
Assignment 1: Mass-Spring System
Due February 15 at 11:59pm

Introduction

Mass-spring systems are a fundamental tool in physical simulations, and a wide range
of natural phenomena can be described or approximated by these systems. In this as-
signment, you will implement a simple mass-spring system operating according to the
equations described in class. You will also implement a few numerical integrators in
order to simulate the system. Lastly, you will extend the base mass-spring system in
order to model some physical phenomenon of your choosing. The best simulations (as
determined by the instructors) will receive prizes!

Getting Started

The codebase has been successfully tested on Windows and Linux. We have not tested
the code on Mac, but if you are able to get it running, please feel free to e-mail the TA
about how you were able to do it.
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On Windows

Some version of Visual Studio is required; the assignment was developed with Visual
Studio 2015 Community, which is available for free. Download the code from the site and
unzip it. In the code directory, you will find a Visual Studio solution file, SCP.sln. The
code will not compile out of the box – you will need to add the libs directory to your
system path environment variable. Instructions on how to do this are in the included
README.txt.

On Linux

First, obtain the dependencies listed in README.txt. You will also need make and g++.
After this, run sh make_makefile.sh in order to generate the Makefile, and then run make

to compile the project. The executable will be in out/cs467. Note that you will have to
cd out before running ./cs467, as the relative paths in the project require the working
directory to be out.

Code overview

Within the project, you will see several subdirectories. You should not edit any files
outside of the Playground directory. However, it may be helpful to familiarize yourself
with some of the classes in these libraries. In particular, you will be using the classes
in MathLib to perform vector calculations. Here are the classes that correspond to the
dimensions of vectors and matrices you will need:

• 3 × 1 point: P3D

• 3 × 1 vector: V3D

• d × 1 vector: dVector

• 3 × 3 matrix: Matrix3x3

• d × d matrix: MS_SparseSquare

The ParticleSystem class is where time integration takes place. You should familiarize
yourself with the way the system state is stored. In a system with n particles, the positions
and velocities are stored in dVectors of length 3n, where the values of the vector for
particle i are stored in indices 3i, 3i + 1, and 3i + 2. (Particles are zero-indexed.) The
masses are stored in a dVector of length n, where the mass of particle i is in index i. The
force and acceleration vectors you will compute should have identical structure to the
position and velocity vectors. Places where you will need to fill in code are marked with
a TODO.

When you first run the project, you will see a collection of particles and springs on screen.
The camera is controllable by clicking and dragging the mouse buttons. You can also use
the left mouse button to pick and drag particles around, and you can use the right mouse
button to create a “pin,” which is a zero-length spring binding the clicked particle to its
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current location. Along the left sidebar, you will see several options, some of which affect
the display, and some of which affect the simulation. The bottom area is the console.
In your code, if you include Utils/Logger.h, you can write to this console by calling
Logger::consolePrint, which may be useful for debugging.

You can press G to turn gravity on or off. You can use F, S, and B to switch between
forward, symplectic, and backward Euler integrators, respectively. You can press the
spacebar to begin the simulation. However, because none of these things have been im-
plemented yet, none of the particles will move. This makes for a very dull system, so we
will begin by implementing some basic forces and integrators.

Part 1: Gravity and Forward Euler (1 point)

In ParticleSystem.cpp, you will find most of the functions for time integration. We will
begin by implementing a simple gravity force here, and by writing forward Euler to
integrate this force over time. Your tasks in this section are:

1. In ParticleSystem::computeForceVector, add gravity to the force experienced by
each particle. Note that the positive y direction points upward in the project’s coor-
dinate frame, so gravity should act in the negative y direction.

2. Complete the function ParticleSystem::computeAccelerations, which computes the
acceleration vector from the force vector.

3. Implement forward Euler in ParticleSystem::integrate_FE. The acceleration to be
integrated is the acceleration returned by computeAccelerations.

Once you have completed these tasks, you should be able to start the simulation, check
“Enable Gravity” on the left sidebar (or alternatively press G), and see the particles fall
down.

Part 2: Spring Forces and Symplectic Euler (3 points)

While the gravity force we have implemented is physically accurate, it is not particularly
compelling. Recall also that forward Euler is unconditionally unstable on oscillatory
systems. While this does not pose a problem for the constant gravitational force, mass-
spring systems are inherently oscillatory, so forward Euler will not be able to simulate
these systems.

In this section, we will add spring forces to our system, and implement symplectic Euler
to integrate these forces.

In our system, we have two types of springs: zero-length springs, and non-zero length
springs. Zero-length springs are used as “pins”, attaching particles to a constant point in
world space, while non-zero length springs are used to attach pairs of particles together.

Your tasks in this section are:
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1. Complete the function ZeroLengthSpring::computeForces, which computes the force
experienced by an attached particle to a zero-length spring.

2. Complete the function Spring::computeForces, which computes the forces experi-
enced by both attached particles to the spring.

3. In ParticleSystem::computeForceVector, accumulate all forces from all springs into
the system’s force vector. Both Spring and ZeroLengthSpring have a function called
addForcesToVector which you can use for this purpose, provided that you have im-
plemented computeForces.

4. Implement symplectic Euler in ParticleSystem::integrate_SE.

After you have completed these tasks, you should be able to start the simulation and
see the motions induced by springs pulling on the particles. You can manually move
particles by dragging with the left mouse button, and you can pin particles to their current
positions by right-clicking them.

You should also be able to see that forward Euler is unstable on typical mass-spring sys-
tems. If you switch to using symplectic Euler, you should see a more accurate and stable
simulation. (The two .mss examples are particularly illustrative; note that triangle.mss
has some initial velocity on the particles.)

Part 3: Backward Euler (3 points)

Symplectic Euler is a fairly good integrator for many systems, but backward Euler has
the advantage of unconditional stability (for linear ODEs). In this section, we will im-
plement the spring force Jacobians required for implicit integration. We will use these to
implement backward Euler.

Your tasks for this section are:

1. Complete the functions ZeroLengthSpring::compute_dFdx and Spring::compute_dFdx,
which compute the force Jacobians respectively for zero-length springs and non-zero-
length springs.

2. Complete the function ParticleSystem::computeForceJacobian, which accumulates
the Jacobian matrix by adding all the blocks contributed by all springs. Both spring
classes have functions addBlocksToMatrix which will add the blocks to their proper
locations in a MS_SparseSquare matrix.

3. Complete the function ParticleSystem::newtonStep, which takes one step of New-
ton’s method. The argument v_guess is the current estimate of vn+1, the future
velocity; the function should return the refined estimate of vn+1. To solve the lin-
ear system, use the function MS_SparseSquare::solve, where A.solve(b) solves the
system Ax = b for x.

4. Implement backward Euler in ParticleSystem::integrate_BE.
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If you switch to integrating using backward Euler, you should now be able to see the
effects we discussed in class. Backward Euler exhibits numerical damping, meaning the
system loses energy over time; this is reflected by the particles gradually coming to a
halt. On larger systems, you should also notice that the implicit backward Euler method
runs slower than the explicit forward and symplectic Euler methods, due to the need to
solve a linear system for each step of Newton’s method. This can be improved by limiting
the number of Newton steps or by implementing a line search for Newton’s method, but
these are not required for this assignment.

Part 4: Extension (3 points)

Now that you have created a basic mass-spring system, you will use it to simulate some
physical phenomenon of your choosing. We discussed several possibilities in class (cloth,
shells, hair, contact and friction, rigid and elastic objects, plasticity, viscosity and fracture,
tensegrity structures, etc) which you are free to build upon, or you may pursue an idea
of your own. Be creative! Feel free to talk to the instructors about your ideas for this part.

Creating examples

In order to show off your extension, you may want to create more examples beyond
the ones included with the release. There are two ways to import particle systems from
external files. One is to create an .obj file using some external tool and read it in. The
vertices of the .obj model will become particles, and the edges will become springs
joining the two endpoints. The masses of the particles and stiffnesses of the springs will
be the default values defined in Constants.h. Additionally, the faces of the .obj model
will continue to be rendered even as the vertices deform.

The other way to import particle systems is to specify them in an .mss file, which is just a
listing of particles, springs, and zero-length springs. You can generate this file manually
or procedurally through code. The structure of the .mss file is as follows. First, the file
should contain a list of particles, one on each line, where the particle is formatted as:

v x1 x2 x3 v1 v2 v3 m

Here, v is just the character v, while x1, x2, and x3 are the coordinates of the particle’s
initial position, v1, v2, and v3 are the coordinates of the particle’s initial velocity, and m is
the particle’s mass.

Next, the file contains a list of springs, formatted as:

s p1 p2 k

s is the character s, while p1 and p2 are the indices of the endpoints of this spring, and k

is the stiffness. The two indices are zero-indexed with respect to the order in which the
particles appear in the file.

Finally, the file contains a list of zero-length springs, formatted as:
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z p x1 x2 x3 k

z is the character z, p is the index of the particle attached to the spring, x1, x2, and x3 are
the world coordinates of the fixed endpoint of the spring, and k is the stiffness.

To load a new particle system without recompiling the project, click in the console win-
dow at the bottom of the project interface and type load <file>, where <file> is the path
to the .obj or .mss file (e.g. load ../meshes/bunny200.obj).

Also feel free to tinker with the values in Constants.h in order to achieve any desired
effects.

Submission instructions

You will need to submit three parts: a write up, your code, and a submission video.
When submitting your code, please delete the Playground/Release and Playground/Debug

directories if they are present. Then, zip only the Playground directory.

If you have created additional examples for your extension, you may also zip those and
send them to us.

To export a submission video from your project, you can use the “Record Screenshots”
checkbox at the top-left of the project interface. Once checked, the program will write
each frame of the simulation to an image in the screenShots folder in the project directory.
Note that it will be writing uncompressed .bmp images for each frame, so the size of this
directory can grow quite large – make sure you have sufficient disk space before doing
this. Additionally, this will cause the simulation to become quite slow as it writes the
images, though this will not affect the speed of the video.

Once you have exported the series of frames, you should be able to combine them into
a video using most video editing software. VirtualDub is a free tool that also has this
functionality. Alternatively, if it is more convenient, you can use a screen recording tool
to capture the window directly.

In order to submit, please e-mail the instructor (scoros@cmu.edu) and TA the (chris-
toy@cs.cmu.edu) following items:

• A brief writeup (2 pages max) that describes your effort in implementing tasks 1
through 4, including the extension you have implemented, how you modeled the
system, what worked and what did not work, and any interesting insights you may
have gained.

• A .zip of the contents of your Playground directory, after having deleted the Debug

and Release directories inside (please be careful not to delete your code!).

• A .zip of any additional data (e.g. .mss) file you have created for your extension, if
applicable.
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• Either your submission video, or if it is too large, a link to somewhere we can down-
load your submission video (e.g. Youtube, Dropbox, etc.).

Please also include the string “CS15467” in your subject line so we know to look for it.

Notes on Academic Integrity

You are allowed to collaborate on the assignment in terms of formulating ideas, devel-
oping physical models and mathematical equations. However, you must implement the
code and do the write up completely on your own, and understand what you are writing.
Please also list the names of everyone that you discussed the assignment with.
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