
Active Learning and Search on Low-Rank Matrices

Dougal J. Sutherland
dsutherl@cs.cmu.edu

Barnabás Póczos
bapoczos@cs.cmu.edu

Jeff Schneider
schneide@cs.cmu.edu

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA

ABSTRACT
Collaborative prediction is a powerful technique, useful in
domains from recommender systems to guiding the scien-
tific discovery process. Low-rank matrix factorization is
one of the most powerful tools for collaborative prediction.
This work presents a general approach for active collabora-
tive prediction with the Probabilistic Matrix Factorization
model. Using variational approximations or Markov chain
Monte Carlo sampling to estimate the posterior distribution
over models, we can choose query points to maximize our un-
derstanding of the model, to best predict unknown elements
of the data matrix, or to find as many “positive” data points
as possible. We evaluate our methods on simulated data,
and also show their applicability to movie ratings prediction
and the discovery of drug-target interactions.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications—
data mining ; H.3.3 [Information Storage and Retrieval]:
Information Search and Retrieval—information filtering ; I.2.6
[Artificial Intelligence]: Learning

Keywords
Collaborative filtering; active learning; active search; cold-
start; matrix factorization; recommender systems; drug dis-
covery

1. INTRODUCTION
Collaborative prediction and collaborative filtering have

in recent years been a topic of great interest, largely be-
cause they form the core component of many corporations’
systems that recommend products or other items to their
users. One of the most popular techniques for collabora-
tive filtering is matrix factorization: since it is assumed that
only a few factors affect a user’s opinion of a movie, the ma-
trix of users’ ratings for items should be low-rank (or have
a low trace norm, or any of other similar conditions). We

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
KDD’13, August 11–14, 2013, Chicago, Illinois, USA.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2174-7/13/08 ...$15.00.

can then perform a factorization similar to that of singular
value decomposition to reconstruct the full matrix from the
relatively few elements we know [20].

The same general approach, however, is applicable to a
wide variety of problems, including tasks in computer vision
[4, 32], network latency prediction [21], predicting the out-
comes of sporting events [1], and many others. It can be
applied in any situation where we expect “users” to behave
similarly on “items”, whether the “users” are professional
basketball teams’ offenses and the “items” are their defenses
(c.f. [1]), or the “users” are drugs and the “items” are bio-
logical targets. Traditional collaborative filtering includes
no side information about the content items, but there are
various methods for adding this information [1, 7, 30, 32].

Most research in this area has focused on how well users’
ratings may be predicted given a fixed training set. That
was the only criterion considered for the well-known Net-
flix Prize,1 for example. In many areas of machine learning,
however, the problem of active learning is also important:
how well an algorithm can select points to add to the train-
ing set that will lead to the best final result. We can ask
the same question of matrix factorization methods as well
[22]: if we do not know all the elements of a matrix, but
we are allowed to query the labels of certain points in the
matrix, then which points should we choose to gain the best
understanding of the full matrix? To approach this task, we
must define a selection criterion in addition to the learning
model that will attempt to bring the learner to the greatest
understanding as quickly as possible.

One practical situation in which this is particularly impor-
tant is the “new user” (or “cold start”) problem for recom-
mender systems: such systems must quickly learn a rough
sense of a new user’s preferences based on little available
information before users abandon the system. This cold
start problem has seen a fair amount of research, but is far
from the only collaborative filtering application which ben-
efits from active learning. In the product recommendation
domain, it is also often the case that companies add items
to their system in fairly large “batches”, at which point few
or no user recommendations will be available. The problem
of learning the attributes of new products is different than
the task of recommending items to a new user, both because
the products come in batches and because a product will not
become frustrated if it is not immediately recommended to
a variety of viewers.

In another application area entirely, pharmaceutical com-
panies and researchers wish to discover which of various

1http://www.netflixprize.com/

http://www.netflixprize.com/

candidate drugs will interact with many different biologi-
cal targets. Since drugs’ behavior typically has similarities
to that of other drugs, and targets are acted on in simi-
lar fashion to other targets, collaborative filtering (perhaps
with additional side information based on biologically rele-
vant features) is likely to perform fairly well at predicting
drug interactions. Determining whether an interaction oc-
curs, however, is an expensive procedure that requires per-
forming experiments in the lab; since it is impossible to test
all possible actions, the researcher must choose a subset to
examine. The active learning paradigm described here can
assist in choosing the subset to examine [17].

In these and many other applications, accurate predic-
tions are not the goal of the system, but rather simply a
means to an end. In recommender systems, we ultimately
want to suggest items that a user will like, not just build an
accurate model of their preferences. In the drug-target sce-
nario, we care more about finding new drugs that interact
with a certain target, or finding the targets a drug affects,
than we do about listing all the targets with which a given
drug does not interact. Here our ultimate goal is not to
actively predict all the unknown elements of the data ma-
trix, but instead to find the largest unknown elements in
the matrix. This problem adds a layer of the exploration-
exploitation trade-off not present in the active learning for
prediction error task. It can, however, also be effectively ap-
proached through the same framework; we simply need to
define different selection criteria.

The main components of this work are:
• Criteria for active learning and active search on low-

rank matrices, addressing several possible goals (Sec-
tion 3) with different selection criteria (Section 5).
• A variational extension of the PMF model allowing for

active learning (Section 4.1).
• An MCMC scheme for PMF, following [23], as another

method for providing the information necessary for ac-
tive learning (Section 4.2).
• Empirical evaluation of these methods on synthetic,

movie rating, and drug discovery tasks (Section 6).

2. RELATED WORK
There has been a significant amount of prior research on

various methods for low-rank matrix factorization. These
methods play an important role in numerous machine learn-
ing and statistical tools, including principal component anal-
ysis, factor analysis, independent component analysis, dic-
tionary learning, and collaborative filtering, just to name a
few. One of the most influential recent models, which we will
employ in this paper, is the Probabilistic Matrix Factoriza-
tion (PMF) method [24], as well as its Markov chain Monte
Carlo (MCMC) extension (Bayesian PMF, or BPMF) [23].
PMF, which will be reviewed in Section 4, is a generative
model for matrices assumed to be of a certain rank.

Earlier work by [27] yielded the Maximum Margin Matrix
Factorization (MMMF) model, which frames the matrix fac-
torization problem as a semidefinite program based on the
margin of predictions, and can be viewed as a generalization
of support vector machines (SVMs). MMMF minimizes the
trace norm of the factorization, which is a convex surrogate
for the rank. Although the standard model predicts binary
class labels, it can be modified for ordinal labels.

Active learning for recommender systems and collabora-
tive filtering in general has also received a fair amount of

attention. Rubens et al. [22] provide an overview of how
general-purpose active learning techniques may be applied
to recommendation systems. Much of the published re-
search on this topic has focused on the Aspect Model [9],
which assigns latent “aspect” variables to users and items.
In this model, Yu et al. [31] select query points by consider-
ing the expected reduction in entropy in the model distribu-
tion. Boutilier et al. [2] instead seek out the item which will
bring the greatest change in value to the highest ratings. Jin
and Si [11] note that estimation based on the belief about
a given rating under the currently most likely model can
be misleading when that point estimate of the model is not
very good, and give a full Bayesian treatment, which uses a
posterior distribution on model states for inference. Karimi
et al. [12], by contrast, give a much faster selection criterion
based on considering which points will update the current
user’s parameters, under certain assumptions about the new
user case for recommender systems.

There is less work on active learning specifically for ma-
trix factorization. Karimi et al. [13] give an approach for the
new user case which uses an exploration step, where the al-
gorithm queries the item with the highest expected change
to the user at hand’s model, followed by an exploitation
step, where the algorithm picks items based on the current
parameters. Karimi et al. [14] give a method they describe
as a step towards the “optimal” strategy based on minimiz-
ing the expected test error, but which makes several drastic
approximations for the sake of speed. The same authors
more recently developed a method which queries a new user
with items popular among users with similar latent factors,
to avoid the problem of asking about an item unknown to
the user [15]. All three of these criteria are extensively tai-
lored to the new user case and inapplicable in general matrix
factorization settings.

Rish and Tesauro [21] use MMMF to carry out active
learning for general matrix factorization problems. Follow-
ing work by Tong and Koller [29] and others on active learn-
ing for SVMs, they choose to query the candidate point that
has the smallest margin, representing the point about which
the model is least certain. This criterion has the advantage
of being simple to compute once the model has been learned.
Their work considers only two-class problems, though it
could potentially be extended to multi-class problems by
choosing the point nearest to any label threshold. They also
consider only active learning with the goal of minimizing re-
construction error, but a very similar algorithm applies to
the case of finding positive instances.

Silva and Carin [26] approach the problem of active learn-
ing in a general matrix factorization problem with a similar
learning model to PMF, but using a different variational
approach than those discussed in Section 4.1. Whereas we
assume a variational distribution of a Gaussian form allow-
ing for general covariance structures, they assume a fully
factored distribution with respect to each model parameter.
This assumption allows for much more efficient learning pro-
cedures than discussed here, but also represents a far more
stringent restriction on the model. This work as well con-
siders only the goal of minimizing reconstruction error and
is not directly applicable to finding positive values.

The general problem of active learning to find values in
a class is termed active search by Garnett et al. [5], who
develop a strategy optimal in the sense of Bayesian decision
theory. This strategy, however, requires computation expo-

nential in the number of lookahead steps, and is therefore
impractical to apply with more than a very small lookahead
window. Later work [6] provides a branch-and-bound ap-
proach for pruning the search tree, which is effective in their
domain of searching on graphs with nearest-neighbor classi-
fiers, but inapplicable in the matrix factorization setting.

3. PROBLEM SETTING
We suppose that our data lie in a matrix R ∈ RN×M , only

certain elements of which are initially known. The binary
matrix I of the same shape asR represents the known points,
so that Iij is 1 if Rij is observed and 0 otherwise. The set of
(i, j) indexes where Iij = 1 will be denoted by O; we will use
RO to represent the set of Rij with (i, j) ∈ O. Some of the
labels for elements (i, j) not in O may be requested; we call
this pool of available labels P. Our algorithm will proceed
by building a model for R and using that model to select a
query point in P; it then receives the value for that point,
updates the model to account for the new information, and
evaluation repeats. We call the set of query points chosen
by the algorithm over its execution A.

The way in which we select elements depends on our aim
in the active learning process. We consider four possible
goals in this work:

Prediction: minimize prediction error on the unknown val-

ues of R: E
[
(Rij − R̂ij)2 | (i, j) /∈ O

]
, where R̂ refers

to the model’s predictions given O.

Model: minimize uncertainty in the distribution of models
that might have generated R: H[U, V | RO]. Note that
this goal only makes sense when the learning model is
fixed; otherwise the entropy could be made zero by
concentrating the distribution at any single point.

Magnitude Search: when the active search process is com-
plete, have queried the largest-valued points possible:∑

(i,j)∈ARij .

Search: when the active search process is complete, have
queried as many positive points as possible, for some
class distinction of positive and negative points. The
criterion is

∑
(i,j)∈A I(Rij ∈ +).

The Prediction and Model goals are closely related, as are
the Magnitude Search and Search goals. These goals
cover a variety of use cases, although in some settings we
might prefer others, such as the portion of the top k rat-
ings that are positive [30], or the recall or precision of our
predictions when viewed as a binary classifier.

4. LEARNING MODEL
The basic modeling framework we will adopt here is the

PMF model of [24]. This matrix factorization technique
assumes that R ≈ UV T for some U ∈ RN×D, V ∈ RM×D,
where the rank D is a hyperparameter of the model. In the
setting of movie rating predictions, the ith row of U , denoted
ui, is the feature vector for the ith user. The jth row of V ,
denoted vj , is the feature vector for the jth movie. User i’s
rating for movie j is then predicted as uTi vj .

Specifically, PMF assumes i.i.d. Gaussian noise around
the prediction UV T , so that Rij = uTi vj + εij where εij ∼
N (0, σ2). It further regularizes the parameters U and V via

zero-mean spherical Gaussian priors with variances σ2
U and

σ2
V , respectively. For constant hyperparameters σ2, σ2

U , and
σ2
V , the joint log-density ln p(U, V | RO) then becomes

−1

2σ2
‖I ◦ (R−UV T)‖2F −

1

2σ2
U

‖U‖2F −
1

2σ2
V

‖V ‖2F +C, (1)

where ◦ denotes the elementwise (Hadamard) product, ‖·‖2F
the squared Frobenius norm, and C a constant that does not

depend on U or V . To obtain the MAP estimates Û and V̂ ,
we maximize (1) in U and V , e.g. through gradient ascent.

It is worth noting that (1) is biconvex in U and V , and
is highly multimodal: for any invertible matrix Λ ∈ RD×D
with ‖UΛ‖F = ‖U‖F , ‖Λ−1V ‖F = ‖V ‖F , we have p(U, V |
RO) = p(UΛ, V Λ−1 | RO), since (UΛ)

(
V Λ−1

)T
= UV T .

(Any Λ which simply permutes the order of the latent dimen-
sions satisfies this property.) In practice gradient descent
and similar optimizations will typically choose one such local
maximum and stay in its vicinity as we update the problem
with new ratings. This does, however, somewhat complicate
the interpretation of our Model learning goal.

Unfortunately, (1) lends itself only to MAP estimation;
the full joint posterior distribution is intractable for direct
inference. In order to carry out active learning, we need
some more information about the posterior p(U, V | RO), in
particular statistics such as its variance or its Shannon en-
tropy. We will therefore need to add some more information
about the posterior to our model.

4.1 Variational approximation
One method for making inferences about the joint distri-

bution is to make a deterministic, variational approxima-
tion. In this approach, we model the joint distribution of
all the elements of U and V as a distribution q from some
tractable family of distributions, so that the KL divergence
of our approximation q(U, V) from the modeled distribution
conditional on the observed elements, p(U, V | RO) in (1), is

KL(q‖p) =

∫
q(U, V) ln

q(U, V)

p(U, V | RO)
d{U, V }

= −H[q]− Eq[ln p(U, V | RO)]

= −H[q]− C (2)

+
1

2σ2
U

N∑
i=1

D∑
k=1

Eq
[
U2
ik

]
+

1

2σ2
V

M∑
j=1

D∑
k=1

Eq
[
V 2
jk

]
+

1

2σ2

N∑
i=1

M∑
j=1

Iij

(
D∑
k=1

D∑
l=1

Eq [UkiVkjUliVlj]

−2Rij

D∑
k=1

Eq [UkiVkj] +R2
ij

)

where H[q] = −
∫
q ln q denotes the Shannon entropy of den-

sity q, Eq stands for the expectation operator w.r.t. distri-
bution q, and C is the constant of (1), independent of q. We
then choose the “best” approximation q by minimizing (2).

One option is to select q(U, V) from the family of mul-
tivariate normal distributions, with an arbitrary mean µ ∈
RD(N+M) and covariance matrix Σ ∈ RD(N+M)×D(N+M).
We then have a closed-form expression for each of the ex-
pectations in (2), via Isserlis’ Theorem [10], whose gradient
is simple; the details are in the supplement.2 This allows

2cs.cmu.edu/~dsutherl/active-pmf/

http://cs.cmu.edu/~dsutherl/active-pmf/

us to minimize (2) in µ and Σ through projected gradient
descent, projecting the covariance matrix Σ to be strictly
positive-definite at each step (by replacing any nonpositive
eigenvalues in its spectrum with a small positive eigenvalue;
this unfortunately takes time cubic in the dimension).

Σ, however, is of dimensionD2(N+M)2, which can quickly
become impractically large for moderately-sized matrices R.
We can ease this requirement by assuming a more restric-
tive form on the distribution of (U, V), for instance a ma-
trix normal distribution on the “stacked” matrix of U and
V . This distribution is parameterized by a mean matrix
µ ∈ R(N+M)×D, a symmetric positive-definite row covari-
ance matrix Σ ∈ R(N+M)×(N+M), and a symmetric positive-
definite column covariance matrix Ω ∈ RD×D. It is equiv-
alent to a general multivariate normal distribution with co-
variance equal to the Kronecker product Ω⊗ Σ. This more
restrictive distribution, while still having a fairly large num-
ber of parameters, is easier to handle, and as a subset of
the full multivariate normal distribution has a similar closed
form for (2) and its gradient.

In some sense, these are clearly bad models for p(U, V),
since the q are unimodal while the p have many equiva-
lent modes, at least D!, and many more local maxima. If
we choose a distribution centered around one of the global
modes, however, we may still get useful inferences out.

Note that previous variational approximations to PMF,
such as “Parametric PMF” [25], have different goals: they
use EM methods to obtain a point estimate and do not ac-
tually give more information about the posterior.

4.2 Markov chain Monte Carlo
Another approach for learning the posterior distribution

of U and V is to sample them through Markov chain Monte
Carlo, as in “Bayesian PMF” [23]. In this way, we know
that at least asymptotically we are sampling from the full
joint distribution of the original model, rather than the quite
restrictive variational approximation. BPMF extends the
Gaussian priors for ui and vj to allow any mean µ and co-
variance Σ, and places Gaussian-Wishart hyperpriors on µ
and Σ. Specifically, this version of the model has Rij ∼
N (uTi vj , σ

2); ui ∼ N (µU ,ΣU); vi ∼ N (µV ,ΣV); µU ∼
N (µ0,

1
β0

ΣU); µV ∼ N (µ0,
1
β0

ΣV); ΣU ,ΣV ∼ W−1(W0, ν0).

Salakhutdinov and Mnih [23] initialized the chain with

the Û , V̂ estimates from the MAP procedure (1) and then
sampled from the posterior of U and V through Gibbs sam-
pling, which is simple thanks to the use of conjugate priors.
We choose a somewhat different sampling scheme via Hamil-
tonian Monte Carlo, which can exploit the gradient of the
probability density to allow for much more efficient conver-
gence to a high-dimensional target distribution [18]. This
variant of MCMC simulates the motion of fictional particles
with positions θ in the parameter space, potential energies
defined by the log probability, momentum r. We numerically
simulate their behavior according to Hamilton dynamics:

H(θ, r) = − ln p(θ) + 1
2
rTM−1r + const

dθi
dt

=
∂H

∂ri

dri
dt

= −∂H
∂θi

where mass matrix M (which primarily allows for rescaling
of variables), and r is initially drawn from a standard normal
distribution. We perform Metropolis rejection based on the
total change in the Hamiltonian due to integration error.

The step size and the number of steps in the numerical in-
tegration must be tuned to the distribution at hand for good
performance. The No-U-Turn Sampler (NUTS) [8], however,
provides a method to choose the step size via dual averaging
and the number of steps by stopping when the particle would
begin to “turn around,” resulting in wasted computation.
Our implementation uses the Stan inference engine [28]. Es-
pecially after appropriate reparameterizations to make the
geometry of the space more uniform (sampling from stan-
dardized versions of the distributions and then making ap-
propriate transformations to obtain the true parameters),
this sampler explores the parameter space more efficiently
than Gibbs sampling, allowing us to obtain a good under-
standing of the posteriors much more quickly.

5. SELECTION CRITERIA
Once we have learned a suitable variational model or ob-

tained samples from an MCMC procedure, we have several
options for how we select points to query.

Uncertainty sampling.
One simple option for the Prediction goal is to query

the element (i, j) ∈ P with the highest posterior variance:
arg max(i,j)∈P Var[Rij | RO]. In the variational model, al-
though the distribution of Rij (the sum of products of corre-
lated normal distributions) is not a known distribution, we
can compute its mean and variance under q using the same
types of identities as in (2); details are in the supplement.

In MCMC, we use the sample variance. Although it would
also be possible to estimate the differential entropy of Rij
with one-dimensional sample entropy methods, we found in
practice that the marginal posterior distributions of Rij are
typically close to Gaussian. Entropy methods would thus in-
cur significant additional computational expense with little
to no added information over the variance.

Prediction magnitude.
For the Magnitude Search task, the simplest approach

is to choose the value with the largest prediction. That
is, we select arg max(i,j)∈P E[Rij], where the expectation is
either under the variational distribution or approximated by
the sample mean. This approach could also be used with a
point estimate of U and V .

Cutoff probability.
In the Search task, we instead partition the real line

into “positive” and “negative” classes, which we denote as
sets + and −. For example, in the movie rating task we
might choose 4 or 5 to be positive, and 1 through 3 to be
negative, so that + = {x ∈ R | x ≥ 3.5} (the set of reals
which round to the positive class). We would then choose
arg max(i,j)∈P P (Rij ∈ + | RO). This is the optimal no-
lookahead algorithm for active search in the framework of [5].
In MCMC, we approximate this probability by the portion
of samples where Rij ∈ +; in the variational setting, we
cannot compute this probability in closed form but instead
choose to approximate it via a normal distribution with first
two moments matched to those of p(Rij | RO).

Lookahead methods.
We can also take a greedy lookahead approach, where we

define some measure f(q) of the quality of our model and

choose the element (i, j) which maximizes (or minimizes)
E[f(q) | RO∪(i,j)]. We will present only the one-step version
here for simplicity; the extension to multiple steps of looka-
head is straightforward, though its computational expense
grows exponentially.

When the ratings in R are from a small, discrete set X
(e.g. X = {1, 2, 3, 4, 5} in the movie ratings setting; this
is true in all of the cases considered here except that of
Section 6.1.1), we can compute this expectation by fitting
the model for each possible value for Rij , computing f for
each such fit model, and taking their mean weighted by our
belief about the probability of Rij taking on that value:∑
x∈X P (Rij = x)f(RO,Rij=x).
If the rating values are continuous or there are too many

of them, we exploit the previously-mentioned fact that the
marginal distributions of Rij are approximately normal. We
estimate P (Rij ≤ x) by a normal distribution and integrate
with the trapezoid rule. We take 25 values of a evenly spaced
between 0.001 and 0.999, and break up the integral over f
at each ath quantile of the normal distribution.

In the variational setting, we choose to take the prob-
ability P (Rij) by moment-matching a normal distribution
to the variational approximation q’s belief about Rij . It
would also be possible to use the MAP model, in which
Rij ∼ N(uTi vj , σ

2), but our experiments suggested that q’s
belief performed slightly better.

In MCMC, with discrete output ratings, we estimate P (Rij)
by the MAP fit of a categorical distribution with a Dirichlet
prior, where the prior is used to smooth out any probabili-
ties that would otherwise be zero. (This prior could be com-
puted based on the observed or expected distributions of the
ratings for the full matrix; we simply use a flat prior where
each rating obtains a pseudocount of 0.1.) For continuous
outputs, we use the MLE.

Possible functions f include:

• For the Prediction task: the differential entropy of
the predictionsR, H[R | RO]. In the variational setting
we find an upper bound on the entropy via the deter-
minant of its covariance matrix. This requires finding
the determinant of Cov[R | RO] ∈ RD(N+M)×D(N+M).
To avoid constructing this large matrix, we could also
use a rough standin for uncertainty of

∑
kl Var[Rkl];

this is a flawed measure, but much easier to compute.

In MCMC, we could employ high-dimensional non-
parametric entropy estimators, but these are compu-
tationally intensive and have poor sample complexity.
Instead, we assume R is matrix-normal and find the

maximum likelihood estimates for the parameters Σ̂, Ω̂
with the “flip-flop” algorithm of [3]; we then compute
the MLE of the entropy based on their determinants.

• For the Model task: the differential entropy of the
posterior over possible models, H[U, V | RO]. This is
simple to compute under our variational assumptions,
but in MCMC has the same problems as the entropy
of R. It is worth noting, however, that the matrix-
normal assumption is generally much more reasonable
for R than for (U, V); we therefore do not evaluate this
method in the MCMC setting.

• For the Search task: The expected number of posi-
tives selected if we stop the search after one step, which
is the optimal one-step lookahead algorithm for active

search [5]. In this case, f for an element (i, j) is equal
to the maximum probability of any queryable point
other than (i, j) being positive, plus 1 if (i, j) was pos-
itive. For this strategy to be truly optimal, we must
do complete lookahead and recurse over all |X | · |P|!
branching possibilities, which is clearly infeasible.

We could use a very similar f for the Magnitude
Search task, replacing probabilities with magnitudes.
We do not evaluate this method in this work due to its
close similarity to the Search algorithm.

In our setting, unfortunately, the sheer number of queryable
points makes lookahead methods extremely expensive. On
a reasonably large problem, computing even one-step looka-
head for each queryable point is infeasible. Practical im-
plementations therefore need to subsample the queryable
points, perhaps evaluating only points that an easier-to-
compute heuristic finds most promising. Due to this ex-
pense, we evaluate the lookahead methods only on small
synthetic datasets in this work.

6. NUMERICAL EXPERIMENTS
We will now present empirical evaluations of our active

learning approaches on synthetic datasets, movie ratings,
and drug discovery. We compare to the minimum-margin
selection approach of [21] when possible; we do not compare
to the work of [26] because there is no publicly available im-
plementation. Lookahead criteria are evaluated only for the
synthetic matrices of Section 6.1, due to their computational
expense. The code and data used in these experiments are
available from the supplement website.

For the regularization parameters of the variational ap-
proach, we used σ2 = 1 and σ2

U = σ2
V = 10−2. We found

that when the number of observed elements is small, choos-
ing parameters to maximize the likelihood (1) as suggested
by [24] resulted in values that were far too small, even after
adding a fairly strong log-normal hyperprior.

In MCMC sampling, we used the same hyperparameters
as in [23]: σ = 1

2
, µ0 = 0, β0 = 2, W0 = I, and ν0 = D.

All of the experiments presented here used a warmup of
100 samples to for NUTS adaptation and to approach a lo-
cal maximum, followed by inference based on 200 samples.
When computing lookaheads, we use a warmup of 50 fol-
lowed by 100 samples.

We typically learn on a centered version of the data ma-
trix, so that we can assume that U and V have mean 0.
This helps make the priors more sensible and allows for easy
initialization.

In both approaches, we initialized the parameters at ran-
dom elements near the origin (for means) or the identity
matrix (for covariances). After learning the label of a query
point, we initialized optimization or sampling for the next
step at the parameters obtained by the previous one. (In
MCMC, we initialized at the sample from the previous step
with the highest probability density.)

For the comparisons to MMMF, we used code from Nathan
Srebro3 which employs an SDP solver; we used regulariza-
tion parameter C = 1 throughout. For higher-dimensional
problems the SDP solver became quite slow; the direct for-
mulation of [19] would probably be preferable.

3ttic.uchicago.edu/~nati/mmmf/

http://ttic.uchicago.edu/~nati/mmmf/

(a) MCMC: E[H[R | RO, Rij]] (b) MCMC: Var[Rij | RO] (c) MN-V: Varq [Rij | RO] (d) MN-V: Eq [H[U, V | RO, Rij]]

Figure 1: Selection criteria evaluated on a 10×10, rank 1 matrix. The x marks the point chosen by the criterion; white squares
are known by the learner. (a) and (b) employ the MCMC framework, (c) and (d) the matrix-normal variational framework.

Figure 2: Prediction results from five runs of the 10× 10 rank 4 synthetic experiment. The beanplots show areas under the
curve of RMSEs for a given method minus the RMSE of random selection on the same data. Negative values mean that the
method outperformed random selection.

6.1 Synthetic data
We will first evaluate our methods on small synthetic

problems to see some characteristics of their performance.

6.1.1 Continuous with known utility
To motivate our selection criteria, we first consider a sim-

ple problem where the value of selecting points is known.
Let us reconstruct a rank 1 matrix R ∈ R10×10, where the
off-diagonal elements and all but one element of the bottom
row have already been observed (the white squares in Fig-
ure 1). The bottom-left 9 × 9 square is thus constrained
perfectly, as the diagonal establishes the factor by which
the bottom row must be multiplied. The rightmost column
and top row are unknown, but learning any entry there will
give us enough information to know the full matrix. Thus,
picking an element in the bottom-left 9× 9 square provides
no information, while picking any element in the rightmost
column or top row allows us to know the entire matrix per-
fectly.

Figure 1 shows our evaluation criteria on one such matrix,
generated by sampling 10 × 1 U and V from a normal dis-

tribution with mean 10 and standard deviation 2.4 Colors
represent the value of the criterion at hand; the square with
the black x is the best choice according to that criterion. We
can see that the MCMC lookahead method of Figure 1a per-
forms quite well, with a clear separation between the good
and the bad choices. The method based on sample vari-
ance (Figure 1b) also performs well: all the bad choices are
evaluated as bad, though the margin between good and bad
points is much narrower. The variational criteria, by con-
trast, both seem essentially random; each one picks a useless
point, indicating that the approximation is ineffective here.

4With small matrix sizes, the biconvexity of (2) often causes
problems in gradient descent when the factors are zero mean.
If all the known elements of a row and column are close to
zero, there will be an asymptotic non-global maximum with
some of the factors’ signs flipped. This does not occur when
the factor means are far from zero. On the other hand, the
MCMC algorithm does poorly if started too far away from a
local mean. In practical situations, normalizing the ratings
to be zero mean is sufficient, but that makes this matrix no
longer rank 1; we instead initialize the sampling at the MAP
estimate from PMF and set µ0 = 10.

Figure 3: Search results from five runs of the 10 × 10 rank 4 synthetic experiment. The beanplots show areas under the
curve of the number of positives selected along the active learning curve for a given method, minus the number of positives
selected by random selection at the same point. Positive values indicate that the method outperformed random selection.

6.1.2 Integer-valued
We now turn to a slightly more realistic example: 10× 10

matrices with integer values in the range 1 to 5, approxi-
mately of rank 4.5 Figure 2 shows the mean advantage (in
terms of RMSE) of each method compared to random se-
lection over the course of the full evaluation. That is, we
draw the curve where the horizontal axis is the number of
points queried and the vertical axis the RMSE for selection
with the given criterion and random selection; Figure 2 then
shows the difference between the area under each curve.

MCMC methods and variational approaches that do looka-
head based on the MAP belief about rating distributions
seem to all do somewhat better than random. In MCMC
methods, criteria related to the Search goals tend to hurt,
while uncertainty sampling clearly helps and the lookahead
methods help somewhat. Variational methods fare more or
less similarly, though with a wider spread. In this case,
MMMF active learning does not appear useful, though it
is worth noting that even random MMMF outperforms the
best of the PMF-based methods here. Figure 3 shows the
same analysis for the Search criterion, treating 4 or 5 as
positive and 1 through 3 as negative; here we see that the
MCMC Search methods seem to help, the variational meth-
ods may as well but less consistently, and the MMMF max
margin positive method helps only a little.

6.2 Movielens
The Movielens-100k dataset consists of 100,000 ratings of

1682 movies by 943 users of movielens.org. Ratings range
from 1 (worst) to 5 (best). We ran on a subset consisting
of the 50% of users with the most ratings and enough of
their most-rated movies to cover 70% of their ratings, which
resulted in a set of 472 users and 413 movies. There are

5These matrices are constructed by choosing a random ma-
trix with values 1-5, reconstructing based on the first four
singular values, and then rounding to be 1-5 valued.

58,271 ratings in this subset, so that just under 30% of the
matrix is known, as opposed to the full dataset where only
6% of the ratings are known.

In our experiments, we started from a“near-scratch”learn-
ing state where 5% of the ratings are known. The subset of
known entries is chosen randomly in such a way that at
least one entry is known in each row and each column. We
selected a test set of another 5% of the known ratings uni-
formly from the unknown ratings, and then ran our MCMC
learning algorithms for 200 steps, allowing the model to up-
date its parameters and choose any element not in either
the known or test sets at each step. 200 steps is insufficient
to see any improvement in the RMSE on this larger model,
but Figure 4 shows the number of positives selected as the
algorithm proceeds. (Error bars are not shown for clarity of
presentation, but each individual run looked similar.)

Figure 4: Mean numbers of positive elements selected in
five independent runs on the 58,000-rating Movielens subset,
with a rank-15 model.

movielens.org

(a) The mean difference between the prediction AUC of a method
and the prediction AUC achieved by random selection on the data.

(b) Mean number of positives queried. Error bars are not shown
for clarity, but each of the runs had similar slopes.

Figure 5: Five runs on the 94× 425 DrugBank subset with a rank-10 model.

6.3 DrugBank
As mentioned previously, collaborative prediction algo-

rithms are applicable to a large number of domains outside
those of recommender systems. One such possibility is the
task of predicting interactions between drugs and various
targets for those drugs, including diseases, genes, proteins,
and organisms. The DrugBank dataset [16] is a comprehen-
sive source of this information, containing information on
over 6,000 drugs and 4,000 targets. We extracted only the
presence or absence of interactions into a matrix with drugs
as rows and targets as columns. Only positive interactions
are present in the database, consisting of about one in 2,000
possible pairs. We therefore assumed that all interactions
not listed in the database truly do not occur.

We used a subset of this matrix containing 94 drugs and
425 targets, such that each drug had at least one interaction
with a present target (maximum 59, median 16) and each
target had interactions with multiple drugs (most had 2 or
3; some had as many as 22). This matrix contains 1,521
interactions and 38,429 non-interactions.

We chose an initial training set containing exactly one in-
teraction for each drug, and 406 negatives selected such that
each target had at least one initially known point. We chose
a test set of 500 positives and 1,000 negatives uniformly from
the remaining data, and as before ran the learning process
for 200 steps. We used a model of rank 20 and did five in-
dependent runs (which used the same 94× 425 data subset
but different training and test sets).

Because of the binary nature of the problem and the skewed
test distribution, we evaluate not on RMSE but on the area
under the ROC curve of binary classifier defined by the pre-
dictions (on the test set). Figure 5a shows the mean of these
AUCs over the learning process for various MCMC selection
criteria and for the MMMF criterion. We can see that all
three of our active learning criteria strongly help boost the
ROC curve of the predictions in the MCMC setting, while
the assistance due to the MMMF active learning approach of
[27] is small if present at all. In this case, where positives are
quite rare (around 2% of the points available to query), it
seems that discovering an element is positive is likely to con-
vey much more information than finding an element is neg-

ative, so it is unsurprising that our Search-oriented heuris-
tics outperformed uncertainty sampling in terms of perfor-
mance. It is also worth noting that the baseline performance
of the MCMC approach (e.g. with random selection) is sub-
stantially superior to that of MMMF.

Figure 5b shows the effectiveness of various criteria for
finding positives in the data. We see that the MCMC-based
criteria far outstrip the MMMF-based ones in their rate of
finding positives, though the max-margin positive criterion
is better than random.

7. DISCUSSION
We gave approaches for active learning and active search

in the PMF framework with four goals (Prediction, Model,
Magnitude Search, and Search). We examined these
criteria on synthetic examples, and then showed the effec-
tiveness of the non-lookahead versions on two real-world
datasets. On the important problem of understanding and
seeking out interactions in the drug discovery process, our
methods greatly outperformed the MMMF-based methods
in both Prediction and Search.

We found that variational approaches based on a matrix-
normal factorization of the posterior were both computa-
tionally expensive and did not perform especially well. It
seems that the MCMC approaches considered here, or the
fullly-factorized variational approach of [26], are superior.

Many potential enhancements to this model are possible.
Perhaps most important is a method for choosing elements
to examine in looakahead criteria. It is also worth not-
ing that our methods may be applied almost unchanged to
models which incorporate side information into matrix fac-
torization through Gaussian Process priors (e.g. [1, 7, 32]).
Combining the power of collaborative filtering with that of
feature-based methods might yield an effective method for
guiding experimental processes such as seeking out drug-
target interactions or protein-protein interactions.

8. REFERENCES

[1] R. P. Adams, G. E. Dahl, and I. Murray.
Incorporating side information in probabilistic matrix
factorization with Gaussian processes. 2010.

[2] C. Boutilier, R. S. Zemel, and B. Marlin. Active
collaborative filtering. In UAI. Morgan Kaufmann
Publishers Inc, 2002.

[3] P. Dutilleul. The MLE algorithm for the matrix
normal distribution. Journal of Statistical
Computation and Simulation, 64(2):105–123, 1999.

[4] A. Eriksson and A. Van Den Hengel. Efficient
computation of robust low-rank matrix
approximations in the presence of missing data using
the L1 norm. CVPR, pages 771–778, 2010.

[5] R. Garnett, Y. Krishnamurthy, D. Wang, J. Schneider,
and R. Mann. Bayesian Optimal Active Search on
Graphs. In Ninth Workshop on Mining and Learning
with Graphs, 2011.

[6] R. Garnett, Y. Krishnamurthy, X. Xiong,
J. Schneider, and R. Mann. Bayesian optimal active
search and surveying. In ICML, 2012.

[7] M. Gönen, S. A. Khan, and S. Kaski. Kernelized
Bayesian matrix factorization. arXiv.org, stat.ML,
2012.

[8] M. D. Hoffman and A. Gelman. The no-U-turn
sampler: Adaptively setting path lengths in
Hamiltonian Monte Carlo. Journal of Machine
Learning Research, In press.

[9] T. Hofmann and J. Puzicha. Latent class models for
collaborative filtering. International Joint Conference
on Artificial Intelligence, 16:688–693, 1999.

[10] L. Isserlis. On a formula for the product-moment
coefficient of any order of a normal frequency
distribution in any number of variables. Biometrika,
12:134–139, 1918.

[11] R. Jin and L. Si. A Bayesian approach toward active
learning for collaborative filtering. UAI, pages
278–285, 2004.

[12] R. Karimi, C. Freudenthaler, A. Nanopoulos, and
L. Schmidt-Thieme. Active learning for aspect model
in recommender systems. IEEE Symposium on
Computational Intelligence and Data Mining (CIDM),
pages 162–167, 2011.

[13] R. Karimi, C. Freudenthaler, A. Nanopoulos, and
L. Schmidt-Thieme. Non-myopic active learning for
recommender systems based on matrix factorization.
Information Reuse and Integration (IRI), pages
299–303, 2011.

[14] R. Karimi, C. Freudenthaler, A. Nanopoulos, and
L. Schmidt-Thieme. Towards optimal active learning
for matrix factorization in recommender systems. In
Tools with Artificial Intelligence (ICTAI), pages
1069–1076, 2011.

[15] R. Karimi, C. Freudenthaler, A. Nanopoulos, and
L. Schmidt-Thieme. Exploiting the characteristics of
matrix factorization for active learning in
recommender systems. In RecSys ’12, 2012.

[16] C. Knox, V. Law, T. Jewison, P. Liu, S. Ly,
A. Frolkis, A. Pon, K. Banco, C. Mak, V. Neveu,
Y. Djoumbou, R. Eisner, A. C. Guo, and D. S.
Wishart. DrugBank 3.0: a comprehensive resource for

’omics’ research on drugs. Nucleic Acids Research,
39(Database):D1035–D1041, 2010.

[17] R. F. Murphy. An active role for machine learning in
drug development. Nature Publishing Group,
7(6):327–330, 2011.

[18] R. M. Neal. MCMC using Hamiltonian dynamics. In
S. Brooks, A. Gelman, G. L. Jones, and X.-L. Meng,
editors, Handbook of Markov Chain Monte Carlo,
Handbooks of Modern Statistical Methods. Chapman
& Hall/CRC, 2011.

[19] J. Rennie and N. Srebro. Fast maximum margin
matrix factorization for collaborative prediction. In
Proceedings of the 22nd International Conference on
Machine Learning, pages 713–719. 2005.

[20] F. Ricci, L. Rokach, B. Shapira, and P. Kantor.
Recommender Systems Handbook. Springer, 2011.

[21] I. Rish and G. Tesauro. Active collaborative prediction
with maximum margin matrix factorization. Inform.
Theory and App. Workshop, 2007.

[22] N. Rubens, D. Kaplan, and M. Sugiyama. Active
learning in recommender systems. In P. Kantor,
F. Ricci, L. Rokach, and B. Shapira, editors,
Recommender Systems Handbook, pages 735–767.
Springer, 2011.

[23] R. Salakhutdinov and A. Mnih. Bayesian probabilistic
matrix factorization using Markov chain Monte Carlo.
In ICML, pages 880–887, 2008.

[24] R. Salakhutdinov and A. Mnih. Probabilistic matrix
factorization. In NIPS, 2008.

[25] H. Shan and A. Banerjee. Generalized probabilistic
matrix factorizations for collaborative filtering. In
ICDM, pages 1025–1030, 2010.

[26] J. Silva and L. Carin. Active learning for online
Bayesian matrix factorization. In KDD, 2012.

[27] N. Srebro, J. Rennie, and T. Jaakkola.
Maximum-margin matrix factorization. In NIPS,
volume 17, pages 1329–1336, 2005.

[28] Stan Development Team. Stan: A C++ library for
probability and sampling, version 1.1, 2013.

[29] S. Tong and D. Koller. Support vector machine active
learning with applications to text classification.
Journal of Machine Learning Research, 2:45–66, 2002.

[30] X. Yang, H. Steck, Y. Guo, and Y. Liu. On top-k
recommendation using social networks. In RecSys ’12,
2012.

[31] K. Yu, A. Schwaighofer, and V. Tresp. Collaborative
ensemble learning: Combining collaborative and
content-based information filtering via hierarchical
Bayes. UAI, pages 616–623, 2002.

[32] T. Zhou, H. Shan, A. Banerjee, and G. Sapiro.
Kernelized probabilistic matrix factorization:
Exploiting graphs and side information. In SIAM Data
Mining, pages 403–414, 2012.

9. ACKNOWLEDGMENTS
This work was funded in part by the National Science

Foundation under grant NSF-IIS0911032 and the Depart-
ment of Energy under grant DESC0002607.

APPENDIX
We will now present the closed forms of the expectations
required to compute (2) and the selection criteria. All of
these expectations are the products of variables which are
part of a joint multivariate normal distribution. For simplic-
ity of presentation, we will consider this joint distribution to
be over vectors X. Note also that most of these formulae
assume that Σ is positive definite.

The two-term expectation for not necessarily distinct in-
dices a, b is

E[XaXb] = E[Xa]E[Xb] + Cov[Xa, Xb] = µaµb + Σa,b. (3)

We can calculate the four-term expectation of the product
of distinct indices a, b, c, d by the following formula, derived
from Isserlis’ Theorem [10]:

E [XaXbXcXd] = µaµbµcµd

+µcµdΣab+µbµdΣac+µbµcΣad+µaµdΣbc+µaµcΣbd+µaµbΣcd

+ ΣabΣcd + ΣacΣbd + ΣadΣbc. (4)

We also need to calculate E[X2
aX

2
b] in (2). This is, for

Σaa,Σbb > 0 and positive-definite Σ:

E[X2
aX

2
b] = 4µaµbΣab + 2Σ2

ab +
(
µ2
a + Σaa

) (
µ2
b + Σbb

)
(5)

= 4E[XaXb] + 2 Cov[Xa, Xb]
2 + E[X2

a]E[X2
b].

We will also need this identity:

E[X2
aXbXc] = (µ2

a + Σaa)(µbµc + Σbc)

+ 2µaµcΣab + 2µaµbΣac + 2ΣabΣac. (6)

We can use (3-5) in (2) to calculate KL(q‖p) for a given
µ and Σ. Taking partial derivatives in order to carry out
gradient descent is then straightforward; we choose to do so
with respect to a triangular half of Σ, so that Σab and Σba are
considered the same variable when taking derivatives. The
gradient of ln(det(Σ)) in this case works out to be Σ−1+Σ−T

minus the diagonal elements of Σ−1.
Many of our selection criteria require an expression for

Var[Rij |RO]. We have:

Var[Rij | RO] = E[Var[Rij | U, V] | RO] + Var[E[Rij | U, V] | RO]

= E[σ2] + Var[uTi vj | RO]

Var[uTi vj | RO] = Var

[
D∑
k=1

UkiVkj | RO

]

=

D∑
k=1

D∑
l=1

Cov[UkiVkj , UliVlj | RO]

=
D∑
k=1

D∑
l=1

E [UkiVkjUliVlj |RO]− E [UkiVkj |RO]E [UliVlj |RO] .

(7)

The first term of (7) will require Equations (4) to (6), de-
pending on how many of the labels are equal. Cov[Rij , Rkl |
RO] is similar.

Since the vectorization of a matrix normal distribution is
simply a subset of a full multivariate normal distribution,
the expectations in the matrix normal distribution are quite
similar. We simply need to replace Σab with ΣijΩkl, where
a refers to the index (i, j) and b to the index (k, l).

	Introduction
	Related work
	Problem Setting
	Learning Model
	Variational approximation
	Markov chain Monte Carlo

	Selection criteria
	Numerical experiments
	Synthetic data
	Continuous with known utility
	Integer-valued

	Movielens
	DrugBank

	Discussion
	References
	Acknowledgments

