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Abstract. Vector Auto-regressive (VAR) models are useful for analyz-
ing temporal dependencies among multivariate time series, known as
Granger causality. There exist methods for learning sparse VAR mod-
els, leading directly to causal networks among the variables of interest.
Another useful type of analysis comes from clustering methods, which
summarize multiple time series by putting them into groups. We de-
velop a methodology that integrates both types of analyses, motivated
by the intuition that Granger causal relations in real-world time series
may exhibit some clustering structure, in which case the estimation of
both should be carried out together. Our methodology combines sparse
learning and a nonparametric bi-clustered prior over the VAR model,
conducting full Bayesian inference via blocked Gibbs sampling. Exper-
iments on simulated and real data demonstrate improvements in both
model estimation and clustering quality over standard alternatives, and
in particular biologically more meaningful clusters in a T-cell activation
gene expression time series dataset than those by other methods.

Keywords: time-series analysis, vector auto-regressive models, bi-clustering,
Bayesian non-parametrics, gene expression analysis

1 Introduction

Vector Auto-regressive (VAR) models are standard tools for analyzing multivari-
ate time series data, especially their temporal dependencies, known as Granger
causalit [7]. VAR models have been successfully applied in a number of do-
mains, such as finance and economics [23[14], to capture and forecast dynamic
properties of time series data. Recently, researchers in computational biology, us-
ing ideas from sparse linear regression, developed sparse estimation techniques
for VAR models [5[11[22] to learn from high-dimensional genomic time series a
small set of pairwise, directed interactions, referred to as gene regulatory net-
works, some of which lead to novel biological hypotheses.

While individual edges convey important information about interactions, it is
often desirable to obtain an aggregate and more interpretable description of the
network of interest. One useful set of tools for this purpose are graph clustering

! More precisely, graphical Granger causality for more than two time series.
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methods [20], which identify groups of nodes or vertices that have similar types
of connections, such as a common set of neighboring nodes in undirected graphs,
and shared parent or child nodes in directed graphs. These methods have been
applied in the analysis of various types of networks, such as [6], and play a key
role in graph visualization tools [9].

Motivated by the wide applicability of the above two threads of work and
the observation that their goals are tightly coupled, we develop a methodology
that integrates both types of analyses, estimating the underlying Granger causal
network and its clustering structure simultaneously. We consider the following
first-order p-dimensional VAR model:

X1y = Xg-nA+ew), € ~ N(0,0°1), (1)

where x(;) € R'*P denotes the vector of variables observed at time ¢, A € RP*P
is known as the transition matrix, whose non-zero entries encode Granger causal
relations among the variables, and €()’s denote independent noise vectors drawn
from a zero-mean Gaussian with a spherical covariance o%I. Our goal is to ob-
tain a transition matrix estimate A that is both sparse, leading directly to a
causal network, and clustered so that variables sharing a similar set of con-
nections are grouped together. Since the rows and the columns of A indicate
different roles of the variables, the former revealing how variables affect them-
selves and the latter showing how variables get affected, we consider the more
general bi-clustering setting, which allows two different sets of clusters for rows
and columns, respectively. We take a nonparametric Bayesian approach, placing
over A a nonparametric bi-clustered prior and carrying out full posterior infer-
ences via a blocked Gibbs sampling scheme. Our simulation study demonstrates
that when the underlying VAR model exhibits a clear bi-clustering structure,
our proposed method improves over some natural alternatives, such as adaptive
sparse learning methods [24] followed by bi-clustering, in terms of model estima-
tion accuracy, clustering quality, and forecasting capability. More encouragingly,
on a real-world T-cell activation gene expression time series data set [18] our
proposed method finds an interesting bi-clustering structure, which leads to a
biologically more meaningful interpretation than those by some state-of-the art
time series clustering methods.

Before introducing our method, we briefly discuss related work in Section
[2. Then we define our bi-clustered prior in Section [3] followed by our sampling
scheme for posterior inferences in Section [4. Lastly, we report our experimental
results in Section |5/ and conclude with Section [6!

2 Related work

There has been a lot of work on sparse estimation of causal networks under VAR
models, and perhaps even more on graph clustering. However, to the best of our
knowledge, none of them has considered the simultaneous learning scheme we
propose here. Some of the more recent sparse VAR estimation work [11[22] takes
into account dependency further back in time and can even select the right length
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of history, known as the order of the VAR model. While developing our method
around first-order VAR models, we observe that it can also learn higher-order
bi-clustered models by, for example, assigning transition matrix entries across
multiple time lags to the same bi-cluster.

Another large body of related work ([13/16/2], just to name a few) concerns
bi-clustering (or co-clustering) a data matrix, which usually consists of relations
between two sets of objects, such as user ratings on items, or word occurrences in
documents. Most of this work models data matrix entries by mixtures of distri-
butions with different means, representing, for example, different mean ratings
by different user groups on item groups. In contrast, common regularization
schemes or prior beliefs for VAR estimation usually assume zero-mean entries
for the transition matrix, biasing the final estimate towards being stable. Fol-
lowing such a practice, our method models transition matrix entries as scale
mixtures of zero-mean distributions.

Finally, clustering time series data has been an active research topic in a num-
ber of areas, in particular computational biology. However, unlike our Granger
causality based bi-clustering method, most of the existing work, such as [17/3]
and the references therein, focus on grouping together similar time series, with a
wide range of similarity measures from simple linear correlation to complicated
Gaussian process based likelihood scores. Differences between our method and
existing similarity-based approaches are demonstrated in Section[5 through both
simulations and experiments on real data.

3 Bi-clustered prior

We treat the transition matrix A € RP*P as a random variable and place over
it a “bi-clustered” prior, as defined by the following generative process:

7, ~ Stick-Break(ay,), 7, ~ Stick-Break(a,),
{u; hr<i<p e Multinomial(zr,,), {vjhi<j<p i Multinomial(7r,),
{ ki hi<ki<oo Sk Gamma(h, c), (2)

Ay~ Laplace(0,1/Ay,0;), 1<14,5 <p. (3)

The process starts by drawing row and column mixture proportions 7, and
m, from the “stick-breaking” distribution [21], denoted by Stick-Break(a) and
defined on an infinite-dimensional simplex as follows:

Bk ~ Beta(l, ),
T = B H(l_ﬁm)v 1<k <o, (4)

m<k

where o > 0 controls the average length of pieces broken from the stick, and may
take different values «, and «, for rows and columns, respectively. Such a prior
allows for an infinite number of mixture components or clusters, and lets the data
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Algorithm 1 Blocked Gibbs Sampler

Input: Data X and Y, hyper-parameters h, ¢, cv, c, and initial values A®) L)
u®, v (0(0))2
Output: Samples from the full joint posterior p(A4, L, u,v,o | X,Y)
Set iteration ¢t =1
repeat
for i =1 to p do

(t) (t)
A7~ p(A; ] Al:(i—l)’ (i+1):p

A(t—l) u(t—1)7v(t—1)7 (O_(t—l))Q)’L(t—l)7X7 Y)

end for
for i =1 to p do

u ~ plui | AV all el v (00T LY YY)
end for
for j =1to pdo

(t) t t (t) (t—1) t—1)\2 t—1

vt~ p(U]' | Al )7u( )7V1;(j_1):v(j+1):pv (J( >) 7L( ):X, Y)

end for

(a(t))Q ~ p(a? | A® q® O gD x Y)

Lo ~ p(L | A(t),u(t),v(t),(a(t))Q,X, Y)

Increase iteration t
until convergence
Notations: superscript (¢) denotes iteration, A; denotes the i-th row of A, A;.; denotes
the sub-matrix in A from the 4-th until the j-th row, and u;.; denotes {un, }i<n<;.

decide the number of effective components having positive probability masses,
thereby increasing modeling flexibility. The process then samples row-cluster and
column-cluster indicator variables u;’s and v;’s from mixture proportions 7, and
Ty, and for the k-th row-cluster and the I-th column-cluster draws an inverse-
scale, or rate parameter \g; from a Gamma distribution with shape parameter h
and scale parameter c. Finally, the generative process draws each matrix entry
A;j from a zero-mean Laplace distribution with inverse scale Au;v; 5 Such that
entries belonging to the same bi-cluster share the same inverse scale, and hence
represent interactions of similar magnitudes, whether positive or negative.

The above bi-clustered prior subsumes a few interesting special cases. In some
applications researchers may believe the clusters should be symmetric about rows
and columns, which corresponds to enforcing u = v. If they further believe that
within-cluster interactions should be stronger than between-cluster ones, they
may adjust accordingly the hyper-parameters in the Gamma prior (2), or as
in the group sparse prior proposed by [12] for Gaussian precision estimation,
simply require all within-cluster matrix entries to have the same inverse scale
constrained to be smaller than the one shared by all between-cluster entries. Our
inference scheme detailed in the next section can be easily adapted to all these
special cases.

There can be interesting generalizations as well. For example, depending on
the application of interest, it may be desirable to distinguish positive interactions
from negative ones, so that a bi-cluster of transition matrix entries possess not
only similar strengths, but also consistent signs. However, such a generalization



Learning Bi-clustered Vector Autoregressive Models 5

requires a more delicate per-entry prior and therefore a more complex sampling
scheme, which we leave as an interesting direction for future work.

4 Posterior inference

Let L denote the collection of Ai;’s, u and v denote {u;}1<i<p and {v;}1<j<p,
respectively. Given one or more time series, collectively denoted as matrices X
and Y whose rows represent successive pairs of observations, i.e.,

}/i = XiA+€7 € ~ N(O?UQI)a

we aim to carry out posterior inferences about the transition matrix A, and row
and column cluster indicators u and v. To do so, we consider sampling from
the full joint posterior p(A, L,u,v,0? | X,Y), and develop an efficient blocked
Gibbs sampler outlined in Algorithm [1. Starting with some reasonable initial
configuration, the algorithm iteratively samples rows of A, row and column-
cluster indicator variables u and v, the noise variance? o2, and the inverse scale
parameters L from their respective conditional distributions. Next we describe
in more details sampling from those conditional distributions.

4.1 Sampling the transition matrix A

Let A_; denote the sub-matrix of A excluding the i-th row, X] and X', de-
note the i-th column of X and the sub-matrix of X excluding the i-th column.
Algorithm [1] requires sampling from the following conditional distribution:

P(Ai | Aju,v,0® LXY) o [ N(Ay | pij, 0f)Laplace(As; | 0,1/ Au,0,),

1<j<p
where

pig = (XX T = XA, of = o? /X%

i i
Therefore, all we need is sampling from univariate densities of the form:

f(x) o< N(z | p,0%)Laplace(z | 0,1/)), (5)

whose c.d.f. F(z) can be expressed in terms of the standard normal c.d.f. &(-):

F(x) = gQi(LJrab\)) +§<@<M> _@(_LGZ)‘))

C o C o o
where 2~ := min(z, 0), % := max(z,0), and
a2 o w{1)

2 Our sampling scheme can be easily modified to handle diagonal covariances.
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We then sample from f(x) with the inverse c.d.f. method. To reduce the potential
sampling bias introduced by a fixed sampling schedule, we follow a random
ordering of the rows of A in each iteration.

Algorithm [1]generates samples from the full joint posterior, but sometimes it
is desirable to obtain a point estimate of A. One simple estimate is the (empirical)
posterior mean; however, it is rarely sparse. To get a sparse estimate, we carry
out the following “sample EM” step after Algorithm [1] converges:

ABiclusEM _ argmax Y logp(A [ u®, v, (6, L0, X,v),  (6)
t

where t starts at a large number and skips some fixed number of iterations to
give better-mixed and more independent samples. The optimization problem (6)
is in the form of sparse least square regression, which we solve with a simple
coordinate descent algorithm.

4.2 Sampling row and cluster indicators

Since our sampling procedures for u and v are symmetric, we only describe the
one for u. It can be viewed as an instantiation of the general Gibbs sampling
scheme in [13]. According to our model assumption, u is independent of the
data X,Y and the noise variance o2 conditioned on all other random variables.
Moreover, under the stick-breaking prior over the row mixture proportions
m, and some fixed v, we can view u and the rows of A as cluster indicators
and samples drawn from a Dirichlet process mixture model with Gamma(h, ¢) as
the base distribution over cluster parameters. Finally, the Laplace distribution
and the Gamma distribution are conjugate pairs, allowing us to integrate out
the inverse scale parameters L and derive the following “collapsed” sampling
scheme:

p(u; = k' € existing row-clusters | A,u_;,v)

T((N_[k] + Sprr)my + ) /(I (h)c) N_;[K']
(N_ [k +opm ) M1 “1+ay,

68 (1A=l Dl + s AL 1 + 1/ " P

2
—

p(u; = a new row-cluster | A,u_;,v)
PONHIMI) + B)/(D)) DM+ W/TRe) | au
N_[WM[+h M{+h “1ta’
ki (HA_i[k,l]Hl T 1/0) (IlAi[l]Hl n 1/6) p—1+ay

X

where I'(-) is the Gamma function, d,; denotes the Kronecker delta function,
N_;[k] is the size of the k-th row-cluster excluding A;, M|l] is the size of the
[-th column-cluster, and

Akl = Y Agl Al = ) Ayl

s#i,us=k,v;=l v;=l
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As in the previous section, we randomly permute u;’s and v;’s in each iteration
to reduce sampling bias, and also randomly choose to sample u or v first.

Just as with the transition matrix A, we may want to obtain point estimates
of the cluster indicators. The usual empirical mean estimator does not work
here because the cluster labels may change over iterations. We thus employ the
following procedure:

1. Construct a similarity matrix S such that
1 .
SZ] = Tzéu?)v;t% 1 §Z7J7§p7
t

where t selects iterations to approach mixing and independence as in (6),
and T is the total number of iterations selected.

2. Run normalized spectral clustering [15] on S, with the number of clusters
set according to the spectral gap of S.

4.3 Sampling noise variance and inverse scale parameters

On the noise variance o? we place an inverse-Gamma prior with shape a > 0

and scale 8 > 0, leading to the following posterior:
o2 | A, XY ~ I-Gamma(a + pT/2,2||Y — X A||= + B), (7)

where T is the number of rows in X and || - ||r denotes the matrix Frobenius
norm. Due to the conjugacy mentioned in the last section, the inverse scale
parameters A\g;’s have the following posterior:

Mot | A,u, v o~ Gamma(N[k] M1 + h, (| Alk, |ls +1/¢)™Y).

5 Experiments

We conduct both simulations and experiments on a real gene expression time
series dataset, and compare the proposed method with two types of approaches:
Learning VAR by sparse linear regression, followed by bi-clustering
Unlike the proposed method, which makes inferences about the transition matrix
A and cluster indicators jointly, this natural baseline method first estimates the
transition matrix by adaptive sparse or Ly linear regression [24]:
L 1 2 | Aij|
Al .= argmjn§\|Y - XA|x+ )\Z |A\015

ij

(®)

)
v

.3

where A°* denotes the ordinary least-square estimator, and then bi-clusters Al
by either the cluster indicator sampling procedure in Section or standard
clustering methods applied to rows and columns separately. We compare the
proposed method and this baseline in terms of predictive capability, clustering
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Fig. 1. Heat maps of the synthetic bi-clustered VAR,

performance, and in the case of simulation study, model estimation error.

Clustering based on time series similarity

As described in Section [2] existing time series clustering methods are designed
to group together time series that exhibit a similar behavior or dependency over
time, whereas our proposed method clusters time series based on their (Granger)
causal relations. We compare the proposed method with the time series cluster-
ing method proposed by [3], which models time series data by Gaussian pro-
cesses and performs Bayesian Hierarchical Clustering [8], achieving state-of-the
art clustering performances on the real genes time series data used in Section[5]

5.1 Simulation

We generate a transition matrix A of size 100 by first sampling entries in bi-
clusters:

Laplace(0, V60 4), 41 <i<70,51 < j < 80,

Aij ~ 3 Laplace(0,v/70 '), 71<i<90,1<j <50, (9)
Laplace(0, 110 '), 91 <i<100,1 < j < 100,
and then all the remaining entries from a sparse back-ground matrix:

A = {Bij if | Byl Z‘I98({|Bi’j/|}1§z",j/§1oo),
%

. i, j not covered in (9),
0 otherwise,

where N

{Bij}lgi,j,gloo Z."'L\"d' Laplace(O, (5\/%)_1)
and gog(-) denotes the 98-th percentile. Figure 1(a) shows the heat map of the
actual A we obtain by the above sampling scheme, showing clearly four row-
clusters and three column-clusters. This transition matrix has the largest eigen-
value modulus of 0.9280, constituting a stable VAR model.
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Fig. 2. Prediction errors up to 10 time steps. Errors for longer horizons are close to
those by the mean (zero) prediction, shown in black dashed line, and are not reported.

We then sample 10 independent time series of 50 time steps from the VAR
model (1), with noise variance 02 = 5. We initialize each time series with an inde-
pendent sample drawn from the stationary distribution of (1)), whose correlation
matrix is shown in Figure|1(b), suggesting that clustering based on correlations
among time series may not recover the bi-cluster structure in Figure ’m.

To compare the proposed method with the two baselines described in the
beginning of Section[5, we repeat the following experiment 20 times: a random
subset of two time series are treated as testing data, while the other eight time
series are used as training data. For L; linear regression (8) we randomly hold
out two time series from the training data as a validation set for choosing the
best regularization parameter A from {272,271 ... 219} and weight-adaption
parameter v from {0,272,271 ... 22} with which the final ALt is estimated
from all the training data. To bi-cluster A\Ll, we consider the following:

— L;+Biclus: run the sampling procedure in SAectionm on AL,

— Refit+Biclus: refit the non-zero entries of AX using least-square, and run
the sampling procedure in Section

— L; row-clus (col-clus): construct similarity matrices

S 1
1<s<p 1<s<p

ALy AL L1 TL o
S’?j = Z ‘Ai1||Ajsl‘7 Sz?’j = Z |AS_1HASJ.1|7 1<4,5<p.

Then run normalized spectral clustering [15] on S* and S, with the number
of clusters set to 4 for rows and 3 for columns, respectively.

For the second baseline, Bayesian Hierarchical Clustering and Gaussian processes
(GPs), we use the R package BHC (version 1.8.0) with the squared-exponential
covariance for Gaussian processes, as suggested by the author of the package.
Following [3] we normalize each time series to have mean 0 and standard devi-
ation 1. The package can be configured to use replicate information (multiple
series) or not, and we experiment with both settings, abbreviated as BHC-SE
reps and BHC-SE, respectively. In both settings we give the BHC package the
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Table 1. Model estimation error on simulated data

Normalized matrix error|Signed-support error
Ly 0.3133£0.0003 0.301240.0008
Biclus EM 0.2419+40.0003 0.0662+-0.0012

mean of the eight training series as input, but additionally supply BHC-SE reps
a noise variance estimated from multiple training series to aid GP modeling.

In our proposed method, several hyper-parameters need to be specified. For
the stick-breaking parameters «, and «,, we find that values in a reasonable
range often lead to similar posterior inferences, and simply set both to be 1.5.
We set the noise variance prior parameters in (7) to be a =9 and 8 = 10. For
the two parameters in the Gamma prior (2), we set h = 2 and ¢ = /2p = /200
to bias the transition matrices sampled from the Laplace prior (3) towards being
stable. Another set of inputs to Algorithm[1 are the initial values, which we set as
follows: A =0, u® =v® =1, (¢(©)2 =1, and L = (h — 1)c = v/200. We
run Algorithm [1 and the sampling procedures for L;+Biclus and Refit+Biclus
for 2,500 iterations, and take samples in every 10 iterations starting from the
1,501-st iteration, at which the sampling algorithms have mixed quite well, to
compute point estimates for A, u and v as described in Sections[4.1 and [4.2.

Figure 2 shows the squared prediction errors of L; linear regression (L)
and the proposed method with a final sample EM step (Biclus EM) for various
prediction horizons up to 10. Predictions errors for longer horizons are close
to those by predicting the mean of the series, which is zero under our stable
VAR model, and are not reported here. Biclus EM slightly outperforms L, and
paired t tests show that the improvements for all 10 horizons are significant
at a p-value < 0.01. This suggests that when the underlying VAR model does
have a bi-clustering structure, our proposed method can improve the prediction
performance over adaptive L; regression, though by a small margin.

Another way to compare L; and Biclus EM is through model estimation
error, and we report in Table [Tl these two types of error:

Normalized matriz error: ||A — A||r/||4A|lF,

Signed-support error: p% Doi<ij<p Lsign(Aiz) # sign(4y;)).

Clearly, Biclus EM performs much better than L; in recovering the underlying
model, and in particular achieves a huge gain in signed support error, thanks to
its use of bi-clustered inverse scale parameters L.

Perhaps the most interesting is the clustering quality, which we evaluate by
the Adjusted Rand Indez [10], a common measure of similarity between two clus-
terings based on co-occurrences of object pairs across clusterings, with correction
for chance effects. An adjusted Rand index takes the maximum value of 1 only
when the two clusterings are identical (modulo label permutation), and is close
to 0 when the agreement between the two clusterings could have resulted from
two random clusterings. Figure |3/ shows the clustering performances of different
methods. The proposed method, labeled as Biclus, outperforms all alternatives
greatly and always recovers the correct row and column clusterings. The two-
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Fig. 3. Adjusted Rand index on simulated data

stage baseline methods L +Biclus, Refit+Biclus, and Ly row-clus (col-clus) make
a significant amount of errors, but still recover moderately accurate clusterings.
In contrast, the clusterings by the time-series similarity based methods, BHC-SE
and BHC-SE reps, are barely better than random clusterings. To explain this,
we first point out that BHC-SE and BHC-SE reps are designed to model time se-
ries as noisy observations of deterministic, time-dependent “trends” or “curves”
and to group similar curves together, but the time series generated from our
stable VAR model all have zero expectation at all time points (not just across
time). As a result, clustering based on similar trends may just be fitting noise
in our simulated series. These results on clustering quality suggest that when
the underlying cluster structure stems from (Granger) causal relations, cluster-
ing methods based on series similarity may give irrelevant results, and we really
need methods that explicitly take into account dynamic interaction patterns,
such as the one we propose here.

5.2 Modeling T-cell activation gene expression time series

We analyze a gene expression time series dataset® collected by [18] from a T-
cell activation experiment. To facilitate the analysis, they pre-processed the raw
data to obtain 44 replicates of 58 gene time series across 10 unevenly-spaced time
points. Recently [3] carried out clustering analysis of these time series data, with
their proposed Gaussian process (GP) based Bayesian Hierarchical Clustering
(BHC) and quite a few other state-of-the art time series clustering methods.
BHC, aided by GP with a cubic spline covariance function, gave the best clus-
tering result as measured by the Biological Homogeneity Index (BHI) [4], which
scores a gene cluster based on its number of gene pairs that share certain bio-
logical annotations (Gene Ontology terms).

To apply our proposed method, we first normalize each time series to have
mean 0 and standard deviation 1 across both time points and replicates, and

3 Available in the R package longitudinal.
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Fig. 4. Heat maps of the Biclus-EM estimate of A and the inverse scale parameters L
averaged over posterior samples; rows and columns permuted according to clusters.

then “de-trend” the series by taking the first order difference, resulting in 44
replicates of 58 time series of gene expression differences across 9 time points. We
run Algorithm [T/ on this de-trended dataset, with all the hyper-parameters and
initial values set in the same way as in our simulation study. In 3,000 iterations
the algorithm mixes reasonably well; we let it run for another 2,000 iterations
and take samples from every 10 iterations, resulting in 200 posterior samples, to
compute point estimates for A, cluster indicators u and v as described in Sections
[4.1 and Figures m and @ show the heat maps of the transition matrix
point estimate and the inverse scale parameters \;;’s averaged over the posterior
samples, with rows and columns permuted according to clusters, revealing a quite
clear bi-clustering structure.

For competing methods, we use the GP based Bayesian Hierarchical Cluster-
ing (BHC) by [3], with two GP covariance functions: cubic spline (BHC-C) and
squared-exponential (BHC—SEﬂ. We also apply the two-stage method L+ Biclus
described in our simulation study, but its posterior samples give an average of
15 clusters, which is much more than the number of clusters, around 4, from the
spectral analysis described in Section [4.2, suggesting a high level of uncertainty
in their posterior inferences about cluster indicators. We thus do not report their
results here. The other two simple baselines are: Corr, standing for normalized
spectral clustering on the correlation matrix of the 58 time series averaged over
all 44 replicates, the number of clusters 2 determined by the spectral gap, and
All-in-one, which simply puts all genes in one cluster.

Figurel5 shows the BHI scores? given by different methods, and higher-values
indicate bettering clusterings. Biclus row and Biclus col respectively denote the

4 Here we only report results obtained without using replicate information because
using replicate information does not give better results. We obtain cluster labels
from http://www.biomedcentral.com/1471-2105/12/399/additional.

® We compute BHIs by the BHI function in the R package clValid (version 0.6-4) [1]
and the database hgul33plus2.db (version 2.6.3), following [3].
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row and column clusterings given by our method. To measure the significance
of the clusterings, we report BHI scores computed on 200 random permutations
of the cluster labels given by each method. For Biclus row and Biclus col, we
also report the scores computed on the 200 posterior samples. All-in-one has a
BHI score around 0.63, suggesting that nearly two-thirds of all gene pairs share
some biological annotations. Corr puts genes into two nearly equal-sized clusters
(28 and 30), but does not increase the BHI score much. In contrast, BHC-C and
Biclus row achieve substantially higher scores, and both are significantly better
than those by random permutations, showing that the improvements are much
more likely due to the methods rather than varying numbers or sizes of clusters.
We also note that even though Corr and BHC-C both give two clusters, the
two BHC-C clusters have very different sizes (48 and 10), which cause a larger
variance in their BHI distribution under random label permutations. Lastly,
BHC-SE and Biclus col give lower scores that are not significantly better than
random permutations. One possible explanation for the difference in scores by
Biclus row and Biclus col is that the former bases itself on how genes affect one
another while the latter on how genes are affected by others, and Gene Ontology
terms, the biological annotations underlying the BHI function, describe more
about genes’ active roles or molecular functions in various biological processes
than what influence genes.

Finally, to gain more understanding on the clusters by BHC-C and Biclus
row, we conduct gene function profiling with the web-based tool g:Profiler [19],
which performs “statistical enrichment analysis to provide interpretation to user-
defined gene lists.” We select the following three options: Significant only, Hier-
archical sorting, and No electronic GO annotations. For BHC-C, 4 out of 10 genes
in the small cluster are found to be associated with the KEGG cell-cycle path-
way (04110), but the other 6 genes are not mapped to collectively meaningful
annotations. The profiling results of the large BHC-C cluster with 48 genes are in
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Fig. 6. Gene functional profiling of the large BHC-C cluster
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Figure[6; for better visibility we show only the Gene Ontology (GO) terms and
high-light similar terms with red rectangles and tags. About a half of the terms
are related to cell death and immune response, and the other half are lower-level
descriptions involving, for example, signaling pathways. For Biclus row, we re-
port the profiling results of only the two larger clusters (the second and the third)
in Figure[7, because the two smaller clusters, each containing 5 genes, are not
mapped to collectively meaningful GO terms. Interestingly, the two large Biclus
row clusters are associated with T-cell activation and immune response respec-
tively, and together they cover 41 of the 48 genes in the large BHC-C cluster.
This suggests that our method roughly splits the large BHC-C cluster into two
smaller ones, each being mapped to a more focused set of biological annotations.

Moreover, these Biclus profiling results, the
heat map in Figure @, and the contingency
table (shown in the right) between the row
and column clusters altogether constitute a
nice resonance with the fact that T-cell ac-
tivation results from, rather than leading to,
the emergence of immune responses.
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Fig. 7. Gene functional profiling of two large row clusters by the proposed method

6 Conclusion

We develop a nonparametric Bayesian method to simultaneously infer sparse
VAR models and bi-clusterings from multivariate time series data, and demon-
strate its effectiveness via simulations and experiments on real T-cell activation
gene expression time series, on which the proposed method finds a more bio-
logically interpretable clustering than those by some state-of-the art methods.
Future directions include modeling signs of transition matrix entries, generaliza-

tions to higher-order VAR models, and applications to other real time series.
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