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Abstract
Multi-task learning attempts to simultaneously
leverage data from multiple domains in order to es-
timate related functions on each domain. For ex-
ample, a special case of multi-task learning, trans-
fer learning, is often employed when one has a
good estimate of a function on a source domain,
but is unable to estimate a related function well
on a target domain using only target data. Multi-
task/transfer learning problems are usually solved
by imposing some kind of “smooth” relationship
among/between tasks. In this paper, we study how
different smoothness assumptions on task relations
affect the upper bounds of algorithms proposed for
these problems under different settings. For gen-
eral multi-task learning, we study a family of algo-
rithms which utilize a reweighting matrix on task
weights to capture the smooth relationship among
tasks, which has many instantiations in existing lit-
erature. Furthermore, for multi-task learning in a
transfer learning framework, we study the recently
proposed algorithms for the “model shift”, where
the conditional distribution P (Y |X) is allowed to
change across tasks but the change is assumed to be
smooth. In addition, we illustrate our results with
experiments on both simulated and real data.

1 Introduction
As machine learning is applied to a growing number of do-
mains, many researchers have looked to exploit similarities in
machine learning tasks in order to increase performance. For
example, one may suspect that data for the classification of
one commodity as profitable or not may help in classifying a
different commodity. Similarly, it is likely that data for spam
classification in one language can help spam classification in
another language. A common technique for leveraging data
from different domains for machine learning tasks is multi-
task learning. Multi-task learning pools multiple domains to-
gether and couples the learning of several tasks by regulariz-
ing separate estimators jointly and dependently. For instance,
in transfer learning, a special case of multi-task learning, one
uses data (or an estimator) from a well understood source do-
main with plentiful data to aid the learning of a target domain

with scarce data. Although multi-task learning algorithms are
becoming prevalent in machine learning, there are gaps in our
understanding of their properties, especially in nonparamet-
ric settings. This paper looks to increase our understanding
of fundamental questions such as: What can one say about
the true risk of a multi-task estimator given its empirical risk?
How do relative sample sizes affect learning among differ-
ent domains? How does the similarity between two functions
affect one’s ability to transfer learning between them?
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Figure 1: Toy example illustrating general multi-task learning
(left) and transfer learning (right).

Although there are many regularization techniques pro-
posed for multi-task learning (Figure 1 (left)), there are very
few studies on how the learning bounds change under dif-
ferent parameter regularizations. In this paper, we analyze
the stability bounds under a general framework of multi-
task learning using kernel ridge regression. Our formulation
places a reweighting matrix ⇤ on task weights to capture the
relationship among tasks. Our analysis shows that most ex-
isting work can be cast into this framework by changing the
reweighting matrix ⇤. More importantly, we show that the
stability bounds under this framework depend on the diago-
nal blocks of ⇤�1, thus providing insights on how much we
can gain from regularizing the relationship among tasks by
using different reweighting matrices.

Moreover, recently a general framework on transfer learn-
ing under model shift has been proposed [Wang et al., 2014],
where the conditional distribution between the source and tar-
get domains is allowed to differ, unlike in many previous
methods, but the change is assumed to be smooth (Figure 1
(right)). However, it is not clear how performance varies with
the type of smoothness assumption. Furthermore, it is unclear
under what conditions transfer learning improves estimation
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over typical one data-set learning. In this paper, we provide
analysis that connects the smoothness of the offset function
to the learning bounds for this kind of transfer. We obtain
tighter learning bounds for transfer learning when we assume
a smooth change across domains, given that the data from the
source domain is sufficiently large.
Contribution We provide a stability analysis for multi-task
learning that allows one to understand the gap between the
true risk and the empirical risk for many popular estima-
tors. Also, we analyze the risk of multi-task learning under
a nonparametric function transfer learning framework. In our
analysis we derive an upperbound for the L

2

risk that eluci-
dates previously unknown question such as the relationship
between sample sizes and loss, as well as conditions for out-
performing one data-set estimation with transfer learning.

2 Related Work
A large part of multi-task learning work is formulated using
kernel ridge regression (KRR) with various regularizations on
task relations. The `

2

penalty is used on a shared mean func-
tion and on the variations specific to each task [Evgeniou and
Pontil, 2004; Evgeniou et al., 2005]. In [Solnon et al., 2013]
a pairwise `

2

penalty is placed between each pair of tasks. In
[Zhou et al., 2011] an `

2

penalty is proposed on each pair of
consecutive tasks that controls the temporal smoothness. By
regularizing the shared clustering structure among task pa-
rameters, task clusters are constructed for different features
[Zhong and Kwok, 2012]. A multi-linear multi-task learn-
ing algorithm is proposed in [Romera-Paredes et al., 2013]
by placing a trace norm penalty. However, there are very few
literature dealing with the stability of multi-task KRR algo-
rithms. The stability bounds for transductive regression al-
gorithms are analyzed in [Cortes et al., 2008]. In [Audiffren
and Kadri, 2013], the authors study the stability properties of
multi-task KRR by considering each single task separately,
thus failing to reveal the advantage of regularizing task rela-
tions. In [Maurer and Pontil, 2013], a regularized trace-norm
multi-task learning algorithm is studied where the task rela-
tions are modeled implicitly, while we study a general fam-
ily of multi-task learning algorithms where the task relations
are modeled explicitly, reflected by a reweighting matrix ⇤

on task weights. More recently, the algorithmic stability for
multi-task algorithms with linear models f(x) = w>x is
studied in [Zhang, 2015]. While in this paper we consider the
more challenging nonlinear models with feature map �(x),
where the new multi-task kernel between xi, xj is defined as
�(xi)⇤

�1�>
(xj) by absorbing the reweighing matrix ⇤ on

task weights. Our theory is also developed on the more gen-
eral nonlinear models.

Most work on transfer learning assumes that specific parts
of the model can be carried over between tasks. Recent work
on covariate shift [Shimodaira, 2000; Huang et al., 2007;
Gretton et al., 2007; Yu and Szepesvri, 2012; Wen et al.,
2014; Reddi et al., 2015] considers the case where only P (X)

differs across domains, while P (Y |X) stays the same (here
X denotes the input feature space and Y denotes the output
label space). In [Zhang et al., 2013], target and conditional
shift are modeled by matching the marginal distributions on

X . For transfer learning under model shift, there could be
a difference in P (Y |X) that can not simply be captured by
the differences in distribution P (X), hence neither covari-
ate shift or target/conditional shift will work well under the
model shift assumption. This problem is also demonstrated
in [Wang et al., 2014]. In the same paper, the authors propose
a transfer learning algorithm to handle the general case where
P (Y |X) changes smoothly across domains.

We focus our analysis to the nonparametric setting. In
particular, we consider orthogonal series regression, where
one attempts to model functions using a finite collection of
orthonormal basis functions [Tsybakov, 2009; Wasserman,
2006]. Moreover, we also consider kernel ridge regression,
a natural generalization of ridge regression [Hoerl and Ken-
nard, 1970] to the nonparametric setting [Györfi, 2002].

3 Stability Analysis on Multi-Task Kernel
Ridge Regression

In this section, we analyze the stability bounds for multi-
task kernel ridge regression (MT-KRR). Our analysis shows
that, MT-KRR achieves tighter stability bounds than inde-
pendent task learning by regularizing task relations. In ad-
dition, different regularization techniques yield different sta-
bility bounds that are closely related to the diagonal blocks
of the inversed reweighting matrix. Due to space constraints
please refer to the appendix1 for all the proofs.

3.1 Multi-task KRR Algorithm: Formulation and
Objective

Assume we have T tasks, each task t has data matrix Xt 2
Rnt⇥d, Yt 2 Rnt , where xt,i 2 X is the i-th row of Xt,
and yt,i 2 Y is the i-th scalar of Yt. nt is the number of
data points for each task, and d is the dimension of features.
Denote the total number of data points as m =

PT
t=1

nt.
Let � be the feature mapping on x associated to ker-

nel k with dimension q, and �(Xt) denote the matrix in
Rnt⇥q whose rows are the vectors �(xt,i). Let �(X) 2
Rm⇥T q represent the diagonalized data matrix �(X) =

diag[�(X
1

) �(X
2

) · · · �(XT )] for all tasks, Y 2 Rm⇥1

be the stacked label vector Y = [Y
1

Y
2

. . . YT ]
>, and w 2

RT q⇥1 be the stacked weight vector w = [w
1

w
2

. . . wT ]
>.

Throughout the paper we use `
2

loss as the loss func-
tion for a hypothesis h, i.e., l(h(x), y) = (h(x) � y)2.
Note that l(h(x), y) is a �-admissible loss function, i.e.,
8x, y, 8h, h0, |l(h(x), y) � l(h0

(x), y)|  �|h(x) � h0
(x)|.

For `
2

loss � = 4B, assuming |h(x)|  B, |y|  B for some
B > 0. Define the MT-KRR objective as:

min

w

1

m
||Y � �(X)w||2F + w>

⇤w,

where ⇤ is a Tq ⇥ Tq reweighting matrix on task weights
w. Let ˜�(xt,j) = [0 · · · 0 �(xt,j) 0 · · · 0] be a row of
�(X) for task t. Let H be a reproducing kernel Hilbert space
with kernel k

⇤

�1
(xs,i, xt,j) =

˜�(xs,i)⇤
�1

˜�>
(xt,j) (s, t are

1Available at http://www.autonlab.org/autonweb/24058.html

2147



indices for tasks), the objective becomes:

min

g2H
1

m

T
X

t=1

nt
X

j=1

(yt,j � g(xt,j))
2

+ ||g||2k⇤�1
(1)

where g(x) = hg, k
⇤

�1
(x, .)iH, and ||.||K⇤�1 is the norm

in H. This generalizes to the case where q = 1. The
solution to MT-KRR is (assuming nonsingular ⇤): w =

⇤

�1

�

>
(X)[�(X)⇤

�1

�

>
(X) + mI]�1Y . Note in multi-

task learning setting, we have ⇤ = ⌦ ⌦ Iq (for some ⌦ 2
RT⇥T ), where Iq is the q ⇥ q identity matrix and ⌦ is the
Kronecker product. By the property of the inverse of a Kro-
necker product, ⇤�1

= M ⌦ Iq where M = ⌦

�1, and it
can be easily shown that k

⇤

�1
(xs,i, xt,j) = Ms,tk(xs,i, xt,j).

Most existing multi-task algorithms can be cast into the above
framework, see Table 1 for a few examples.
Remark. Eq. 1 assumes same weight 1/m on the
loss for (xt,j , yt,j) for all tasks. Alternatively, we can
put different weights on the loss for different tasks, i.e,
minw

PT
t=1

1

nt

Pnt

j=1

(�(xt,j)wt � yt,j)
2

+ w>
⇤w. The

solution becomes w = ⇤

�1

�

>
(X)(�(X)⇤

�1

�

>
(X) +

C�1I)�1Y , where C is the loss-reweighting matrix with
1/nt’s as the diagonal elements. As C is the same under
different ⇤’s, it is not the focus of this paper. A study on the
effect of C can be found in [Cortes et al., 2008].

3.2 Uniform Stability for MT-KRR
We study the uniform stability [Bousquet and Elisseeff,
2002], which is usually used to bound true risk in terms of
empirical risk, for the MT-KRR algorithm.
Definition 3.1. ([Bousquet and Elisseeff, 2002]). The uni-
form stability � for an algorithm A w.r.t. the loss function
l is defined as: 8S 2 Zm, 8i 2 {1, ...,m}, ||l(AS , .) �
l(AS\i, .)||1  �, where Z = X ⇥ Y drawn i.i.d from an
unknown distribution D, and S \ i is formed by removing the
i-th element from S.
Definition 3.2. (Uniform stability w.r.t a task t). Let i be a
data index for task t. The uniform stability �t of a learning
algorithm A w.r.t a task t, w.r.t. loss l is: 8S 2 Zm, 8i 2
{1, ..., nt}, ||l(AS , .)� l(AS\i, .)||1  �t.

Let the risk or generalization error be defined as
R(A,S) = Ez[l(AS , z)], z 2 Z , and the empirical error
be defined as Remp =

1

m
Pm

i=1

l(AS , zi), zi 2 Zm. Then
we have the following generalization error bound (Theorem
12, [Bousquet and Elisseeff, 2002]) with probability at least

1 � �: R  Remp + 2� + (4m� + 4B2

)

q

ln 1/δ
2m . This the-

orem gives tight bounds when the stability � scales as 1/m.
For the MT-KRR algorithm, we have the following theorem
hold with respect to the uniform stability:
Theorem 3.3. Denote ⇤�1

= M ⌦ Iq, and M
1

, . . . ,MT are
the diagonal elements of M . Assuming the kernel values are
bounded: 8x 2 X , k(x, x)  2 < 1. The learning algo-
rithm defined by the minimizer of Eq. 1 has uniform stability
� w.r.t. �-admissible loss l with:

�  �22

2m
max

t
Mt.

The proof is similar to the proof of Thm. 22 in [Bousquet
and Elisseeff, 2002], except that in the multi-task learning
setting, for the tth task ˜�(xt,i) = [0 · · · 0 �(xt,i) 0 · · · 0],
by the standard bounds for Rayleigh quotient, we have

˜�(xt,i)⇤
�1

˜�>
(xt,i)  2�max(MtIq) = 2Mt. (2)

Remark. The above theorem provides a more direct stability
bound by taking the maximum over the diagonal elements of
M , instead of computing the largest eigenvalue as in [Zhang,
2015]. Also, for a specific task t, if Mt < maxs{Ms}, then it
is possible to obtain tighter stability �t using only Mt, which
yields tighter bounds than the one in [Zhang, 2015] where
they consider the worst case for all tasks.
Lemma 3.4. The learning algorithm defined by the mini-
mizer of Eq. 1 has uniform stability �t w.r.t a task t, w.r.t.
�-admissible loss l with: �t  σ2κ2

2nt
Mt.

The proof is a straightforward adaptation of proof of
Thm 3.3, with x constrained to be xt,i. The reason we care
about �t is that, it leads to a tighter generalization error bound
for a task t, given �t < �. We have, with probability at least

1��, Rt  Rt
emp+2�t+(4nt�t+4B2

)

q

ln 1/δ
2nt

, where Rt
=

Ez[l(AS(xt,i), yt,i)], Rt
emp =

1

nt

Pnt

i=1

l(AS(xt,i), yt,i). In
the following section, we study the stability bounds under a
few special cases (Table 1), where it can be shown that we
have tighter stability bounds for MT-KRR than learning each
task independently.

3.3 Stability Bounds under Different Penalties
(a) Independent tasks. It is easy to derive that 8t,Mt =

1/�s, and �ind  σ2κ2

2λsm .

Remark. In [Audiffren and Kadri, 2013], the stability of
multi-task KRR is analyzed by considering each task sepa-
rately, which corresponds to the above analysis. In the fol-
lowing, we will show that different regularizations on task re-
lations help tighten the stability bounds of MTL algorithms.
(b) Central function+offset. Applying blockwise matrix in-
version we have 8t, Mt =

λp/T+λs

λs(λp+λs)
. We achieve tighter

stability bounds than �ind for T � 2 and �p > 0 since:

max

t
Mt =

�p/T + �s

�s(�p + �s)
<

1

�s
. (3)

(c) Pairwise penalty. Similarly to (b), we can derive that 8t,
Mt =

λp+λs

λs(λpT+λs)
. For T � 2 and �p > 0, again we obtain

tighter bounds than �ind:

max

t
Mt =

�p + �s

�s(�pT + �s)
<

1

�s
. (4)

(d) Temporal penalty. We have the following lemma:
Lemma 3.5. Let ⇤ be defined as in Table 1 under tem-
poral penalty and M be defined as in theorem 3.3. Let
Mtmid be the middle element(s) of M

1

,M
2

, . . . ,MT , i.e.,
tmid = T/2, T/2 + 1 if T is even, and tmid = (T + 1)/2
if T is odd. Then the following hold: Mt < Mt�1

, t =

2, . . . , tmid;Mt < Mt+1

, t = tmid, . . . , T ; maxt Mt =

M
1

= MT < 1

λs
; mint Mt = Mtmid � λp+λs

λs(λpT+λs)
.
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Methods Penalty P = w

>
⇤w ⇤ = ⌦⌦ Iq

Independent tasks �s
PT

t=1 ||wt||2 ⌦ = �sIT

Central+offset [Evgeniou and Pontil, 2004] �s
PT

t=1 ||wt||2+
�p

PT
t=1 ||wt � 1

T

PT
s=1 ws||2

⇢
⌦t,t = �s + �p(1� 1

T )

⌦s,t = ��p

T , s 6= t

Pairwise [Solnon et al., 2013] �p
P

s 6=t ||ws � wt||2

+�s
PT

t=1 ||wt||2
⇢

⌦t,t = �p(T � 1) + �s

⌦s,t = ��p, s 6= t

Temporal [Zhou et al., 2011] �p
PT�1

t=1 ||wt � wt+1||2
+�s

PT
t=1 ||wt||2

8
<

:

⌦t,t = 2�p + �s, t = 2, . . . , T � 1;

⌦t,t+1 = ⌦t+1,t = ��p, t = 1, . . . , T � 1;

⌦1,1 = ⌦T,T = �p + �s; zero otherwise.

Table 1: Examples of multi-task learning algorithms with different ⇤’s as penalty

Combining Lemma 3.5 and Lemma 3.4 we can see that,
with temporal penalty we have tightest stability bounds �t
for t = tmid. Also, we achieve tighter stability bounds �t for
the tth task than the t�1th task, if t < tmid; and tighter �t for
the tth task than the t+ 1th task, if t > tmid. However, since
Mtmid � (�p + �s)/(�s(�pT + �s)), we achieve a looser
bound with temporal penalty than Eq. 3 or Eq. 4. It indicates
that we might lose some algorithmic stability due to the rela-
tively restricted temporal smoothness assumption, compared
to assuming pairwise smoothness. Nonetheless, the stability
bound with temporal penalty is tighter than learning each task
independently: maxt Mt < 1/�s, for T � 2.

4 Upper Bounds on Transfer Learning
A special case of multi-task learning, transfer learning, also
assumes that one can benefit from task relations, but focuses
mainly on two tasks. While general multi-task learning as-
sumes a comparable number of samples for each task, trans-
fer learning usually assumes a sufficiently labeled source task
and a very limited labeled target task. In this section, we
analyze the L

2

risk for transfer learning with respect to the
source and target sample size, and smoothness assumptions
made between the tasks.

4.1 Model
We consider a densely sampled function f

0

, which one uses
to aid in the regression of a sparsely sampled function f

1

. The
relationship between functions is defined through a smooth-
ness assumption on the difference of the two functions:
g(x) ⌘ f

1

(x)� f
0

(x).
Our estimator works as follows: first, we use a sample of

noisy f
0

values to produce an estimate ˜f
0

; second, we use ˜f
0

to generate noisy samples of g by subtracting ˜f
0

from noisy
samples of f

1

, and we produce an estimate ĝ; lastly, we define
our estimator of f

1

as ˆf
1

(x) ⌘ ˜f
0

(x)+ ĝ(x). Specifically we
consider the following data:

{u
0i}n0

i=1

, {u
1i}n1

i=1

iid⇠ Unif([0, 1]d), and (5)
Y
0

⌘ {y
0i = f

0

(u
0i) + ✏

0i}n0

i=1

, (6)
Y
1

⌘ {y
1i = f

1

(u
1i) + ✏

1i}n1

i=1

, where (7)

✏ij
iid⇠ ⌅, E [✏ij ] = 0, Var [✏ij ]  �2 < 1. (8)

Note, ⌅ is an error distribution with moment constraints. Fur-
thermore, we shall take n

1

= O(n
0

), although this is not
necessary for the bounds derived below.

4.2 Basis Functions and Projections
We describe the estimation of functions using orthonormal
basis functions. Let {'i}i2Z be an orthonormal basis for
L
2

([0, 1]), where L
2

(⌦) = {f : ⌦ 7! R :

R

⌦

f2 < 1}.
Then, the tensor product of {'i}i2Z serves as an orthonor-
mal basis for L

2

([0, 1]d); that is, the following is an or-
thonormal basis for L

2

([0, 1]d): {'α}α2Zd where 'α(x) =

Qd
i=1

'αi(xi), x 2 [0, 1]d. So we have that 8↵, ⇣ 2
Zd, h'α,'ζi = I{↵ = ⇣}. Let f 2 L

2

([0, 1]d), then
f(x) =

P

α2Zd aα(f)'α(x) where aα(f) = h'α, fi =

R

[0,1]d 'α(z)f(z)dz 2 R.
Suppose function f has a corresponding set of evaluations

Y = {yj = f(uj) + ✏j}n
j=1

where uj
iid⇠ Unif([0, 1]d) and

E [✏j ] = 0, E
⇥

✏2j
⇤

< 1. Then, ˜f , the estimate of f , will be:

˜

f(x) =

X

↵2M

a↵(Y )'↵(x) where a↵(Y ) =

1

n

nX

j=1

yj'↵(uj),

(9)

and M is a finite set of indices for basis functions.

4.3 Theory
We bound the L

2

risk of a transfer learning based estimate
of f

1

: E
h

kf
1

� ˆf
1

k
2

i

. First, we state our assumptions on
functions f

0

, and f
1

:
(a) Sobolev Ellipsoid Function Class Assumptions. We
shall make a Sobolev ellipsoid assumption for f

0

, f
1

2 F .
Let a(f) ⌘ {aα(f)}α2Zd . Suppose that: Fγ,A = {f :

a(f) 2 ⇥γ,A, kfk1  f
max

}, where ⇥γ,A =

n

{✓α}α2Zd :

P

α2Zd ✓2α
2

γ(↵) < A2

o

, and 2

γ(↵) =

Pd
i=1

|↵i|2γi for

� 2 Rd
++

, f
max

, A 2 R
++

, R
++

= (0,1). This assump-
tion will control the tail-behavior of projection coefficients
and allow one to effectively estimate f 2 F using a finite
number of projection coefficients on the empirical functional
observation.
(b) Smooth Difference Assumption. We shall make an ad-
ditional assumption on the difference between f

1

and f
0

,
g(x) ⌘ f

1

(x) � f
0

(x): g = f
1

� f
0

2 Fρ,B . Namely, we
are imposing a smoothness constraint on the difference be-
tween our functions f

0

and f
1

, which we will show controls
the effectiveness of transfer learning.
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Estimator: Before writing our estimator for f
1

, we define
some terms. First, let ˜f

0

be the standard estimator for f
0

based of Y
0

, let Mγ(t) ⌘ {↵ 2 Zd
: γ(↵)  t}:

˜f
0

(x) =
X

α2M�(t)

aα(Y0

)'α(x) where (10)

aα(Y0

) =

1

n

n
X

j=1

y
0j'α(u0j). (11)

We will take ĝ to be the estimate of g based on Z, where

Z ⌘ {zj = y
1j � ˜f

0

(u
1j)}n1

j=1

, (12)

zj = f
1

(u
1j)� ˜f

0

(u
1j) + ✏

1j = g(u
1j) + r(u

1j) + ✏
1j ,
(13)

and g(x) = f
1

(x)�f
0

(x), r(x) = f
0

(x)� ˜f
0

(x). Our estima-
tor for f

1

will then be: ˆf
1

(x) = ˜f
0

(x) + ĝ(x), where ĝ is the
estimate of g based on Z, ĝ(x) =

P

α2M⇢(v) aα(Z)'α(x).

Risk Analysis: We analyze the L
2

risk of our estimator
below. Note that:
E
h

kf
1

� ˆf
1

k
2

i

= E
h

kf
0

+ g � (

˜f
0

+ ĝ)k
2

i


r

E
h

kf
0

� ˜f
0

k2
2

i

+

p

E [kg � ĝk2
2

], thus we first upper-

bound the risk for typical function estimation E
h

kf
0

� ˜f
0

k2
2

i

then that for the smooth transfer E
⇥kg � ĝk2

2

⇤

. First we
analyze the risk of standard functions regression one a single
data-set for the estimation of the source function.

Lemma 4.1. Let f
0

2 Fγ,A, then E
h

kf
0

� ˜f
0

k2
2

i

=

O

✓

n
� 2

2+��1

0

◆

, where ��1

=

Pd
i=1

��1

i .

Next we analyze the risk of estimating g from Z (13). Note
that Z is not a set of noisy observations from g as Y

0

is to f
0

;
we, instead have biased observations (from using ˜f

0

), thus the
rate will vary a bit.
Lemma 4.2. Let g 2 Fρ,B , then E

⇥kg � ĝk2
2

⇤

=

O

✓

n
� 2

2+⇢�1

1

⇣

1 +

n1
n0

⌘

2
2+⇢�1

◆

.

One can see that we pay a penalty of (1 + n
1

/n
0

)

2/(2+ρ�1
)

for using a biased sample to approximate g. As one would
expect the penalty diminishes as n

0

! 1. Note furthermore
that if n

0

� n
1

then this penalty is no more than 2

2
2+⇢�1

=

O(1). Hence, the risk of ĝ is asymptotically upper-bounded
with the same rate as that of the unbiased sample estimator g̃.
Transfer Estimator Risk: Below we state this section’s
main theorem and discuss some insights gained from it.

Theorem 4.3. Let f
1

2 F and ˆf
1

(x) ⌘
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/n
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For simplification, consider the case where smoothness pa-
rameters are �>

= (⌧, . . . , ⌧)> and ⇢> = (⌫, . . . , ⌫)>, and

n
0

= nλ
1

for � � 1. One then has that: E
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. If ⌫ > ⌧ (i.e. the difference, g is

smoother than each function) and � > 1 (the densely sampled
function has strictly more samples than the sparsely sampled

function), then E
h

kf
1

� ˆf
1

k
2

i

= o

✓

n
�⌧

2⌧+d

1

◆

. That is, we

have shown that transfer learning is asymptotically faster than
single data-set regression on the target function for the typical
case where the target function is similar to the source function
and we have more samples from a source function. In fact, if

⌫ > ⌧ and � > 1, then E
h

kf
1

� ˆf
1

k
2

i

= O

✓

n
�⌫

2⌫+d

1

◆

.

In other words, transfer learning has an asymptotic risk of re-
gressing the smooth difference function g with the target sam-
ple of size n

1

: E
h

kf
1

� ˆf
1

k
2

i

= O (E [kg � g̃k
2

]), where g̃

is defined analogously to (9) with a sample size of n
1

. Since
functions f

1

and f
0

are similar the asymptotic reduction to
the rate of estimation for g proves very beneficial.
Remark. We see that the upper bounds derived for MT-KRR
and transfer learning are both affected by the smoothness as-
sumptions we make between/among tasks (the �, ⇢ parameter
in the above analysis, and the �p,�s parameter in Sec. 3.3).

5 Experiments
5.1 Synthetic Data
Multi-Task Learning Stability. To show the stability bounds
under different penalties, we simulate data with T tasks.
Each task t has {Xt, Yt} : Yt = fc + fo + 0.1✏, where
fc = sin(20x) + sin(10x) is the central function, and
fo = sin 5(1 + ti)x is a smoother additive function, with
ti ⇠ Unif(0, 1), plus ✏ 2 N (0, 1). Fig.2 (left) shows an ex-
ample of the data with T = 3 and nt = 20 per task.

In Fig.2, we also plot the risk difference R � Remp (Sec.
3.2) w.r.t different number of tasks (fixed 10 points per task),
and different number of points per task (with fixed 5 tasks),
averaged over 50 experiments. We also plot the theoretical
bounds (fitted to the actual curve using regression) for each
case. We see that the results are consistent with our analy-
sis. Using central+offset (Eq. 3), pairwise-penalty (Eq. 4),
or temporal-penalty (Lemma 3.5) we achieve tighter bounds
than learning each task independently (denoted as Separate).
In addition, central+offset and pairwise-penalty result in the
same curve (red and blue) when we set �p/T in central+offset
equal to �p in pairwise-penalty, which shows the equivalence
of these two methods. Further we observe that temporal-
penalty gives slightly larger R � Remp than central+offset
and pairwise-penalty, which coincides with our analysis.
Transfer Learning Risk. We illustrate the risk of function
transfer learning through an experiment with synthetic data.
We randomly generate f

0

, g, and f
1

and we draw data-sets Y
0

,
Y
1

with various configurations of n
1

and n
0

. We consider the
cosine basis: '

0

(x) = 1, 'k(x) =
p
2 cos(⇡kx), 8 k � 1.
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Figure 3: (a) Example synthetic data for n
1

= 25. Note the better quality of the transfer learning estimate ˆf
1

, to the estimate
based only on Y

1

, ˜f
1

. (b)-(d) Risk estimation for various �g values; the .1 to .9 percentiles are filled in gray, the mean of the
data within this range is in blue, and the best fit curve (of constants) of our upperbounding rate is shown in red markers, the risk
estimating on f
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using only Y
1

is show in dashed green.

We define f
0

(x) ⌘ PM
k=0

✓
(0)

k 'k(x), by generating the pro-
jection coefficients ✓(0), M = 500. See Fig.3 (a) for example
of functions. Specifically we consider n

1

2 {15, 20, . . . , 50}
and n

0

= n2

1

. For each configuration, we draw 100 instances
of Y

0

and Y
1

and we estimate the risk at (n
0

, n
1

) by cross-
validating the set of projection coefficients and calculating
the loss of the estimate, and taking the mean over the 100 in-
stances of Y

0

and Y
1

. The risk estimation was performed for
the values of �g 2 {1.25, 1.75, 2.25} and �

0

= 1, keeping
f
0

constant throughout and changing g per value of �g (see
Fig.3 (b-d)). As one would expect given our analysis, as the
smoothness of g increases (i.e. �g increases) so too does the
efficacy of transfer learning. It is interesting to note that trans-
fer learning outperforms typical regression in all scenarios
except for when one does not have a smooth offset and many
source data samples; this too is consistent with our analysis.
Lastly, it is worth noting that we can achieve a good fit of our
upperbound on risks of transfer learning (Theorem 4.3).

5.2 Real Data
The real dataset is the Air Quality Index (AQI) dataset [Mei et
al., 2014]. We extract bag-of-words vectors (feature X with
dimension d = 100, 395) from social media posts to predict
the AQI (label Y ) across cities. The results are averaged over
20 experiments. In Fig. 4 (left), we show the prediction error
of MT-KRR using pairwise penalty (or equivalently the cen-
tral+offset penalty) with 4 cities as 4 different tasks. We see
that the MT-KRR algorithm (mtl) outperforms independent-
task-learning (ind). In addition, we plot the leave-one-out er-
ror for each task (loo-1 through 4), and the prediction error
by MT-KRR for the best task (mtl-min), which outperforms

learning that task by itself (loo-3). Fig. 4 (right) shows the
prediction error using the transfer method analyzed in this
paper, compared with state-of-the-art baselines. The transfer
method benefits from modeling a smoother offset across do-
mains compared to optDA [Chattopadhyay et al., 2011] with
single-source, and it also outperforms KMM [Huang et al.,
2007] by allowing changes in P (Y |X).
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Figure 4: Results for multi-task learning (left) and transfer
learning (right) on the AQI data

6 Conclusion
In this paper we provide theory that connects the risk bounds
for both transfer and multi-task learning to the relation of
tasks. We show that, by imposing a smooth relationship be-
tween/among tasks, we obtain favorable learning rates for
both algorithms, compared to learning tasks independently.
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