set               , 
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Newton’s Method

0)( vgSolve for 

Update

vvv 
~~

1g

1
~v

1
Solve for v

)()(
~~
vgvv

dv

dg


1'g

1
~v

v

)(vg

2



Newton’s Method
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 Newton’s method is great when it works, but it 
might not always work 



Newton’s Method
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Newton’s Method
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 Newton’s method is great when it works, but it 
might not always work 

 Try using a line search
• Recall, we are looking for       s.t.

• Take a step scaled by       s.t.

• Bisection approach is a good start
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Newton’s Method
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Newton’s Method
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 Newton’s method is great when it works, but it 
might not always work 

 Try using a line search
• Recall, we are looking for       s.t.

• Take a step scaled by       s.t.

• Bisection approach is a good start

 Local extrema are bad!
• Smaller time steps to make the problem easier to solve?

• Change model?
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