
Assignment 4: Rigid Body Dynamics
Due April 14 at 11:59pm

Introduction

Rigid bodies are a fundamental element of many physical simulations, and the physics
underlying their motions are well-understood. In this assignment, you will be implement-
ing basic rigid body simulation of cuboid objects, including both dynamics and collision
response.

Getting Started

The project to run for this assignment is Assignment4. As before, the places where you
will need to fill in code are marked with a TODO.

As with previous assignments, the spacebar will start and stop the assignment. Grav-
ity has already been implemented, though because the cubes themselves are not being
time integrated, you will see nothing happening until you’ve implemented the update
function.

This time, pressing ’r’ will begin to apply a force that pulls all of the objects towards their
average location, which has the effect of vacuuming them closer to each other. This can
be helpful for testing your collision responses between objects, or simply for introduc-
ing additional forces into the system. This force should apply both linear and angular
acceleration, since the force point is offset slightly from the center of mass.



15-467/667 Assignment 3

Your Tasks

Part 1: Dynamics

Your first task is simply to implement the equations of motion for rigid bodies. This is
not too different from implementing the basic equations of motion for particles. How-
ever, recall that rigid bodies have both linear and angular momentum; you will need to
implement changes in both of these due to external forces, as detailed in the slides.

Specifically, consider a set of forces Fi acting on a rigid body at locations ri (where ri is
given in local coordinates). Then the net force and linear acceleration on an object can be
computed respectively as

F = ∑ Fi; v̇ =
1
M

F.

The net torque and angular acceleration on the object are respectively computed as

τ = ∑ τi = ∑ ri × Fi; ω̇ = I−1(τ −ω× Iω),

where I is the (world-space) inertia tensor. These accelerations can then be integrated
forward in time using standard integration schemes (e.g. symplectic Euler). Velocities are
easily updated using a standard additive update rule.

However, recall that care must be taken when updating the rotation given the angular
velocity. The angular velocity vector ω can be converted to the derivative of the rotation
matrix Ṙ(t) by Ṙ(t) = ω(t)×R(t), where ω(t)× is the skew-symmetric cross-product ma-
trix of ω. Adding Rt+1 = Rt + ∆tṘt+1 will not in general result in an orthonormal matrix.
We can correct this by orthonormalizing the resulting matrix using Gram-Schmidt.

In the MatrixUtils class, you will find some useful functions which may assist you in
these tasks.

You will need the moment of inertia of the objects we are simulating. Our simulation is
limited to cuboids (i.e. rectangular prisms), for which the moment of inertia matrix is
known to be

I =

 1
12 m(h2 + d2) 0 0

0 1
12 m(w2 + d2) 0

0 0 1
12 m(w2 + h2)


Your tasks for this part are:

1. Implement Cuboid::computeBodyCoordsMOI, which computes the moment of inertia
tensor in body coordinates for the given cuboid object. Then, implement the two
functions Cuboid::computeWorldCoordsMOI and Cuboid::computeWorldCoordsInverseMOI,
which respectively compute the moment of inertia tensor, and its inverse, in world
coordinates.

2



15-467/667 Assignment 3

2. Implement Cuboid::applyForce, which applies a force Fi to a cuboid at a position ri,
adding the force and torque to the accumulator variables indicated.

3. Implement Cuboid::update, which integrates the cuboid position and orientation for-
ward in time.

Part 2: Impulse-Based Collision Response

It is difficult to observe anything about the dynamics of the rigid bodies without some
form of collisions. The collision response model we will be following is taken from https:

//en.wikipedia.org/wiki/Collision_response.

We are given two rigid bodies B1 and B2 which are in collision at a point p. Let p be
r1 when expressed in the body coordinates of B1, and r2 when expressed in the body
coordinates of B2. Assuming we already know the magnitude of the collision response
impulse jr that must be applied, we can apply linear impulses

v′1 = v1 −
jr

m1
n̂

v′2 = v2 +
jr

m2
n̂

where vi is the pre-collision velocity of body i, v′i is the post-collision velocity, and mi is
the mass. n̂ is the normal vector at the collision point; this normal is assumed to point
away from B1 and towards B2. Similarly, we can apply angular impulses

ω′1 = ω1 − jr I−1
1 (r1 × n̂)

ω′2 = ω2 + jr I−1
2 (r2 × n̂)

where ωi and ω′i are the pre-collision and post-collision velocities, and Ii is the moment
of inertia.

Then, it remains to compute the impulse magnitude. This can be obtained from the
following equation:

jr =
−(1− e)vr · n̂

m−1
1 + m−1

2 + ((I−1
1 (r1 × n̂))× r1 + (I−1

2 (r2 × n̂))× r2) · n̂

See the article for the full derivation. Here, vr is the relative velocities of the two bodies
at the contact point: vr = vr2 − vr1 , where vr2 denotes the velocity at the point r1 when
considered as a part of body 1. e is the coefficient of restitution, which is a constant.

This equation is correct for the case of two rigid bodies in collision. For one rigid body col-
liding with an immobile barrier such as the floor, this equation also accurately describes
the response if we consider the floor to have infinite mass. Then, if we treat the floor
as body 1 (so that the normal points upward out of the floor), all of the terms involving
body 1 go to zero, and we are left with only the terms for body 2.

In addition to the collision response in the normal direction, there is also a frictional
response in a tangential direction t̂. To compute the direction of this response, we use

3

https://en.wikipedia.org/wiki/Collision_response
https://en.wikipedia.org/wiki/Collision_response


15-467/667 Assignment 3

direction of the tangential velocity or force at that point. Specifically, we first project the
relative velocity of the two bodies vr onto the plane orthogonal to the contact normal n̂ by
subtracting the normal component (vr · n̂)n̂. If this is zero, meaning there is no relative
velocity, we project the current net force instead. If there is no net force either, then there
is no friction, and we consider the tangent vector to be 0. If t̂ is non-zero at this point, we
normalize it and continue.

We can then compute the friction impulse magnitude j f as

j f =

{
−(mvr · t̂)t̂ vr · t̂ = 0 mvr · t̂ ≤ js
−jd t̂ otherwise

where js and jd are coefficents of static and dynamic friction respectively. Once we have
the impulse magnitude j f , we apply linear and angular impulses along the direction t̂ in
a manner analogous to the normal collision response impulses.

You are highly recommended to look at Cuboid.h in order to see which fields and methods
are available to help you.

Your tasks in this section are:

1. Implement CollisionPlane::frictionTangent, which, given a cuboid and a collision
point, computes the tangential direction at the collision point in which the friction
force will be applied.

2. Implement CollisionPlane::applyCollisionResponse, which does the following:

(a) Check if the given cuboid is colliding with the plane (i.e. is intersecting the
opposite side of the plane from the way the normal is pointing). If it isn’t, stop;
otherwise:

(b) Apply a positional correction that pushes the rigid body out of the plane.

(c) Compute and apply the both the normal and the frictional collision response to
a cuboid that is colliding with a wall or floor (represented as an infinite plane).
Assume that the plane has infinite mass.

3. Implement ParticleSystem::applyCollisionImpulse, which applies impulses to two
cuboids that are in collision. In this part, you only need to implement the normal
collision response. You do not need to implement collision detection (which is already
implemented for you), or friction impulses.

Note that our collision detection algorithm between rigid bodies is only an approxima-
tion, and will not prevent all instances of interpenetration between cubes. Still, you should
be able to see cubes interacting with each other and with the floor after completing these
tasks.

4



15-467/667 Assignment 3

Submission instructions

There is no extension for this assignment, so you need only submit a write up and your
code. Please delete the Assignment4/Release and Assignment4/Debug directories if they
are present. Then, zip only the Assignment4 directory.

In order to submit, please e-mail the following items to the instructor (scoros@cmu.edu)
and TA (christoy@cs.cmu.edu):

• A brief writeup (2 pages max) that describes your effort in implementing this assign-
ment, including the extension you have implemented, what worked and what did
not work, and any interesting insights you may have gained.

• A .zip of the contents of your Assignment2 directory, after having deleted the Debug

and Release directories inside (please be careful not to delete your code!).

Please also include the string “CS15467” in your subject line so we know to look for it.

Notes on Academic Integrity

You are allowed to collaborate on the assignment in terms of formulating ideas, devel-
oping physical models and mathematical equations. However, you must implement the
code and do the write up completely on your own, and understand what you are writing.
Please also list the names of everyone that you discussed the assignment with.

5


