
Particle Systems & Time Integration

2

But first…

Office hours Wed @ 3pm, Smith Hall 232

3

Particle Systems

Some dynamical systems can be naturally
described as many small particles

4

Particle Systems

Others are more difficult to get a handle on,
but may still be approximated through
particle systems

5

Particle Basics

Each particle has a position

• perhaps other attributes too: orientation, age,
color, velocity, temperature, radius, …

• Call the state q (aka generalized coordinates)

Seed randomly somewhere at start

• Maybe some created each frame

Move (evolve state q) each frame
according to some formula

Eventually “die” when some condition met

6

Particle Basics

But let’s start with a 1D particle…

)(tq

Motion

An ordinary differential equation (ODE)
describes how the particle’s state changes
through time:

 tqvt
dt

dq
tq ,)()(

• ODE defines a vector field in state-space. The
function we seek, q(t), must be solved for

• In general, analytic solutions hopeless

• Need to solve numerically starting from an
initial configuration q0 (= q(t=0))

• Main idea: approximate the derivative and
discretize in time

0q tq

)(tq
)(tq

8

Forward Euler

Simplest method:

First order accurate:
• Global error accumulated over fixed time

interval is O(∆t)

• Thus it converges to the right answer

But want error to be small

 nnnn tqvtqq ,1

9

Forward Euler Accuracy

 Obvious approach: make ∆t small

 But then need more time steps - expensive
• also note - O(1) error made in modeling

• even if numerical error was 0, still wrong!

• need to validate against experiments

 Smaller time steps == better, but if we wanted
fastest sim possible, how large could we go?

10

Forward Euler Stability

The Test Equation

Linear ODE, known analytic solution

• What does it look like?

 aaq
dt

dq
,

atetq)(

ℂ

11

The Test Equation

 Gives a rough picture of the stability of a method
• ‘a’ will in general represent eigenvalues of Jacobian

(first-order approximation to nonlinear ODEs)

• Nonlinear effects can definitely cause problems

• Even with linear problems, what follows assumes
constant time steps - varying (but supposedly stable)
steps can induce instability
 see J. P. Wright, “Numerical instability due to varying time

steps…”, JCP 1998

)()(,, tt
t

v
qq

q

v
tqvtqv

Aq

12

Using the Test Equation

Forward Euler on test equation is

Solving gives

So for stability, need

nnn aqtqq 1

 01 qtaq
n

n

11 ta

13

Stability Region

Can plot all the values of a∆t on the complex
plane where F.E. is stable:

Big problem with Forward Euler: not very stable

14

Real Eigenvalue

Say eigenvalue is real (and negative)
• Corresponds to a damping motion, smoothly

coming to a halt

Then need:

 Is this bad?
• If ‘a’ is big, could mean small time steps

needed for stability (aka stiff problem)

a
t

2

15

Imaginary Eigenvalue

 If eigenvalue is pure imaginary (oscillatory
or rotational motion), cannot make ∆t small
enough

Forward Euler unconditionally unstable for
these kinds of problems!

Need to look at other methods

16

2
1

2
1

2
1

,

,

1

2
1

nnnn

nnnn

tqvtqq

tqvtqq

Runge-Kutta Methods

Also “explicit”

• next q is an explicit function of previous

But evaluate v at a few locations to get a
better estimate of next q

E.g. midpoint method (RK2)

17

Midpoint RK2

 Second order: error is O(∆t2)

 Larger stability region:

 But still not stable on imaginary axis

19

RK4

Often most bang for the buck

Combination of Forward Euler steps and
averaging

 46
1

36
2

26
2

16
1

1

134

22
1

3

12
1

2

1

,

,

,

,

2
1

2
1

vvvvtqq

tvtqvv

tvtqvv

tvtqvv

tqvv

nn

nn

nn

nn

nn

20

Higher Order Runge-Kutta

RK3 and up naturally include part of the
imaginary axis

21

Implicit Methods

22

Backward Euler

 The simplest implicit method:

 the next x implicitly defined since it
appears in derivative

• Need to solve equations to figure it out

 First order accurate

 We’ll come back to it later for a general
formulation!

 111 , nnnn tqvtqq

23

Backward Euler Stability

 Test equation shows stable when

 This includes everything except a circle in the
positive real-part half-plane. Unconditionally
stable for linear ODEs.

 It’s stable even when the physics is unstable!

 This is the biggest problem: damps out motion
unrealistically

11 ta

24

Trapezoidal Rule

 Can improve by going to second order:

 This is actually just a half step of F.E., followed
by a half step of B.E.
• F.E. is under-stable, B.E. is over-stable, the

combination is just right

 Stability region is the left half of the plane:
exactly the same as the underlying ODE!

 Really good for pure rotation
(doesn’t amplify or damp)

),(),(112
1

2
1

1 nnnnnn tqvtqvtqq

What to ask for from a

numerical integrator?

No one “best” integrator – pick the right
tool for the job!

Many different integrators because there
are many notions of “good”

• Convergence/accuracy

• Stability

• Computational Efficiency

• Monotonicity

• …

26

27

Monotonicity

 Test equation with real, negative
• True solution is x(t)=x0e

t, which smoothly decays to
zero, doesn’t change sign (monotone)

 Forward Euler at stability limit:
• x=x0, -x0, x0, -x0, …

 Not smooth, oscillating sign, no good!

 So monotonicity limit stricter than stability

28

Monotonicity

Backward Euler is unconditionally monotone

• No problems with oscillation, just too much
damping

Trapezoidal Rule can suffer though, because
of that half-step of F.E.

• could get ugly oscillation instead of smooth
damping

• for some nonlinear problems, possible to hit
instability

29

Summary 1

Need to move particles in velocity field
according to underlying ODE

Forward Euler
• Simple, first choice unless problem has

oscillations/rotations

Runge-Kutta is better, but requires more
evaluations
• RK4 general purpose workhorse

30

Summary 2

 If stability limit is a problem, look at implicit
methods

• e.g. explicit time steps are way too small

Trapezoidal Rule

• If monotonicity isn’t a problem

Backward Euler

• Almost always works, but may over-damp!

