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A common problem in disciplines of applied Statistics research such as Astrostatistics is of 
estimating the posterior distribution of relevant parameters. Typically, the likelihoods for 
such models are computed via expensive experiments such as cosmological simulations of 
the universe. An urgent challenge in these research domains is to develop methods that 
can estimate the posterior with few likelihood evaluations.
In this paper, we study active posterior estimation in a Bayesian setting when the 
likelihood is expensive to evaluate. Existing techniques for posterior estimation are based 
on generating samples representative of the posterior. Such methods do not consider 
efficiency in terms of likelihood evaluations. In order to be query efficient we treat 
posterior estimation in an active regression framework. We propose two myopic query 
strategies to choose where to evaluate the likelihood and implement them using Gaussian 
processes. Via experiments on a series of synthetic and real examples we demonstrate 
that our approach is significantly more query efficient than existing techniques and other 
heuristics for posterior estimation.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Computing the posterior distribution of parameters given observations is a central problem in Bayesian statistics. We use 
the posterior distribution to make inferences about likely parameter values and estimate functionals we are interested in. 
For simple parametric models with conjugate priors, we may obtain the posterior in analytic form. In more complex models 
where the posterior is analytically intractable, we have to resort to approximation techniques. In some cases, we only have 
access to a black box which computes the likelihood for a given value of the parameters.

Our goal is an efficient way to estimate posterior densities when calls to this black box are expensive. This work is mo-
tivated by applications in computational physics and cosmology. Several cosmological phenomena are characterised by the 
cosmological parameters (e.g. Hubble constant, dark energy fraction). Given observations, we wish to make inferences about 
the parameters. Physicists have developed simulation-based probability models of the Universe which can be used to com-
pute the likelihood of cosmological parameters for a given observation. Fig. 1 shows different scenarios to estimate/compute 
the likelihood. Many problems in scientific computing have a similar flavour. Expensive simulators in molecular mechanics, 
computational biology and neuroscience are used to model many scientific processes. Hence this work finds relevance in 
these fields as well.

✩ This paper is an invited revision of a paper which first appeared at the International Joint Conference of Artificial Intelligence [Ijcai 2015].
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Fig. 1. Illustrations of cosmological experiments. (a): Given a set of values for the parameters θ the oracle produces several simulations Xsim . The likelihood 
P (Xobs|θ) can then be estimated, say, by (1) comparing Xsim to the Xobs via a statistical test or (2) constructing a density estimate using Xsim and then 
evaluating this estimate at Xobs . (b): The oracle directly computes the likelihood using a physical model of the universe.

Related work

Practitioners have conventionally used sampling schemes [16] to approximate the posterior distributions. Rejection sam-
pling and various MCMC methods are common choices. The advantage of MCMC approaches is their theoretical guarantees 
with large sample sets [24] and thus they are a good choice when likelihood evaluations are cheap. However, none of them 
is intended to be query efficient when evaluations are expensive. Some methods spend most of their computation evaluating 
point likelihoods and then discard the likelihood values after doing an acceptance test. This gives insight into the potential 
gains possible by retaining those likelihoods for use in regression. Despite such deficiencies, MCMC remains one of the most 
popular techniques for posterior estimation in experimental physics [6,21,13] and the other fields [14].

Approximate Bayesian computation (ABC) [17,18] is a method of last resort for estimating posteriors when a likelihood 
can not be computed. Unfortunately, it still requires the generation of simulated data, which is expensive in our setup, 
and it does not address efficient selection of parameter values to be tested at all. Nested Sampling [27] is a technique 
commonly used in Astrostatistics. Kernel Bayes’ Rule [7] is a non-parametric method of computing a posterior based on the 
embedding of probabilities in an RKHS. Both these methods require sampling from a distribution and do not address the 
question of which samples to choose if generating them is expensive. The work in Bryan et al. [3] actively learns level sets 
of an expensive function and derives confidence sets from the results. Gotovos et al. [8] also actively learn level sets via a 
classification approach. Our work is more general since we estimate the entire posterior.

Our methods draw inspiration from Gaussian Process (GP) based active learning methods such as Bayesian optimisa-
tion (BO) [19], Bayesian quadrature (BQ) [20], active GP Regression (AGPR) [25] and several others [28,15,12,11,10]. These 
methods have a common modus operandi to determining the experiment θt at time step t: construct a utility function ut

based on the posterior GP conditioned on the queries so far; then maximise ut to determine θt . ut(θ) captures the value of 
performing an experiment at point θ . Maximising the typically multimodal ut is itself a hard problem. Further, inference in 
GPs can also be quite expensive, especially when we have several queries. However, it is generally assumed that querying 
the function is more costly than the effort to determine the next experiment [2,28]. The key difference in such methods is 
essentially in the specification of ut to determine the next experiment. In our work, we adopt this strategy. We present two 
utility functions for active posterior estimation.

Our contribution is to propose a query efficient method for estimating posterior densities when the likelihood is ex-
pensive to evaluate. We adopt a Bayesian active regression approach on the log likelihood using the samples it has already 
computed. We refer to this approach as Bayesian Active Posterior Estimation (BAPE). We propose two myopic query strate-
gies on the uncertainty regression model for sample selection. Our implementation uses Gaussian processes [23] and we 
demonstrate the efficacy of the methods on multiple synthetic and real experiments.

The remainder of this manuscript is organised as follows. We begin with a brief review of GPs in Section 2.1. We present 
our methods in Sections 2.2, 2.3, 2.4 and compare them against non-active strategies and GP based active learning methods 
in Section 2.5. In Section 3 we discuss alternatives for empirical evaluation and in Section 4 we present experimental results 
on synthetic and real problems.

2. Bayesian active posterior estimation

2.1. Gaussian processes

A GP over a space � is a random process describing functions from � to R. It is completely characterised by its mean 
function μ : � → R and covariance kernel k : � × � → R. The function values f (θ1), . . . , f (θn) at any finite set of n points 
{θ1, . . . , θn} ⊂ � are distributed jointly Gaussian N (μ, K). Here μ ∈R

n , μi = μ(θi) and K ∈ R
n×n where Ki j = k(θi, θ j).
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Fig. 2. (a) depicts the uncertainty for the log joint probability via samples g drawn from the GP. (b) illustrates the induced uncertainty model Fθ |Xobs for 
the posterior via the exponentiated and normalised samples f = exp g/ ∫ exp g .

Typically, a GP is specified by its prior mean μ0 and kernel k0. Given observations y = (y1, . . . , yn)� ∈ R
n at points 

θ = {θ1, . . . , θn} the posterior is also a GP with mean μ′ and covariance k′ given by,

μ′(θ) = μ0(x) + k0(θ , θ)�K−1
0 (y − μ0(θ)),

k′(θ, θ ′) = k0(θ, θ ′) − k0(θ, θ)�K−1
0 k0(θ, θ ′).

The posterior variance at any θ ∈ � is given by k′(θ, θ). Here, we have overloaded notation to denote, μ0(θ) =
(μ0(θ1), . . . , μ0(θn))� ∈ R

n , k0(θ , θ) = (k0(θ1, θ), . . . , k0(θn, θ))� ∈ R
n , and K0 ∈ R

n×n whose (i, j)th element is k0(θi, θ j). 
A popular choice for the covariance kernel is the squared exponential kernel kσ f ,h(θ, θ ′) = σ 2

f exp(−‖θ − θ ′‖2/(2h2)). When 
the observations of f are noisy, it is common to use a noise term in the prior kernel k0 = kσ ,h +σ 2

n δ(θ − θ ′) where δ is the 
Dirac-delta function. This corresponds to assuming white Gaussian noise with variance σ 2

n . For a more detailed review of 
GPs we recommend Rasmussen and Williams [23]. Following other GP based active learning methods [12,28], we use GPs 
primarily as an uncertainty model for an unknown function.

2.2. Active posterior estimation

Problem setting: We formally define our posterior distribution estimation problem in a Bayesian framework. We have 
a bounded continuous parameter space � for the unknown parameters (e.g. cosmological constants). Let Xobs denote our 
observations (e.g. signals from telescopes). For each θ ∈ � we have the ability to query an oracle for the value of the 
likelihood L(θ) = P (Xobs|θ). These queries are expensive and possibly noisy. Assuming a prior Pθ (θ) on �, we have the 
posterior Pθ |Xobs .

Pθ |Xobs(θ |Xobs) = L(θ)Pθ (θ)∫
�
L(θ)Pθ (θ)

= L(θ)Pθ (θ)

P (Xobs)
(1)

Our goal is to obtain an estimate P̂θ |Xobs of Pθ |Xobs using as few queries to the oracle.
Some smoothness assumptions on the problem are warranted to make the problem tractable. A standard in the Bayesian 

nonparametrics literature is to assume that the function of interest is a sample from a Gaussian Process. In what follows we 
shall model the log joint probability of the cosmological parameters and the observations via a GP.1 This is keeping in line 
with Adams et al. [1] who use a similar prior for GP density sampling.

Uncertainty for the posterior via uncertainty for the log joint: Assume that we have queried the likelihood oracle at n
points, and for each query point θi the oracle provided us with Li ≈ P (Xobs|θi) answers. Let An = {θi, Li}n

i=1 denote the set 
of these query value pairs. We build our GP using Bn = {θi, log(Li Pθ (θi))}n

i=1 as the input output pairs. The GP automatically 
induces uncertainty on the log joint probability; let us denote the distribution of log P (Xobs, θ) values at any θ ∈ � by L̃(θ). 
Moreover, if g is a sample from this GP, then f = exp g/ 

∫
exp g denotes a sample from the induced uncertainty model 

Fθ |Xobs for the posterior Pθ |Xobs . A sample from Fθ |Xobs is a distribution over �. This is illustrated in Fig. 2.
Finally, given any estimate P̂ An (Xobs, θ) of the log joint probability constructed using a set An of n parameter-likelihood 

pairs, the estimate of the posterior distribution is

P̂ An(θ |Xobs) = exp P̂ An (Xobs, θ)∫
�

exp P̂ An(Xobs, θ)
. (2)

1 We work in the log joint probability space since log smoothes out a function and is more conducive to be modelled as a GP. We also avoid issues such 
as non-negativity of ̂P A

m(θ |Xobs). Osborne et al. [20] also use a similar log-transform before applying a GP.
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Algorithm 1 Bayesian active posterior estimation.
Given: Input space �, GP prior μ0, k0.
For t = 1, 2, . . . do

1. θt = argmaxθt ∈� ut (θ)

2. Lt ← Query oracle at θt .
3. Obtain posterior conditioned on (θi , Li Pθ (θi))

t
i=1

Fig. 3. An illustration of the NED utility. θ+ is a candidate for the next evaluation. pB , pR , pG denote values for p+ = log P (θ+, Xobs) sampled from the GP. 
We add them as hallucinated points and rebuild our GP and generate samples (second step). These samples are exponentiated and normalised (third step) 
and then its KL divergence with the estimate is computed. (For interpretation of the colours in this figure, the reader is referred to the web version of this 
article.)

Bayesian active posterior estimation: We now describe the procedure to determine the point at which we should query 
the likelihood. At time step t , we have already queried at t −1 points and have the set At−1 of query value pairs. Our goal is 
to select the point θt for the next experiment to evaluate the likelihood. We adopt a myopic strategy which picks the point 
that maximises a utility function ut . ut needs to capture a measure of divergence D(·‖·) between the true and estimated 
distributions. A reasonable strategy would be to select θt to satisfy

θt = argmin
θ+∈�

D( Pθ |Xobs ‖ P̂ At−1∪{(θ+,L(θ+))} ) (3)

where P̂ At−1∪{(θ+,L(θ+))} is our estimate of the posterior using At−1 ∪{(θ+, L(θ+))}. Obviously, this objective is not accessible 
in practice, since we know neither Pθ |Xobs nor L(θ+). As surrogates to this ideal objective in Equation (3), in the following 
subsections we propose two utility functions for determining the next point: Negative Expected Divergence (NED) and Ex-
ponentiated Variance (EV). The first, NED adopts a Bayesian decision theoretic approach akin to the expected error reduction 
criterion used in active learning [26]. Here, we choose the point in � that yields the minimum expected divergence for the 
next estimate over the uncertainty model. Unfortunately, as we will see in Section 2.3, the NED utility is computationally 
expensive. Therefore, we propose a cheaper alternative, EV. In our experiments we found that both strategies performed 
equally well – so EV is computationally attractive. That said, some cosmological simulations are very expensive (taking sev-
eral hours to a day) so NED is justified in such situations. We present our framework for BAPE using an appropriate utility 
function ut in Algorithm 1.

2.3. Negative Expected Divergence (NED)

Equation (3) says that we should choose the point that results in the highest reduction in divergence if we knew the 
likelihood and the true posterior at that point. In NED, we choose the point with the highest expected reduction in divergence. 
For the next evaluation we choose the point that minimises the expected divergence between these models and the next 
estimate. Precisely,

uNED
t (θ+) = −Ep+∼L̃(θ+)

Eh∼Fθ |Xobs
D(h ‖ P̂ A∪{(θ+,p+)}

m+1 ). (4)

Here p+ ∈ R is sampled from L̃(θ+), the uncertainty of the log joint probability at θ+ . The density h is sampled from 
Fθ |Xobs , the uncertainty model of the posterior obtained by adding (θ+, p+) to the set of already available points At−1. Both 
L̃(θ+) and Fθ |Xobs are induced from the log joint GP as explained before. P̂ A∪{(θ+,p+)}

m+1 denotes the estimate of the posterior 
obtained by re-training the GP with (θ+, p+) as the tth point along with the t points already available. The first expectation 
above captures our uncertainty over log P (θ+, Xobs) while the second captures our remaining uncertainty over Pθ |Xobs after 
observing L(θ+). Equation (4) says that you should minimise the expected divergence by looking one step ahead.

We have illustrated NED in Fig. 3. Assume we are considering the point θ+ for the next evaluation. Our GP over the log 
joint probability gives us uncertainty for log P (θ+, Xobs) – depicted by pB , pR , pG in blue, green and red respectively. For 
pB , we add (θ+, pB) as a hallucinated point to the t − 1 points we already have and obtain an estimate of the posterior 
P̂ At−1∪(θ+,pB ) . Next, we rebuild our GP using these t points. We draw samples from the new GP and exponentiate and 
normalise them to obtain samples hi from the uncertainty model for the posterior Fθ |Xobs . Then we compute the divergence 
between hi and P̂ At−1∪(θ+,pB ) . We repeat this for the blue and green points and average all the divergences. The next 
evaluation point will be that with the lowest expected one step ahead divergence.
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Fig. 4. (a): Samples drawn from the GP in the log joint probability space. (b): The same samples after exponentiation. High variance in the low likelihood 
regions are squashed and low variances in the high likelihood regions are blown up. This is the key insight that inspires our methods and the EV utility in 
particular.

The expectations in the NED utility above are computationally intractable. They can only be approximated empirically 
by drawing samples and require numerical integration (as Fig. 3 suggests). For these reasons we propose an alternate utility 
function below. In our experiments we found that both EV and NED performed equally well.

2.4. Exponentiated Variance (EV)

A common active learning heuristic is to choose the point that you are most uncertain about for the next experiment. As 
before we use a GP on the log joint probability. At any given point in this GP we have an associated posterior variance of the 
GP. However, this variance corresponds to the uncertainty of the log joint probability whereas our objective is in learning 
the joint probability – which is a multiplicative factor away from the posterior. See Fig. 4. Therefore, unlike in usual GP 
active learning methods [25], the variance of interest here is in the exponentiated GP. By observing that an exponentiated 
Gaussian is a log Normal distribution, the EV utility function is given by

uEV
t (θ+) = exp(2μt(θ+) + σ 2

t (θ+))(exp(σ 2
t (θ+)) − 1) (5)

Here μt, σ 2
t are the posterior mean and variances of the GP at time t . The exp(2μ(θ+)) will squash high variances in the low 

likelihood regions and amplify low variances in the high likelihood regions. The expression for uEV
t (θ+) corresponds precisely 

to the variance of P (θ, Xobs) according to the uncertainty model induced by the GP. We choose the point maximising the 
above variance to determine the next query location.

2.5. Discussion

We first argue that an active, i.e. an adaptive sequential, strategy will be useful for posterior estimation. In particular, 
the work of Castro et al. [4] demonstrates that active learning does not perform significantly better than passive strategies 
to estimate a uniformly smooth function uniformly well. However, in our case we wish to learn the function well at high 
log probability regions as they predominantly determine the shape of the posterior. To illustrate this we have shown a 
synthetically created log joint probability and the corresponding posterior in the first column of Fig. 5. The high likelihood 
regions largely affect the shape of the posterior since the variations in the low likelihood region are squashed after expo-
nentiation. In the second column we queried the likelihood at uniformly spaced points and obtained estimates of the log 
joint probability and the posterior in green. In the third we have the same estimates in magenta, except that we used more 
queries at high likelihood regions. While the green estimate for the log joint may be uniformly better than the magenta 
estimate, it is the opposite for posterior. This is because, after exponentiation, the small errors in the high log probability 
regions have been inflated after exponentiation for the green estimate, whereas for the magenta estimate the large errors 
in the low probability regions have been diminished. Hence an active strategy, which uses more queries at the high log 
probability regions is likely to do better than a passive strategy. NED and EV do precisely this by attaching more emphasis 
to the uncertainties in the high log probability regions.

Next, it is important to distinguish our objective in this work from similar active learning literature in the GP framework. 
In BO, the objective is to find the maximum of a function. This means that once the active learner realises that it has found 
the mode of a function it has less incentive to explore around as it would not improve the current maximum values. For 
instance, consider the log joint probability in Fig. 6(a) and the joint probability in Fig. 6(b). We have shown the points where 
we have already queried at as brown crosses and the red circles (x) and (y) show possible candidates for the next query. 
The shaded regions represent the uncertainty due to three standard deviations in the GP. In BO, the active learner would 
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Fig. 5. The first column shows the log joint probability and the corresponding posterior. In the second column we have estimates of the log joint and 
the posterior for uniformly spaced points. In the third column we have the same except that more points were chosen in high likelihood regions. (For 
interpretation of the colours in this figure, the reader is referred to the web version of this article.)

Fig. 6. (a) and (b) are the true log joint probability and joint probability in blue. Assume that we have already queried at the brown crosses and let the 
red circles (x) and (y) be candidates for the next query. In BAPE we would be interested in querying (y) but not (x). In AGPR we would be interested in 
both (x) and (y) whereas in BO we would be keen in neither. (For interpretation of the references to colour in this figure, the reader is referred to the web 
version of this article.)

not be interested in (y) as, by virtue of points (5), (6) and (7) it knows that (y) is not likely to be higher than (6). On the 
other hand, in BAPE we are keen on (y) as knowing it with precision will significantly affect our estimate of the posterior 
(Fig. 6(b)). In particular to know the posterior well we will need to query at the neighbourhood of modes and the heavy tails 
of a distribution. A BO utility is not interested in such queries. On the other extreme, in AGPR the objective is to learn the 
function uniformly well. This means in the same figures, AGPR will query point (x). However, given sufficient smoothness, 
we know that the joint probability will be very low there after exponentiation due to points (3) and (4). Therefore, the BAPE 
active learner will not be as interested in (x) as AGPR. Observe that the uncertainty at (x) is large in the log joint probability 
space in comparison to the uncertainty elsewhere; however, in the probability space this is smaller than the uncertainty at 
the high probability regions. As Fig. 5 indicates, while we model the log joint probability as a GP we are more interested 
in the uncertainty model of the posterior/joint probability. Finally, as a special case for BQ, Osborne et al. [20] consider 
evaluating the model evidence – i.e. the integral under the conditional. Their utility function uses approximations tailored 
to estimating the integral well. Note that our goal of estimating the posterior well is more difficult than estimating an 
integral under the conditional as the former implies the latter but not vice versa.

3. Other algorithms for comparison

We list and describe some potential alternatives for posterior estimation which we use in our empirical evaluation.
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1. MCMC – density estimation (MCMC-DE): We implement MCMC with a Metropolis Hastings (MH) chain and use ker-
nel density estimation (KDE) on the accepted points to estimate the posterior. When comparing MCMC against NED/EV 
we consider the total number of queries and not just those accepted. There are several variants of the MH proposal scheme 
and several tuning parameters. Comparing to all of them is nontrivial. We use MH in its basic form using a fixed Gaussian 
proposal distribution. Practitioners usually adjust the proposal based on the acceptance rate. Here, we chose the proposal 
manually by trying different values and picking the one that performed best within the queries used. Note that this com-
parison is advantageous to MCMC. In one experiment we test with Emcee [6], a popular package for Affine Invariant MCMC 
which automatically fine tunes the proposal bandwidth based on acceptance rate [6].

2. MCMC – regression (MCMC-R): Here, as in MCMC-DE we use a MH Chain to generate the samples. However, this time 
we regress on the queries (not samples) to estimate the posterior. We include this procedure since MCMC can be viewed as 
a heuristic to explore the parameter space in high likelihood regions. We show that a principled query strategy outperforms 
this heuristic.

3. Approximate Bayesian computing (ABC): There are several variants of ABC [18,22]. We compare with a basic form 
given in [17]. At each iteration, we randomly sample θ from the prior and then sample an observation Xsim from the likeli-
hood. If d(Xsim, Xobs) < ε we add θ to our collection. Here d(·, ·) is some metric on a sufficient statistic of the observation 
and ε > 0 is a prespecified threshold. We perform a KDE on the collected samples to estimate the posterior. The perfor-
mance of ABC depends on ε: As for MCMC-DE we choose ε by experimenting with different values and choosing the value 
which gives the best performance within the queries used. We compare with total number of parameter values proposed 
and not just those retained. We compare with ABC only in experiments where it is possible to sample from the likelihood 
(in addition to evaluating the likelihood).

4. Uniform random samples (RAND): Here, we evaluate the likelihood at points chosen uniformly on � and then regress 
on these points.

5. Active Gaussian process regression (AGPR): & 6. Bayesian optimisation (BO-EI): On our synthetic problems we also 
compare with the GP based active learning methods discussed in Section 2.5. For BO, we use the Expected Improvement [2]. 
We choose points using the above criterion and then regress on these points.

4. Experiments

We perform experiments on a series of low and high dimensional synthetic and real astrophysical experiments.
In our experiments the NED, EV utilities were maximised by evaluating them on a grid of size 103–108 depending on 

the dimensionality and then choosing the point with the maximum value. For numerical integration in NED, we use the 
trapezoidal rule. Further, since the inner expectation in Equation (4) is expensive we approximate it using a one sample 
estimate. NED is only tested on low dimensional problems since empirical approximation and numerical integration is 
computationally expensive in high dimensions. In our experiments, EV slightly outperforms NED probably since the EV 
utility can be evaluated exactly while NED can only approximated.

We use a squared exponential kernel in all our experiments. The bandwidth for the kernel was set to be 5n−1/d where n
is the total number of queries and d is the dimension. This was following several kernel methods (such as kernel regression) 

which use a bandwidth on the order O (n
−c1

c2+d ) [9]. The constant 5 was hand tuned by experimenting with a series of 
independent synthetic experiments. The other GP hyper-parameters, σ 2

f and σ 2
n were set via cross validation every 20

iterations. When we tried setting the bandwidth via cross validation too we found that it had a tendency too choose a larger 
than required bandwidth in the early iterations and then get stuck without decreasing. The consequence of this behaviour 
is that our method might not sufficiently explore the space and hence miss out on certain regions of the likelihood. Such 
a phenomenon has also been observed in Bayesian Optimisation and hence the bandwidth is decreased artificially as a 
precautionary measure against insufficient exploration [30].

4.1. Low dimensional synthetic experiments

To illustrate our methods we have two simple yet instructive experiments. In the first, the parameters space is � = (0, 1)

equipped with a Beta(1.2, 1) prior. We draw θ from the prior, and then draw 500 samples from a Bernoulli (θ2 + (1 − θ)2)

distribution: i.e. Xobs ∈ {0, 1}500. The ambiguity on the true value of θ creates a bimodal posterior. Fig. 7(a) compares NED/EV 
against the other methods as a function of the number of queries. For ABC, we rejected if 

(∑
i X(i)

obs − ∑
i X(i)

sim

)
/ 
∑

i X(i)
obs >

0.02.
The second experiment is a 2D problem with � = (0, 1)2. We artificially created a 3-modal log-joint posterior shown by 

green contours in Fig. 7(c). Fig. 7(b) compares all methods. Fig. 7(c) shows the points chosen by the NED query strategy 
in order. We have learned the high log joint probability regions well at the expense of being uncertain at low log joint 
probability areas. However, this does not affect the posterior significantly as they are very small after exponentiation. ABC 
does not apply here since we artificially constructed the log posterior and cannot sample from the likelihood.
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Fig. 7. (a), (b): Comparison of NED/EV against MCMC-DE, ABC, MCMC-R and RAND for the 1D and 2D synthetic experiments respectively. The x-axis is the 
number of queries and the y-axis is the KL divergence between the truth and the estimate. All figures were obtained by averaging over 60 trials. (c): The 
100 points chosen in order by NED for the 2D experiment. The green contours are the true posterior. Initially the algorithm explores the space before 
focusing on high probability regions. (For interpretation of the references to colour in this figure, the reader is referred to the web version of this article.)

Our methods outperform existing methods and other heuristics by orders of magnitude on these simple experiments. 
Both MCMC-DE and ABC require a large number of samples before being competitive with the methods using regression. 
This corroborates an earlier remark that using the evaluated likelihood values in the estimate can be useful when the 
queries are expensive. Note that the KL divergence for BO gets stuck without decreasing further. This is because after a 
certain stage, most evaluations are centred near the maximum. As a consequence, the heavy tails and other modes are not 
explored properly.

4.2. Higher dimensional synthetic experiments

We test in d = 5 and 15 dimensions. We construct an artificial log likelihood so that the resulting posterior is mixture 
of 2 Gaussians centred at 0 and 1. Both Gaussians had covariance σ 2 Id where σ = 0.5

√
d. We evaluate performance by 

the ability to estimate certain linear functionals. The exact value of these functionals can be evaluated analytically since we 
know the true posterior. We use a uniform prior. Our log-likelihood, functionals and their true values are

�(θ) = log

(
0.5N

(
θ; 0,

d

4
Id

)
+ 0.5N

(
θ; 1,

d

4
Id

))

T1 = E

[
d∑

i=1

Xi

]
= d

2
, T3 = E

[
d−2∑
i=1

X2
i Xi+1

]
= d − 1

2
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For MCMC-DE, we draw samples Z1, Z2, . . . from the true likelihood. To estimate Ti = E[φi(X)] we use the empirical estima-
tor T̂ i = 1/N

∑
k φi(Zk). Here φ1 = ∑d

i=1 Xi for T1 etc. For MCMC-DE we experimented with Gaussian proposal distributions.
For EV, MCMC-R and RAND we first use the queried points to obtain an estimate of the log-likelihood by regressing on the 
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Fig. 8. The first row is for the functionals T1, T2 in d = 5 dimensions and the second for is for the functionals T3, T4. The last two rows are the same four 
functionals for d = 15. The x-axis is the number of queries and the y-axis is |̂Ti − Ti |/|Ti |. We use 500 queries for d = 5 and 3200 queries for d = 15. All 
figures were obtained by averaging over 30 trials.

likelihood values as explained before. Then we run an MCMC chain on this estimate to collect samples and use the empirical 
estimator for the functionals. Note that evaluating the estimate, unlike the likelihood, is cheap. We did not try NED since 
numerical integration is intractable in high dimensions. ABC does not apply in this experiment as we cannot sample from 
the log likelihood. For the proposal distributions for MCMC-DE and MCMC-R methods we used a Gaussian with standard 
deviations {0.25σ , 0.5σ , σ , 2σ , 4σ } and report the one that performed best within the allotted queries. When applying 
MCMC on the regression estimates in EV, MCMC-R and RAND we used a Gaussian proposal with standard deviation σ . The 
results are shown in Fig. 8. They demonstrate the superiority of our query strategy over the alternatives.

4.3. Type Ia supernovae

We use supernovae data for inference on 3 cosmological parameters: Hubble Constant (H0 ∈ (60, 80), Dark Matter Frac-
tion 	M ∈ (0, 1) and Dark Energy Fraction 	
 ∈ (0, 1). The likelihood for the experiment is given by the Robertson–Walker 
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Fig. 9. (a): Comparison of NED/EV against MCMC-DE, ABC, Emcee, MCMC-R and RAND on the Type Ia Supernovae dataset. For all regression methods we 
show results for up to 1600 queries and up to 4 times as many for MCMC and ABC. For evaluation, KL was approximated via numeric integration on a 
(100)3 grid. Note that MCMC and ABC require several queries before a nontrivial KL with the truth is obtained. All curves were obtained by averaging over 
30 runs. (b): Projections of the points selected by EV (bottom row) and the marginal distributions (top row).

metric which models the distance to a supernova given the parameters and the observed red-shift. The dataset is taken from 
[5]. The parameter space is taken to be � = (0, 1)3 (For H0 we map it to (60, 80) using an appropriate linear transform). 
We test NED/EV against MCMC-DE, ABC, MCMC-R, RAND and Emcee, a popular python package for affine invariant MCMC. 
For ABC, sampling from the likelihood is as expensive as computing the likelihood. Fig. 9(a) compares all methods. Fig. 9(b) 
shows the points queried by EV and the marginals of the true posterior. As expected, most of EV’s queries are concentrated 
around the modes and heavy tails of the posterior. The KL for RAND decreases slowly since it accumulates points at the 
high likelihood region very slowly. MCMC-R performs poorly since it has only explored part of the high likelihood region. 
For NED/EV after an initial exploration phase, the error shoots down.

The likelihood evaluations in this experiment are quite cheap, taking only a fraction of a second for each query. Deter-
mining the next point is more expensive in EV than methods such as MCMC, ABC and RAND due to matrix inversion in GPs. 
However, we found that the latter methods required up to 20–30 times the number of likelihood evaluations to be com-
petitive with EV in this experiment. Therefore, despite the fact that the EV query strategy is expensive it performs better 
than other methods on wall clock time. This illustrates that principled adaptive query strategies can reap great dividends in 
posterior estimation.

4.4. Luminous red galaxies

Here we used data on Luminous Red Galaxies (LRGs) for inference on 8 cosmological parameters: spatial curvature 
	k ∈ (−1, 0.9), dark energy fraction 	
 ∈ (0, 1), cold dark matter density ωc ∈ (0, 1.2), baryonic density ωB ∈ (0.001, 0.25), 
scalar spectral index ns ∈ (0.5, 1.7), scalar fluctuation amplitude As ∈ (0.65, 0.75), running of spectral index α ∈ (−0.1, 0.1)

and galaxy bias b ∈ (0, 3). The likelihood is obtained via the Galaxy Power spectrum which measures the distribution of 
temperature fluctuations as a function of scale. We use software and data from [29]. Our parameter space is taken to 
be (0, 1)8 by appropriately linear transforming the range of the variables. Each query takes about 4–5 seconds. In EV, 
determining the next point takes about 0.5–1 seconds with ≈ 2000 points and about 10–15 seconds with ≈ 10000 points. 
In this regime, where the cost of the likelihood evaluation is more expensive or comparable to the cost of determining 
the next point in EV, we significantly outperforms other methods on wall clock time. We do not compare with NED due 
to the difficulty of high dimensional numerical integration. We do not compare with ABC since the software only permits 
evaluation of the likelihood but not sampling.

Fig. 10 shows points queried by MCMC, RAND and EV projected on the first 2 dimensions. MCMC has several high 
likelihood points but its queries are focused on a small region of the space. RAND does not have many points at high 
likelihood regions. EV has explored the space fairly well and at the same time has several queries at high likelihood regions. 
As numerical integration in 8 dimensions is difficult, we cannot obtain ground truth for this experiment. Therefore, we 
perform the following simple test. We queried 250,000 points uniformly at random from the parameter space to form a test 
set. We then run EV, MCMC-R and RAND for up to 12,000 queries to collect points and estimate the posterior. Performance 
is evaluated by the mean squared reconstruction error of the exponentiated log joint probabilities (joint probabilities). Fig. 11
shows the results. The error for RAND and MCMC-R stay the same throughout since the problem is difficult and they did 
not have sufficient number of high likelihood points throughout the space.



K. Kandasamy et al. / Artificial Intelligence 243 (2017) 45–56 55
Fig. 10. The projections of the first 6000 points queried by RAND MCMC, and EV respectively on to the first 2 dimensions in cyan. The points shown in red 
are queries at high likelihood (log P > −50) points. (For interpretation of the colours in this figure, the reader is referred to the web version of this article.)

Fig. 11. Comparison of EV against MCMC-R and RAND. We use up to 12000 queries for all methods. The y-axis is the mean squared reconstruction error. 
The curves were obtained by averaging over 16 runs.

5. Conclusions

We proposed a framework for query efficient posterior estimation for expensive blackbox likelihood evaluations. Our 
methods use GPs and are based on popular ideas in Bayesian active learning. We demonstrate that our methods outperform 
natural alternatives in practice.

Note that in Machine Learning it is uncommon to treat posterior estimation in a regression setting. This is probably since 
the estimate will depend on the intricacies of the regression algorithm. Thus if likelihood evaluations are inexpensive, MCMC 
seems like a natural choice due to its theoretical guarantees in the large sample regime. However, our work demonstrates 
that when likelihood evaluations are expensive, such as in scientific simulations, treating posterior estimation in an active 
regression framework enables us to be significantly query efficient.

The proposed methods do not scale very well with dimension, which is a common problem with nonparametric methods. 
Going forward we wish to tackle active posterior estimation in several dozens of dimensions. A possible avenue would be 
to use ideas from some recent progress on high dimensional Bayesian Optimisation using additive models [11].
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