
Particle Systems & Time Integration

Part 2

Second Order Motion

F = ma

2

or

mtxxFx /),,(

3

Second Order Motion

 If particle state is just position (and color, size, …) then
1st order motion
• No inertia

• Good for very light particles that stay suspended : smoke, dust…

 But most often, want inertia: Newtonian physics
• State includes velocity, ODE specifies accelerations

• Can then do parabolic arcs due to gravity, etc.

4

What’s New?

 If q=(x,v), this is just a special form of 1st
order: dq/dt=(v,a)=v(q,t)

5

Example

 Orbital motion due to gravitational force

 Let x0 be a fixed point (e.g. the Sun) with
coordinates (0,0)

 For simplicity, approximate as:

Fgravity GmM0

x x0

x x0

3

kxx

:1D Version

Simple harmonic oscillator

• What is the corresponding 1st order ODE?

• How can you tell it creates oscillatory motion?

• How do we analyze stability and time stepping
restrictions for higher-dimensional ODEs?

6

qq

01

10

kxx

:2D Version

~ orbital motion

What do FE and BE look like?

7

kxx

Forward Euler vs Backward Euler

0r
0r

x

y

Forward Euler Backward Euler

),(1 nnnn qtqhqq),(111 nnnn qtqhqq

9

What’s New?

 If q=(x,v), this is just a special form of 1st
order: dq/dt=(v,a)=v(q,t)

But since we know the special structure,
can we take advantage of it?
(i.e. better time integration algorithms)
• More stability for less cost?

• Handle position and velocity differently to
better control error?

10

Linear Analysis

Approximate acceleration:

Split up analysis into different cases

• Which term dominates the problem you are
trying to solve?

a x,v a0
a

x
x

a

v
v

-Kx -Dv

11

Three Test Equations

 Constant acceleration (e.g. gravity): a(x,v,t)=a0

• Want exact (2nd order accurate) position

 Position dependence (e.g. spring force): a(x,v,t)=-Kx

• Want stability but low or zero damping

• Look at imaginary axis

 Velocity dependence (e.g. damping): a(x,v,t)=-Dv

• Want stability, monotone decay

• Look at negative real axis

v(t) v0 a0t

x(t) x0 v0t
1
2
a0t

2

12

Explicit methods from before

 Forward Euler
• Constant acceleration: bad (1st order)

• Position dependence: very bad (unconditionally
unstable)

• Velocity dependence: ok (conditionally monotone/stable)

 RK3 and RK4
• Constant acceleration: great (high order)

• Position dependence: ok (conditionally stable, but
damps out oscillation)

• Velocity dependence: ok (conditionally monotone/stable)

13

Implicit methods from before

Backward Euler
• Constant acceleration: bad (1st order)

• Position dependence: ok (stable, but damps)

• Velocity dependence: great (monotone)

Trapezoidal Rule
• Constant acceleration: great (2nd order)

• Position dependence: great (stable, no
damping)

• Velocity dependence: good (stable but only
conditionally monotone)

14

Specialized 2nd Order Methods

This is again a big subject

Again look at explicit methods, implicit
methods

Also can treat position and velocity
dependence differently:
mixed implicit-explicit methods

16

Symplectic Euler

 Like Forward Euler, but updated velocity used for
position

 Symplectic means that it preserves area in phase
space (x,v).

vn1 vn ta xn ,vn
xn1 xn tvn1

17

Phase-space Plot for harmonic

oscillators

Look at time-evolution of ensemble of close-by oscillator configurations

Phase-space Plot for harmonic

oscillators

Symplectic Euler Forward Euler

Can show that SE preserves area in space phase exactly

SE approximately conserves energy – energy error remains bounded

19

Constant acceleration: not great

• Velocity right, position off by O(∆t)

Position dependence: good

• Stability limit

• No damping! (symplectic)

Velocity dependence: ok

• Monotone limit

• Stability limit

t
2

K

t 1 D

t 2 D

Symplectic Euler performance

20

Tweaking Symplectic Euler

(Leapfrog integration)

 Stagger the velocity to improve x

 Start off with

 Then proceed with

 Second order accurate

v 1
2
 v0

1
2
ta x0,v0

v
n 1

2
 v

n 1
2
 1

2
(tn1 tn1)a xn,v

n 1
2

xn1 xn tv

n 1
2

21

Staggered Symplectic Euler

 Constant acceleration: great!
• Position is exact now

 Other cases not effected
• Was that magic?

• Similar argumentation as for the midpoint method

 Only downside to staggering
• At intermediate times, position and velocity not known

together

• May need to think a bit more about collisions and
other interactions with outside algorithms…

22

Newmark Methods

 A general class of methods

 What happens when =1/4, =1/2?
• Trapezoidal Rule

xn1 xn tvn
1
2
t 2 1 2 an 2an1

vn1 vn t 1 an an1

23

Summary (2nd order)

 Depends a lot on the problem

 Explicit methods from last class are probably bad

 Symplectic Euler is a great fully explicit method
• not any more difficult than Forward Euler!

• Careful with time step size though

 Backward Euler is nice due to unconditional monotonicity
• But only 1st order accurate

 Trapezoidal Rule is great for everything except damping
with large time steps
• 2nd order accurate, doesn’t damp pure oscillation/rotation

24

A lively example

25

Fireworks

What kind of state variables and attributes
should particles have?

What type of forces need to be modeled?

What numerical integration scheme should
you use?

Pseudo-code for particle manager?

• When do particles get created, when do they
die?

