
Particle Systems & Time Integration

Part 2



Second Order Motion

F = ma
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Second Order Motion

 If particle state is just position (and color, size, …) then 
1st order motion
• No inertia

• Good for very light particles that stay suspended : smoke, dust…

 But most often, want inertia: Newtonian physics
• State includes velocity, ODE specifies accelerations

• Can then do parabolic arcs due to gravity, etc.
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What’s New?

 If q=(x,v), this is just a special form of 1st 
order: dq/dt=(v,a)=v(q,t)
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Example

 Orbital motion due to gravitational force

 Let x0 be a fixed point (e.g. the Sun) with 
coordinates (0,0)

 For simplicity, approximate as:

Fgravity  GmM0

x  x0

x  x0
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:1D Version

Simple harmonic oscillator

• What is the corresponding 1st order ODE?

• How can you tell it creates oscillatory motion? 

• How do we analyze stability and time stepping 
restrictions for higher-dimensional ODEs?
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:2D Version

~ orbital motion

What do FE and BE look like?
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Forward Euler vs Backward Euler
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What’s New?

 If q=(x,v), this is just a special form of 1st 
order: dq/dt=(v,a)=v(q,t)

But since we know the special structure, 
can we take advantage of it?
(i.e. better time integration algorithms)
• More stability for less cost?

• Handle position and velocity differently to 
better control error?
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Linear Analysis

Approximate acceleration:

Split up analysis into different cases

• Which term dominates the problem you are 
trying to solve?



a x,v  a0 
a

x
x 

a

v
v

-Kx -Dv
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Three Test Equations

 Constant acceleration (e.g. gravity): a(x,v,t)=a0

• Want exact (2nd order accurate) position

 Position dependence (e.g. spring force): a(x,v,t)=-Kx

• Want stability but low or zero damping

• Look at imaginary axis

 Velocity dependence (e.g. damping): a(x,v,t)=-Dv

• Want stability, monotone decay

• Look at negative real axis



v(t)  v0  a0t

x(t)  x0  v0t 
1
2
a0t

2
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Explicit methods from before

 Forward Euler
• Constant acceleration: bad (1st order)

• Position dependence: very bad (unconditionally 
unstable)

• Velocity dependence: ok (conditionally monotone/stable)

 RK3 and RK4
• Constant acceleration: great (high order)

• Position dependence: ok (conditionally stable, but 
damps out oscillation)

• Velocity dependence: ok (conditionally monotone/stable)
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Implicit methods from before

Backward Euler
• Constant acceleration: bad (1st order)

• Position dependence: ok (stable, but damps)

• Velocity dependence: great (monotone)

Trapezoidal Rule
• Constant acceleration: great (2nd order)

• Position dependence: great (stable, no 
damping)

• Velocity dependence: good (stable but only 
conditionally monotone)
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Specialized 2nd Order Methods

This is again a big subject

Again look at explicit methods, implicit 
methods

Also can treat position and velocity 
dependence differently:
mixed implicit-explicit methods
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Symplectic Euler

 Like Forward Euler, but updated velocity used for 
position

 Symplectic means that it preserves area in phase 
space (x,v). 



vn1  vn  ta xn ,vn 
xn1  xn  tvn1
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Phase-space Plot for harmonic 

oscillators

Look at time-evolution of ensemble of close-by oscillator configurations



Phase-space Plot for harmonic 

oscillators

Symplectic Euler Forward Euler

Can show that SE preserves area in space phase exactly

SE approximately conserves energy – energy error remains bounded
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Constant acceleration: not great

• Velocity right, position off by O(∆t)

Position dependence: good

• Stability limit

• No damping! (symplectic)

Velocity dependence: ok

• Monotone limit

• Stability limit



t 
2

K



t 1 D



t  2 D

Symplectic Euler performance
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Tweaking Symplectic Euler 

(Leapfrog integration)

 Stagger the velocity to improve x

 Start off with

 Then proceed with

 Second order accurate



v 1
2
 v0 

1
2
ta x0,v0 



v
n 1

2
 v

n 1
2
 1

2
(tn1  tn1)a xn,v

n 1
2

 
xn1  xn  tv

n 1
2
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Staggered Symplectic Euler

 Constant acceleration: great!
• Position is exact now

 Other cases not effected
• Was that magic? 

• Similar argumentation as for the midpoint method

 Only downside to staggering
• At intermediate times, position and velocity not known 

together

• May need to think a bit more about collisions and 
other interactions with outside algorithms…
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Newmark Methods

 A general class of methods

 What happens when =1/4, =1/2?
• Trapezoidal Rule

xn1  xn  tvn 
1
2
t 2 1 2 an  2an1 

vn1  vn  t 1  an  an1 
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Summary (2nd order)

 Depends a lot on the problem

 Explicit methods from last class are probably bad

 Symplectic Euler is a great fully explicit method
• not any more difficult than Forward Euler!

• Careful with time step size though

 Backward Euler is nice due to unconditional monotonicity
• But only 1st order accurate

 Trapezoidal Rule is great for everything except damping 
with large time steps
• 2nd order accurate, doesn’t damp pure oscillation/rotation
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A lively example
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Fireworks

What kind of state variables and attributes 
should particles have?

What type of forces need to be modeled?

What numerical integration scheme should 
you use?

Pseudo-code for particle manager?

• When do particles get created, when do they 
die?


