
Assignment 2: Position-Based Fluids
Due March 2nd at 11:59pm

Introduction

Fluid simulation is a common challenge in computer graphics, and one that illustrates
the need for efficient physical models. While physically accurate simulations of fluid dy-
namics can be conducted by solving the Navier-Stokes equations exactly, this is computa-
tionally expensive in general, and as such is often not suitable for graphics applications,
especially those that are meant to run in real time.

Therefore, an active area of research has been to search for more efficient discretizations
of fluids. Particle-based simulations are attractive in this regard due to their relative
simplicity. In this assignment, you will be implementing one such particle-based simu-
lation, based on the paper “Position-Based Fluids” by Macklin and Müller (accessible at
http://mmacklin.com/pbf_sig_preprint.pdf).

Getting Started

The structure of the codebase is the same as in the previous assignment, the only differ-
ence being that the Playground directory has been replaced by the Assignment2 directory
containing the new starter code. Please follow the same steps as in the previous assign-
ment to compile the code. On Windows, you may be able to save some time by simply
taking the project in Assignment2 and adding it to your existing Visual Studio solution.

As before, the places where you will need to fill in code are marked with a TODO.

http://mmacklin.com/pbf_sig_preprint.pdf


15-467/667 Assignment 2

Algorithm Overview

We have provided you a basic particle simulator that will integrate velocities over time.
Note that we are no longer computing accelerations from forces; rather, forces are applied
by adding them directly to velocities. This is because we are assuming that all particles
have unit mass, so the acceleration at each timestep will simply be equal to the force
(scaled by the step size). Your primary task is to implement the algorithm described in
“Position-Based Fluids”. In this section, we give a brief overview of some of the key ideas
behind the algorithm.

The paper falls into a class of techniques in fluid simulation known as “smoothed particle
hydrodynamics” (SPH). As the name suggests, these techniques involve discretizing water
into particles, and then using a smoothing kernel to “smear” the mass of the particle out
into the surrounding area. In this way, the particles define a scalar field at each point in
space, representing the density of the fluid, and the density at any point can be computed
by adding up the contributions of all particles within distance h, where h is the radius of
the kernel.

Fluid-like behavior is then achieved by defining some rest density ρ0, and imposing a
constraint on all particles that the density ρi at any given particle should be equal to
the rest density ρ0. The term “position-based” refers to the fact that we enforce the
constraints by directly manipulating the positions of particles, rather than deriving a
force from the energy function of the constraint via − ∂W

∂x , as we have been doing in class.
At each timestep, we compute a positional correction ∆pi that brings the particle closer
to satisfying the constraint (i.e. such that C(xi + ∆pi) = 0). We then directly update each
particle’s position by xi ← xi + ∆pi.

The algorithm described in the paper can be roughly broken up into a few key compo-
nents which you will have to implement:

• Collision handling. At a minimum, you will have to keep the fluid inside the box
by implementing collisions with planes. This can be done by correctly implementing
the collision function in CollisionPlane.cpp.

• Neighbor finding. The constraints on each particle are defined with respect to their
sets of neighbors. Each timestep, for each particle, you will have to find all the
particles that are within distance h (the kernel radius) of it. We have already provided
a basic spatial hashmap to do this, so you do not need to do any work for this part.

• Density constraints. As discussed, the constraint on the density at each particle is
what causes the fluid to resist compression.

• Surface tension. The paper introduces a correction term scorr to avoid excessive
clustering of particles. As a side effect, this also approximates surface tension.

• Vorticity confinement. This helps to counteract the effects of numerical damping
in the system, by computing the vorticity (roughly speaking, the rotational motion

2



15-467/667 Assignment 2

about a point) at each particle, and applying an additional force based on how much
vorticity is present.

• XSPH viscosity. This essentially attempts to smooth out differences in velocity be-
tween neighboring particles, causing the particles to flow more coherently instead of
undergoing random independent motions.

You should refer to the paper for the exact details on how to implement these components.

The skeleton code we have provided is less complete than in the previous assignment,
in order to allow you to structure your code in whatever way you are most comfortable
with. It may be a good idea to split up these parts into one or more separate functions
for each. You are free to edit the header files in order to do so.

The primary data structure you will be working with is the struct in Particle.h; this
contains all the fields that are necessary to describe a particle’s state. The particle system
keeps a list of these structs, and you will need to edit the fields of these particles in order
to reflect state changes.

Density Kernels

Throughout the paper, you will see the notation W(pi − pj, h), which refers to the density
kernel with radius h evaluated on the vector pi − pj. There are two kernels in use in the
paper. One is known as the “poly6 kernel”, which is defined as:

Wpoly6(r, h) =
315

64πh9

{
(h2 − r2)3 0 ≤ r ≤ h
0 otherwise

The poly6 kernel is used for evaluating the density at a particle. Note that there is a slight
abuse of notation; the (non-bolded) r in Wpoly6 really refers to the magnitude of the input
vector r.

The other kernel is known as the “spiky kernel”, which is defined as:

Wspiky(r, h) =
15

πh6

{
(h− r)3 0 ≤ r ≤ h
0 otherwise

The spiky kernel is not used for density estimates, but is only used for computing the
gradient of the density. In this case, we use the gradient of the kernel:

∇piWspiky(r, h) =
−45
πh6

{
(h− r)2 r̂ 0 ≤ r ≤ h
0 otherwise

Here we assume that r = pi − pj, and r̂ is the normalized direction of r. If instead we
want the gradient with respect to pj, we have to flip the sign due to the chain rule.

In general, whenever the kernel W(pi − pj, h) appears, you should evaluate the poly6
kernel. Whenever the kernel gradient ∇W(pi − pj, h) appears, you should evaluate the
gradient of the spiky kernel. You should never need to evaluate the spiky kernel itself.

3



15-467/667 Assignment 2

A note on constants

All constants necessary to the algorithm are contained in Constants.h. For instance, the
kernel radius h in the paper is defined by KERNEL_H. It is recommended for consistency
that you use these constants in your implementation of the algorithm. The values have
already been set to produce decent behavior on the examples included with the release.
However, you may change them to whatever you want in order to achieve different effects.

Extension

Once you have completed the simulator, you should extend it to produce a creative artifact
of your choosing. Some ideas include:

• Better spatial acceleration. The spatial hashmap we provided performs well when
particles are spread out in space. However, once particles have settled to the bottom
of the container, they will all be concentrated in the same few grid cells, lowering
performance. You may want to implement a more advanced data structure that gives
better performance even when particles are concentrated in the same area.

• Rigid bodies. At the moment, the water only interacts with itself and with the
boundaries of the box. You could liven things up by adding different objects inside.
You could start with simple geometric objects like spheres and cubes, and move to
more complex ones.

• Different scenes. Rather than sticking with the box, you could try pouring water
over different environments. You could start by taking the existing CollisionPlane

class and simply adding different planes than the ones that define the box. However,
the range of environments you can achieve with this is also quite limited. You might
consider importing height fields or arbitrary meshes as obstacles.

These are just suggestions – you’re also free to pursue an idea of your own. Feel free to
talk to the professor or TA about your ideas.

Submission instructions

You will need to submit three parts: a write up, your code, and a submission video. When
submitting your code, please delete the Assignment2/Release and Assignment2/Debug di-
rectories if they are present. Then, zip only the Assignment2 directory.

If you have created additional examples for your extension, you may also zip those and
send them to us.

To export a submission video from your project, you can use the “Record Screenshots”
checkbox at the top-left of the project interface. Once checked, the program will write
each frame of the simulation to an image in the screenShots folder in the project directory.
Note that it will be writing uncompressed .bmp images for each frame, so the size of this
directory can grow quite large – make sure you have sufficient disk space before doing

4



15-467/667 Assignment 2

this. Additionally, this will cause the simulation to become quite slow as it writes the
images, though this will not affect the speed of the video.

Once you have exported the series of frames, you should be able to combine them into
a video using most video editing software. VirtualDub is a free tool that also has this
functionality. Alternatively, if it is more convenient, you can use a screen recording tool
to capture the window directly.

In order to submit, please e-mail the following items to the instructor (scoros@cmu.edu)
and TA (christoy@cs.cmu.edu):

• A brief writeup (2 pages max) that describes your effort in implementing this assign-
ment, including the extension you have implemented, what worked and what did
not work, and any interesting insights you may have gained.

• A .zip of the contents of your Assignment2 directory, after having deleted the Debug

and Release directories inside (please be careful not to delete your code!).

• A .zip of any additional data files you have created for your extension, if applicable.

• Either your submission video, or if it is too large, a link to somewhere we can down-
load your submission video (e.g. Youtube, Dropbox, etc.).

Please also include the string “CS15467” in your subject line so we know to look for it.

Notes on Academic Integrity

You are allowed to collaborate on the assignment in terms of formulating ideas, devel-
oping physical models and mathematical equations. However, you must implement the
code and do the write up completely on your own, and understand what you are writing.
Please also list the names of everyone that you discussed the assignment with.

5


