
Particle Systems & Time Integration
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But first…

Office hours Wed @ 3pm, Smith Hall 232
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Particle Systems

Some dynamical systems can be naturally 
described as many small particles
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Particle Systems

Others are more difficult to get a handle on, 
but may still be approximated through 
particle systems
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Particle Basics

Each particle has a position

• perhaps other attributes too: orientation, age, 
color, velocity, temperature, radius, …

• Call the state q (aka generalized coordinates)

Seed randomly somewhere at start

• Maybe some created each frame

Move (evolve state q) each frame 
according to some formula

Eventually “die” when some condition met
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Particle Basics

But let’s start with a 1D particle…

)(tq



Motion

An ordinary differential equation (ODE) 
describes how the particle’s state changes 
through time:

 tqvt
dt

dq
tq ,)()( 

• ODE defines a vector field in state-space. The 
function we seek, q(t), must be solved for

• In general, analytic solutions hopeless

• Need to solve numerically starting from an 
initial configuration q0 (= q(t=0))

• Main idea: approximate the derivative and 
discretize in time
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Forward Euler

Simplest method:

First order accurate:
• Global error accumulated over fixed time 

interval is O(∆t)

• Thus it converges to the right answer

But want error to be small

 nnnn tqvtqq ,1 
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Forward Euler Accuracy

 Obvious approach: make ∆t small

 But then need more time steps - expensive
• also note - O(1) error made in modeling

• even if numerical error was 0, still wrong!

• need to validate against experiments

 Smaller time steps == better, but if we wanted 
fastest sim possible, how large could we go?
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Forward Euler Stability

The Test Equation

Linear ODE, known analytic solution

• What does it look like?

 aaq
dt
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The Test Equation

 Gives a rough picture of the stability of a method
• ‘a’ will in general represent eigenvalues of Jacobian 

(first-order approximation to nonlinear ODEs)

• Nonlinear effects can definitely cause problems

• Even with linear problems, what follows assumes 
constant time steps - varying (but supposedly stable) 
steps can induce instability
 see J. P. Wright, “Numerical instability due to varying time 

steps…”, JCP 1998

    )()(,,   tt
t

v
qq

q

v
tqvtqv









Aq



12

Using the Test Equation

Forward Euler on test equation is

Solving gives

So for stability, need
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Stability Region

Can plot all the values of a∆t on the complex 
plane where F.E. is stable:

Big problem with Forward Euler: not very stable
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Real Eigenvalue

Say eigenvalue is real (and negative)
• Corresponds to a damping motion, smoothly 

coming to a halt

Then need:

 Is this bad?
• If ‘a’ is big, could mean small time steps 

needed for stability (aka stiff problem)

a
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Imaginary Eigenvalue

 If eigenvalue is pure imaginary (oscillatory 
or rotational motion), cannot make ∆t small 
enough

Forward Euler unconditionally unstable for 
these kinds of problems!

Need to look at other methods
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Runge-Kutta Methods

Also “explicit”

• next q is an explicit function of previous

But evaluate v at a few locations to get a 
better estimate of next q

E.g. midpoint method (RK2)
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Midpoint RK2

 Second order: error is O(∆t2)

 Larger stability region:

 But still not stable on imaginary axis
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RK4

Often most bang for the buck

Combination of Forward Euler steps and 
averaging
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Higher Order Runge-Kutta

RK3 and up naturally include part of the 
imaginary axis



21

Implicit Methods
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Backward Euler

 The simplest implicit method:

 the next x implicitly defined since it 
appears in derivative

• Need to solve equations to figure it out

 First order accurate

 We’ll come back to it later for a general 
formulation!

 111 ,   nnnn tqvtqq



23

Backward Euler Stability

 Test equation shows stable when

 This includes everything except a circle in the 
positive real-part half-plane. Unconditionally 
stable for linear ODEs.

 It’s stable even when the physics is unstable!

 This is the biggest problem: damps out motion 
unrealistically

11  ta
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Trapezoidal Rule

 Can improve by going to second order:

 This is actually just a half step of F.E., followed 
by a half step of B.E.
• F.E. is under-stable, B.E. is over-stable, the 

combination is just right

 Stability region is the left half of the plane: 
exactly the same as the underlying ODE!

 Really good for pure rotation
(doesn’t amplify or damp)
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What to ask for from a 

numerical integrator?

No one “best” integrator – pick the right 
tool for the job!

Many different integrators because there 
are many notions of “good”

• Convergence/accuracy

• Stability

• Computational Efficiency

• Monotonicity

• …
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Monotonicity

 Test equation with real, negative 
• True solution is x(t)=x0e

t, which smoothly decays to 
zero, doesn’t change sign (monotone)

 Forward Euler at stability limit:
• x=x0,  -x0,  x0,  -x0, …

 Not smooth, oscillating sign, no good!

 So monotonicity limit stricter than stability
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Monotonicity

Backward Euler is unconditionally monotone

• No problems with oscillation, just too much 
damping

Trapezoidal Rule can suffer though, because 
of that half-step of F.E.

• could get ugly oscillation instead of smooth 
damping

• for some nonlinear problems, possible to hit 
instability



29

Summary 1

Need to move particles in velocity field 
according to underlying ODE

Forward Euler
• Simple, first choice unless problem has 

oscillations/rotations

Runge-Kutta is better, but requires more 
evaluations
• RK4 general purpose workhorse
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Summary 2

 If stability limit is a problem, look at implicit 
methods

• e.g. explicit time steps are way too small

Trapezoidal Rule

• If monotonicity isn’t a problem

Backward Euler

• Almost always works, but may over-damp!


