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Abstract

Any robot that is to drive autonomously must be able to detect and avoid
obstacles that it might encounter. Traditionally, this problem has been
solved using systems of one or more RGB cameras utilizing complicated
and computationally-expensive computer vision algorithms, somewhat un-
reliable ultrasonic distance sensors, or laser-based depth scanners. However,
Microsoft’s recent release of the XBox Kinect has opened up new areas of
research in the areas of computer vision and image understanding, and this
same device can be employed for obstacle detection.

The three-dimensional point cloud provided by the low-cost and commercially-
available Kinect platform puts much more information about the surrounding
world at the disposal of an autonomous robot. This research investigates the
problem of using this data to autonomously detect and avoid obstacles in an
unconstrained indoor environment. The algorithm used is a synthesis of the
traditional method of choosing turn directions based on the centroid of the
detected points and a more novel search of the ground plane for edges and
boundaries. Good results are achieved not only for drop-offs and common
obstructions, but also when objects are especially short or moving just in
front of the robot and perpendicular to it.
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1 Introduction

This research was conducted on Willow Garage’s TurtleBot robotics plat-
form, shown in [Figure 1] The TurtleBot is an integrated kit backed by
Willow Garage’s Robot “Operating System” (ROS) robotics suite and the
Open Perception Foundation’s Point Cloud Library (the PCL), both of which
are open-source projects distributed under BSD licenses. The Kinect pro-
vides depth information in the form of a three-dimensional point cloud, as
shown in The goal was to implement a simple but effective ob-
stacle detection and avoidance system that—using only the data from the
Kinect—was able to autonomously roam the hallways on all floors of the
building without running into anything. This task presupposed an ability
to avoid whatever common hazards, whether stationary or mobile, it might
reasonably be expected to encounter during such a journey. Such capability
would be desirable for potential use with or integration into future projects
developed on the same system or a similar one.

2 Similar Work (Literature Review)

Microsoft launched the Kinect on November 4, 2010, in order to add a new
and innovative breed of entertainment to its XBox 360 gaming console. How-
ever, the sensor immediately caught the attention of researchers and software
developers of all persuasions; as a result, and thanks to the effort of many
dedicated hackers, open source drivers were soon available to facilitate its
use for more diverse applications. Using these drivers, researchers have since
used the Kinect for room mapping, desktop application control, 3-D video-
conferencing, surveillance, and even diagnosis and surgery.

When using RGB-D sensors on systems with limited resources, the largest
stumbling block tends to be the computational cost of processing each frame
of the cloud data. In an attempt to alleviate this burden, Microsoft ini-
tially planned to include an onboard embedded microprocessor capable of
many common image processing operations, a feature that was cut from the
production Kinect. As a result, the full burden of working with the three-
dimensional data continues to rest with the main CPU.

The XBox Kinect has an infrared projector and infrared camera separated by
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Figure 1: The TurtleBot and its components
(Image credit: http://ros.org/wiki/TurtleBot)

about 7.5 cm, and a color camera about 2 cm away from the latter (Nguyen,
. The infrared pair is able to assemble a grid of distance measurements
triangulated from the lateral displacement of the projected points from the
known emitter pattern. Unfortunately, the device is unable to perform any
distance measurements closer than about 0.5 m. One method of detecting
obstacles is as follows: First, perform a voxel grid downsampling on the point
cloud to decrease processing time. Next, apply a pass-through filter to crop
out regions of little interest or accuracy. Then, use the RANSAC algorithm
to perform plane detection. Finally, Euclidean cluster extraction reveals
individual obstacles, and additional analysis of those obstacles is performed
in order to determine their sizes. This procedure avoids many difficulties
of using a single RGB camera, as well as enjoying faster run times than
dual-RGB camera systems.


http://ros.org/wiki/TurtleBot

() A picture from the color camera (b) The corresponding 3-D point cloud

Figure 2: Sample imagery from the Kinect

Whenever information from multiple image sensors is integrated, there is a
risk that it will not line up appropriately, either due to simple displacement
resulting from the sensors’ relative positions or because of unique lens dis-
tortions created by inconsistencies in the manufacturing process
. Herrera et al. describe their noise-tolerant method for calibrating
a color camera and depth camera against each other, enabling the attain-
ment of better results than would ever be possible by calibrating the two
cameras individually. They start by computing for the color camera the two-
dimensional projection coordinates in the image at which a three-dimensional
point in space—the corner of a checkerboard calibration pattern—appears,
then perform a distortion correction. Next, they repeat the projection calcu-
lation for the depth image, this time using the corners of the plane on which
the checkerboard rests—because the board itself isn’t visible in this image—
and omitting the distortion correction step, as it will be much less effective
than for the color imagery. Using the projections and data from several im-
ages with different perspectives, it is possible to calculate the rotation and
translation necessary to match the two images’ reference frames. These first
parameters obtained for the color camera are much better than those for the
depth sensor, so the former are used to optimize the latter by performing a
nonlinear error minimization; then, another minimization is performed across
the parameters for both cameras until the results are convergent. Using 35
calibration images, the authors are able to demonstrate comparable accuracy



to that achieved by the proprietary calibration algorithm provided with their
XBox Kinect test sensor.

A common traditional method of obstacle avoidance is the potential field
model, or PFM (Koren and Borenstein, 1999). This model represents tar-
gets and obstacles as imaginary attractive and repulsive forces on the robot,
respectively. Stored as vectors, such forces are easily summed to find the
resultant force vector, which is used directly as the robot’s navigation vec-
tor. One such implementation—the virtual force field, or VFF—uses a two-
dimensional histogram grid populated from ultrasonic range sensors and
holding certainty values of how likely it is that an obstacle exists at each
location. Objects of interest are assigned corresponding virtual repulsive
force vectors with magnitude proportional to their certainty values and in-
versely proportional to their distance from the vehicle’s center. Similarly, the
attractive force between the robot and its goal location is proportional to a
preassigned force constant and inversely proportional it its distance from the
vehicle. After obtaining the resultant force vector, its direction and magni-
tude are converted into parameters usable by the drive system and issued
as movement commands. However, four major problems have been identi-
fied that effect all PFM systems, becoming increasingly noticeable as a robot
moves faster: The robot may fall into a trap situation when it reaches a dead
end, a phenomenon for which workarounds exist. The robot may also be
directed in the opposite direction of its target in the case where two close
objects stand in front of it with space between, a more difficult problem
to handle. Certain environments may also cause the robot to begin oscil-
lating. Finally, more severe oscillations—and even collisions—occur when a
robot drives down a narrow hallway with a discontinuity in its side. Together,
these factors make the same PFMs that were once seen as simple and elegant
much less attractive, especially for applications relying on higher speeds.

One way to detect obstacles using an RGB-D camera is to segment every
plane in the point cloud and consider as obstacles both points emerging
from the detected planes and planes whose surface orientations differ from
that of the ground (Holz et al., 2011)). Surface detection may be accom-
plished computationally cheaply by considering pixel neighborhoods instead
of performing distance searches, then computing the normal vector by find-
ing the cross-product of two averaged vectors tangential to the local surface.
The coordinates of the points and their corresponding surface normals are
transformed to Cartesian coordinates from the robot’s perspective, then to
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spherical coordinates. Only the plane representing the ground is considered
navigable, and the RANSAC algorithm is applied to optimize the detected
surfaces and compensate for noisy readings. Each plane is then converted to
its convex hull, and both horizontal planes other than the ground and planes
supported by horizontal planes are considered to be navigational obstacles.
This method is able to process plane data at high speed using only sequen-
tial processing while remaining relatively accurate: the average deviation
is under ten degrees, and objects are properly segmented over 90% of the
time. The algorithm is, however, sensitive to very small objects and distant
measurements.

Another method of making use of depth information for the purpose of detect-
ing obstacles is to examine the 3-D slopes between detected points
2002). The points may be considered to compose a single obstacle if this
slope—measured with respect to the horizontal—is steeper than a set slope
and if their height difference falls within a predetermined range. Such obsta-
cles may be found by searching the image from the bottom row and finding
for each obstacle pixel in that row all the other pixels that meet the afore-
mentioned criteria with respect to that pixel. The resulting points may also
be classified as obstacle points, and the process repeated to find all such asso-
ciated points. Finally, individual objects may be picked out by applying the
transitive property of the above obstacle composition criteria. This works
very well if the terrain and robot are both flat, but becomes a more difficult
task as the terrain becomes rough or if the robot is expected to climb ramps.

Although the latter few approaches offer robust, proven functionality and
are highly applicable to the type of sensor used, this project sought a sim-
pler solution and didn’t require segmentation or identification of individual
objects. Thus, it began instead with the development of what would evolve
into an implementation of one of the most common simple obstacle avoidance
algorithms, simply turning away from the centroid of the detected offending
points. However, this venerable approach was extended to consider not only
obstacles themselves but also edges on the ground plane, an addition that
enabled the detection of several additional danger scenarios that could not
be handled by the traditional method alone.
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3 Background

The Point Cloud Library includes many data types and numerous algorithms
that make working with point clouds extraordinarily easy. The first of the
algorithms used in this research was the 3-D voxel grid filter, which downsam-
ples point cloud data by modeling the input dataset with a three-dimensional
grid having cubic cells of user-supplied dimensions . Each cell
containing at least one point in the original image is then populated with a
single voxel placed at the centroid of the points within that part of the input.

The research made extensive use of the plane edge detection algorithms si-
multaneously developed by Changhyun Choi, a Ph.D. student at the Georgia
Institute of Technology . One of the utilized algorithms simply
finds points bordering on those whose coordinates are set to NaN values,
thereby computing the absolute boundaries of a plane. Particularly useful
was his high curvature edge detection algorithm, which locates the points
making up the boundaries between the floor and those objects that rest on
it using integral images and Canny edge detection.

Integral images are a common technique in modern computer vision, and are
used to detect distinctive image features (Viola and Jones, 2001f). They are
essentially tables storing for each coordinate in the corresponding image the
sum of the pixel values lying in the box bounded by that coordinate and the
upper-left corner of the image. Features from an integral image can then be
used for a wide variety of purposes, including estimation of a 3-D image’s
surface normals.

The Canny edge detector starts by smoothing the input image to reduce
noise . Next, the spatial gradients of the resulting image are
measured in order to expose the edges, each of which is assigned a strength
based on the distinctiveness of its gradient. The directions of the edges are
determined in two dimensions using these gradients, then the directions are
used to trace the edges. Those edges with strengths above a certain threshold
are kept, while those with strengths between that value and a lower constant
are kept only if they are connected to one or more edges from the former

group.

PCL also provides a radius outlier removal, which accepts from the user a
search radius and a minimum number of neighbors (O’Leary, 2011)). It then
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searches the neighborhood surrounding each point in the image and removes
that point if it has fewer than the specified number of neighbors.

As the project progressed, it became necessary to discern information about
the ground plane directly in front of the robot. In order to determine which
points were part of this plane, a linear model was calculated from the y-
and z-coordinates of two known floor points, one—(z1, 3, )—very near to the
robot and the other—(z9, yo)—farther away. First, the plane’s slope m was

computed, as in [Equation 1}

Y2 — Y1
m = 1
i (1)

Next, the y-intercept yo was calculated using the average of the coordinates
substituted into the point-slope form of a linear equation (Equation 2)):

Y1+ Y2 21+ 22
- - 2
5 m— (2)

Yo

The resulting slope and intercept were both stored; thus, the y-coordinate
corresponding to a given z-coordinate could be calculated using S
simple linear equation:

Yy =mz+ Yo (3)

Sufficient deviation of the z-coordinate from its expected value allowed the
conclusion that the point was not, in fact, part of the ground. Another—
slightly less strict—threshold was used to broaden consideration to points
that were very near the ground plane, as well as those actually composing it.

4 Approach
’ Developed the height range cropping algorithm ‘
Developed the ground plane edges ’ Experimented with cluster detection
algorithm

L

Combined the height range and
ground plane approaches

Figure 3: An overview of the progression of code development
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This section of the report describes the development process of the project’s
algorithms and code. A brief visual overview covering the major stages of
development appears as|Figure 3 and a sub-sections providing a correspond-
ing narrative of each stage follow. The included Appendix provides practical
information about using the robot, setting up a development environment,
and upgrading the PCL installation, as well as a glossary of ROS-related ter-
minology, lists of useful ROS commands and documentation resources, and
a complete copy of the final version of the code for this project.

4.1 The height range cropping algorithm

The point cloud coming off the Kinect exhibited noticeable noise, was ex-
tremely dense, and was consequently slow to transmit, display, and process.
Thus, the first action taken was the application of a voxel grid filter to
downsample the data and eradicate most of the noise while achieving better
update speeds and faster processing time. Noticing that both Holz et al.
and Nguyen used surface detection algorithms, while Koren and Borenstein
simply didn’t train sensors on the floor, a decision was made to crop the y-
dimension so as to discard all points falling outside the robot’s height range.
This step—which was possible because the robot was going to be used chiefly
in indoor environments possessing smooth terrain—made it possible to ig-
nore the floor and focus exclusively on those points that represented actual
obstacles. However, it also meant sacrificing the ability to climb ramps and
traverse highly uneven floors.

The initial revision of the obstacle avoidance algorithm simply split the view
into three parts: The center region was used to determine whether to proceed
forward or turn, the latter of which was triggered whenever the number of
points in this region exceeded a set noise threshold. Once the robot had
entered a turning mode, it ceased forward motion and decided on a direction
by choosing the peripheral vision field with fewer points in it. The entire
field of view was cropped in the z-dimension in order to prevent the robot
from being distracted by objects well ahead of its current position.

The biggest problem with this first version was that the robot was prone
to becoming stuck oscillating in place between a left and right turn when
faced with a sufficiently large obstruction. To work around this problem, the
machine was only allowed to choose a direction of rotation as long as it wasn’t
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already turning. In this way, it was forced to pick a direction whenever it
first encountered an obstacle, then continue turning in that direction until
it was able to drive forward again. As a side effect, it would now rotate ad
infinitum when enclosed on all sides.

As testing continued, it became clear that the noise threshold was prevent-
ing the detection of many small—but still significant—obstacles. Decreasing
this constant, however, caused the robot to turn spuriously in order to avoid
offending points that were, in fact, nothing but noise. To solve this prob-
lem, the noise threshold was eliminated altogether by instead averaging the
number of points in the forward regions of the last several images taken.

Next, a relatively minor but undeniable problem was discovered: given a
scene where the only obstacle was located mainly within one half of the
center region and didn’t extend into either periphery, the robot might just as
easily turn toward the object as away from it, thereby forcing itself to turn
farther. Replacing the consideration of the peripheral regions with a simple
turn away from the centroid of all points detected in the center region solved
this issue.

4.2 Experiments with cluster detection

In an effort to allow the traversal of more complicated, maze-like situations,
work began on a track that would eventually lead to a dead end. The idea
was that, in severely confined spaces, the robot will attempt to turn long
before reaching a wall, missing the side passageway because it turns all the
way around before it ever gets to the point where it could have entered it. In
order to solve this problem, an attempt was made at implementing the ability
to distinguish between individual objects using the Point Cloud Library’s
built-in implementation of the simple Euclidean cluster detection algorithm.
An iterative algorithm to determine the perpendicular distances between
objects’ edges was developed and implemented, and the new measurements
were used to determine whether the robot could fit through a given gap.
Next, the areas in front of the gaps were checked for blockages, then the
candidate openings were ranked based on their distances from the center
of view. Unfortunately, it soon became clear that although this approach
did a better job of planning logical paths in confined spaces, it was largely
unsuitable for use with the Kinect because of the sensor’s inability to detect
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sufficiently-close obstacles. This meant that, before even getting through a
gap, the bot would lose sight of it. In order to work around this hardware
limitation, a state machine could have been implemented and the ability
to measure driving distance could have been added. Unfortunately, such
steps would have resulted in complete blindness during the time the robot
was traversing the gap, and consequently a vulnerability to any unexpected
environmental changes during that time. As such, the work was abandoned
in search of a more general and universally-applicable solution.

4.3 The ground plane edges algorithm

Toward the end of development of the gap detection algorithm, another se-
vere problem surfaced; it was discovered that, due to a combination of noise
and distortions in the robot’s coordinate system, both of the algorithms de-
veloped thus far were unable to detect objects as much as a couple of inches
high. Noticing that all objects resting on or otherwise obscuring the ground
created prominent occlusions on it, an effort was made toward detecting
these discontinuities in the ground plane. First, a section of the ground cor-
responding to the region immediately in front of the robot—and hence in
its path—was selected from the rest of the point cloud by tight cropping.
Then, the slope of the floor was modeled to account for the Kinect’s coordi-
nate distortion, and all points falling outside a given height tolerance of this
plane were filtered out. By examining the surface normals of this isolated
sample, the edge points could be estimated. Next, a radius-driven minimum
neighbors filter was applied to eliminate false positives. The results were
promising when tested on a smooth carpet: after some fine-tuning, no false
positives were being detected and a good number of edge points arose when
any given obstruction was placed on the ground in front of the sensor. Un-
fortunately, speed had become a problem, as estimating the edge points was
taking several seconds per sample.

It was in order to solve the speed issues that Choi’s work was used; by
making use of the organization of the Kinect’s point cloud data instead of
constructing an entire search tree for each frame, his algorithms were able
to function at least an order of magnitude faster than the main PCL edge
detection routines. At first, his absolute plane boundaries detector was used,
but this was not ideal for two main reasons: First, it was unable to pick up
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objects in the middle of the portion of the plane which we were examining.
Additionally, it was vulnerable to poor-quality floor samples far ahead, which
would appear as rounded patches cutting into the distant edge of the floor
plane measurably. Consequently, Choi’s class was patched to enable greater
control over its high curvature edge detection, which—similarly to the earlier
approach—makes use of the plane’s normals rather than its boundaries, and
is therefore less vulnerable to noise once one has filtered out all but the closest
points to the floor plane. A careful tuning of the edge detection and outlier
removal parameters succeeded in eliminating almost all false positives while
quite effectively capturing the footprints of those objects that intruded on
the focal area of the ground plane. The robot was then programmed to turn
away from the centroid of the detected edge points.

Unfortunately, this approach alone was unable to detect obstacles falling
completely in front of the area of interest on the ground or expansive holes at
any distance. In anticipation of such situations, the total number of detected
ground points was compared to a set threshold; if it fell under this value, the
robot would back up in order to get a broader view of the obstruction. This
turned out to be a poor way to handle the situation, however, as the number
of ground points varied significantly depending on the type of flooring, and
backing up blindly often resulted in crashing into some invisible obstruction.
As such, absolute plane boundaries were merged back in, this time in addition
to curvature detection, and with the added restriction of ignoring expected
border regions for the former in order to solve the problem of distant noise.
Now, if the edge of the ground moved into the area where the plane was
expected to be fully intact, it was assumed that there was either a hole
encroaching upon the robot’s position or an object between the Kinect and
the close edge of the portion of the ground visible to it, and the detected
edge points were pooled with the curvature keypoints in order to determine
which direction to turn.

Together, the curvature points and outstanding plane boundary points were
able to keep the Kinect from getting close enough to most obstacles to become
completely blind. However, to further ensure the robot’s safety, a third check
was added: As the robot drove forward or turned, it constantly remembered
the direction in which it would have turned—whether or not it had actually
done so—given the data from the previous frame. In the case where no
ground points were visible, and thus something was completely obscuring
the Kinect’s view, it would then begin to turn in the stored direction. This

16



step proved effective against high-speed situations where moving objects’
trajectories, when combined with the processing delay, brought obstructions
out of the robot’s view before it had yet evaluated them, as well as scenarios
where a large obstruction was suddenly placed very close to the robot’s front.

4.4 Combining the height range and ground plane ap-
proaches

While the floor occlusion detection approach worked very well for just about
everything, it had a somewhat significant disadvantage that was not shared
by the earlier height range—cropping approach: When confronted with a
long, deep object having a region without floor contact—a bench or vending
machine, for instance—the system was unable to detect it because of its lack
of interactions with the floor plane. In order to solve this shortcoming, the
two approaches were combined into a single program; each was placed in
a separate thread, with a third thread to integrate the steering advice of
each. This approach solved the problem of suspended objects and enabled
faster response to objects detectable by the less computationally-intensive
height region approach while preserving the robust detection capabilities of
the surface analysis.

A detailed visual summary of the code’s progression along with the time
frames of feature additions is given in [Figure 4. The test cases noteworthy
enough to have prompted implementation changes are collected in [lable 1}

Additionally, the pseudo code for the final project is discussed in [Figure 5|

5 Results and Discussion

While discussed the changes that were made to the code as a result
of the challenges cataloged in [Table 1, we will now discuss the behavior of
the final implementation when faced with these same scenarios. In order
to quantify the system’s success rate, intensive testing of these cases was
performed.

17



Week 6

’ Applied a voxel grid downsampling ‘

Il Week 2

’ Cropped out points outside robot’s height range ‘

T

T

’ Split view into center and two peripheries ‘

!

’ Established center noise threshold for turning ‘

!

’ Disallowed oscillatory direction reversals ‘ Week 3

!

’ Averaged center scans instead of using noise threshold ‘

!

’ Based turn direction on obstacles’ centroid instead of number of points ‘

—
Used a linear plane model to focus
exclusively on the floor

L

Employed normal calculation to find
holes in the plane

I

Implemented Euclidean cluster
detection
l Week 4
Moved toward sufficiently-narrow
openings between segmented objects

|
&

Added radius-based outlier removal to
reduce false positives

Ignored blocked and inaccessible

passageways Week 5

T

L
Switched to a faster algorithm only
detecting absolute plane boundaries

I

Switched to detecting edges based on
distinctive curvature

I

Backed up when floor visibility fell
below a set threshold

I

Added back absolute plane boundary
detection with regions in the vicinity
of the expected perimeter ignored

T

Week 7

T

Replaced backing up with turning in
the direction computed while
processing the previous frame

I

Replaced floor visibility tolerance
with check for complete blindness
T

Week 8

1
Merged in the downsampled height
range algorithm, running it in a
parallel thread

Week 9

Figure 4: The complete progression of code development by week
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Downsample the point cloud

|

Crop out everything outside the
robot’s height and width regions and
more than a set distance away

Is the robot currently turning?

Add the current number of visible
points to the backlog

Clear the backlog of prior point
counts

Pop the oldest entries off of the log
until it is small enough

Is the backlog bigger than its size
limit?

Compute the average number of
points across all backlog entries

l

yes| Calculate and turn away from the
1 centroid of the points in the current
cloud

After averaging, did we count any
points in our way?

wo |

’ Drive straight forward

(a) The thread implementing the height range cropping algorithm

Figure 5: The final program’s flow of control (continued on [page 20))
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Has the user changed the parameters
for the floor points?

yes

Recompute the ground plane model *__>

Crop out everything except the region
containing the floor

I

Use the linear ground plane model to
Estimate edge points based on remove all points above a certain
curvature and absolute plane distance away from the floor and
boundaries count the number of actual floor
l points
Remove edge points falling within the yes l

regions of the expected borders

|

Detect and remﬁge out(lil.e.rs based on Turn in the direction chosen on the
neighbor radil previous iteration

Did we find any floor points?

no

Were any edge points detected and

Calculate and turn away from the
left unfiltered?

centroid of all the edge points

Choose and remember for later the
turning direction of the side with
more floor points

Drive straight forward

(b) The thread implementing the ground plane edges algorithm

Do the two algorithms’ advice agree? = Is either one advising us to drive
forward?
yes Ve —
Take their mutual recommendation Take the advice telling —
us to turn Use the direction
suggested by the floor
analysis
Would this be a turn direction Y
?
reversal? yes | Turn instead in the same direction as
no no before

Has the user enabled robot
movement?

yes

Send the navigation commands to the
drive system

(c¢) The thread integrating the decisions of the two separate algorithms and
issuing appropriate drive commands

Figure 5: The final program’s flow of control (continued)
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Table 1: Test cases to which the implementation was subjected

’ Scenario ‘ Examples tested True positives | False negatives ‘ % correct ‘
‘Wide obstacle Wall, recycle bin, 55 0 100%
round trashcan
Tall, thin obstacle Chair leg, table leg 36 0 100%
Short object on the | Pad of paper, 29 25 54%
ground marker, serial
console cable
Hole in the ground Staircase 18 0 100%
Suspended object Vending machine 18 0 100%
’ ‘ Overall: ‘ 156 ‘ 25 86%

5.1 Intensive testing by structured test cases

For each row of the specific cases given in the second column were
tested at three different distances. First, each object was tested at long range;
it would be placed ahead of the robot’s area of interest so that the robot would
first encounter it as it was in the process of approaching. Next, the object
was placed at medium distance away, within the area of interest, before the
algorithm was started, so that it was visible from the very beginning of the
trial. Finally, it was placed extremely close to the robot so that it fell in
front of the region visible to the Kinect and was not directly visible. At each
distance, the item would be tested six times, three on each side of the robot,
and each trial would be recorded as either a true positive or false negative,
with the former also classified by expected or unexpected turn direction.

When the autonomous robot encounters a wide obstacle, both algorithms
are able to sense it. Additionally, the robot is not allowed to reverse the
direction of its turn, so it cannot enter an oscillatory state. A corollary to
this behavior is that, if the robot is surrounded on all sides, it will continue
spinning until freed. During testing, the system was able to detect the sample
object 100% of the time, as well as choose the appropriate turn direction in
all cases except when the wall was in the closest configuration. In such a
case, the robot’s view is completely blocked, and it is forced to decide on a
direction arbitrarily unless it has already remembered one while processing
a previous frame.

Tall, thin obstacles with a limited base footprint such as a chair or table are
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best detected by the height range algorithm. It is only thanks to the noise
reduction attained by averaging several samples that it is able to spot such
small objects. Testing of this functionality revealed 100% accuracy for both
detection and choice of direction.

Short objects resting on the floor, including markers and pads of paper, are
typically invisible to the cropping algorithm. However, the curvature of the
contact points between their edges and the ground plane is usually detectable
to the other approach, largely depending upon the distinctiveness of their
edges and amount of contact area. While the experimental results show only
a 547 success rate for this type of challenge, it should be noted that 18 of the
25 false negatives occurred at the closest distance. Detection was actually
impossible in these cases because the objects had completely disappeared
from the Kinect’s field of view and weren’t tall enough to occlude the visible
region of the floor. If this portion of the test is to be discounted, one instead
finds an 81% accuracy, with the console cable detected every time. Given
that the pad of paper mimics the ground plane and the marker has very
little floor contact, this detection rate seems reasonable.

When a hole in the ground such as a descending staircase comes into view, the
ground plane algorithm detects that the ground’s absolute plane boundary
has receded into an unexpected region. All plane boundary points falling
outside of the expected regions are treated identically to curvature points,
and the direction recommendation is accordingly based on their centroid.
Such situations were detected without error and resulted in the direction of
the shorter turn the majority of the time.

Upon approaching a suspended or apparently-suspended object such as a
bench or vending machine, the plane detection algorithm sees no change in
the floor plane. The cropping method, however, is able to see that an object
is infringing upon the robot’s height range, and directs it to turn away from
the obstruction’s centroid. These threats were always detected, and test unit
was low enough to the floor to obscure the Kinect’s view of the ground by the
time it was very close, so that even the close trials discovered its presence.
Of course, this ability would vary with the elevation of the bottom ledge of
the object in question, as well as its depth if positioned in front of a wall.

On the whole, the algorithms suffer from almost no problems with false
positives. However, intense external infrared radiation is capable of masking
the Kinect’s infrared grid. If, for instance, the robot is approaching a patch
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of direct sunlight shining through a window, it will appear from the Kinect’s
point cloud as though there is a hole in the ground: the absolute plane
boundary will begin to recede into the expected ground region. Consequently,
the robot will avoid such regions, treating them as actual danger.

When face-to-face with an entirely transparent glass wall, the Kinect’s in-
frared grid passes straight through the window. Therefore, the barrier isn’t
reflected in the returned point cloud, and neither algorithm is able to see it
at all.

5.2 Extensive testing by environmental observation

With the intensive test cases evaluated, the robot was released on all three
floors of the building for unstructured test drives in order to determine how
likely it was to encounter the already-tested situations. Each time the robot
turned, either a true positive or a false one was recorded, depending on
whether there was actually an object in its way. Additionally, false negatives
were to be noted every time the robot actually ran into anything; however,
this never occurred in the test environment. The results of such observation

are noted in [Table 2|

Each false positive uncovered by the first two courses occurred during the
robot’s transition from a tile surface to a carpet, or vice versa, and resulted
when the slight height changes between the surfaces triggered the ground
plane curvature detection, and could likely be solved simply by fine-tuning
the ground plane curvature detection parameters. Such cases never resulted
in more than a few degrees of turning before the robot resumed driving
forward. In the third and fourth trials, the robot drove across a floor with
larger, less regular tiles; here, it would turn away from particularly uneven
edges. As before, it also picked up a few false positives when transitioning
between floorings. However the majority of its unprompted turns in this
case stemmed from sunlight: While on the tile floor, it encountered several
patches and spent some time wandering between them before being freed.

The addition of the ground plane edge detection to the traditional obstacle
avoidance solution brings several key advantages: First, examining the cur-
vature of the plane enables the detection of almost any obstacle that makes
contact with the floor, including those that are very short. Next, looking
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for absolute plane edges means hazards that have no corresponding obstacle
within the robot’s height range—such as holes in the ground—can be easily
avoided. Finally, since objects passing in front of the infrared emitter oc-
clude the floor in front of the sensor, examining plane edges also reveals the
presence of objects suddenly appearing very close to the sensor, including
animate objects whose motion is perpendicular to the robot’s; in this way,
the algorithm is able to infer the presence of objects that are closer than the
Kinect’s hardware-limited minimum range. The latter principle makes the
plane analysis approach especially beneficial for sensors such as the Kinect
that are unable to see objects closer than a certain distance away.

As noted earlier, the complete implementation fails to perform in two specific
cases: It is vulnerable to false positives in patches of direct sunlight and to
false negatives in the case of transparent walls. Such problems stem from
the limitations of the infrared-based Kinect point cloud; however, they could
likely be solved by examining the Kinect’s RGB data in tandem with its
depth values.

Table 2: Observations from unstructured test drives

| Location | True positives | False positives | False negatives | Success |
First floor 29 1 0 97%
Second floor 55 2 0 96%
Third floor 66 4 0 947%
Atrium, side wing 105 17 0] 8%

| Overal: \ 255 | 24 0] 917%]

6 Table of Hours Worked

The time spent working on the project is addressed in [Table 3, The time
frame of the code’s evolution is described in [Figure 4]

7 Conclusion

The combination of the two methods of achieving obstacle avoidance was
highly successful because they complemented each other so well: The crop-
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Table 3: Hours spent working on the project

’ ‘Week ‘ Research ‘ Implementation ‘ Testing ‘ Documentation ‘ Administration ‘ Subtotal

1 14:00 6:20 18:00 38:20
2 22:00 9:00 3:00 3:20 1:30 38:50
3 12:00 4:00 16:00 12:40 44:40
4 3:00 8:00 5:30 4:00 5:00 25:30
5 3:00 13:00 3:00 10:00 3:00 32:00
6 11:10 9:00 4:00 20:00 44:10
7 18:00 8:00 5:00 14:00 45:00
8 8:00 5:00 21:00 8:10 42:10
9 4:00 3:20 28:00 5:00 40:20
10 3:00 | 10:00 6:30 14:30 34:00

Total: | 385:00 |

ping approach, which was by nature incapable of detecting very short objects
or floor discontinuities, was able to rely on the less common plane surface
analysis for these tasks. The plane analysis, on the other hand, was poor at
detecting the truly- or apparently-suspended objects that were readily de-
tected by the other. As might be expected, then, the synthesis of the two
algorithms was able to autonomously navigate in almost all tested indoor
situations without a problem. Thus, the project’s goals were realized.
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Appendices

1 Starting the TurtleBot

N

AN

~

10.

11.

12.

. Disconnect both chargers from the robot, if applicable.

Turn on the iRobot Create by pressing the power button on its back;
the power light should turn green.

Unplug and remove the laptop from the TurtleBot.
Open the laptop’s lid and press the power button.
Close the laptop, replace it in the chassis, and reconnect the cables.

Wait until the Ubuntu startup noise sounds; at this point, the robot is
ready to accept connections.

From another machine, enter: $ ssh turtlebot@turtlebot.rit.edu

Once authenticated, ensure that the robot service is running: $ sudo
service turtlebot start

The iRobot Create should beep and its power light should go out. The
robot is now ready for use.

Enter the following command to enable the Kinect: $ nohup
roslaunch turtlebot_bringup kinect.launch &

Enter the following command to enable the Interactive tab
in RViz and allow GUI-driven teleoperation: $ nohup rosrun
turtlebot_interactive markers turtlebot marker_server &

You may now safely close your robot shell connection: $ exit

2 Stopping the TurtleBot

1.
2.

Connect to the robot.

Stop the Interactive Markers server: $ kill ‘ps -ef | grep
marker_server | tr -s " " | cut -d " " -f 2°¢
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. Stop  the Kinect driver with: $ kill ‘ps -ef | grep

kinect.launch | grep -v grep | tr -s " " | cut -d " "
-f 2°¢
. Release  the iRobot  Create  with: $ rosservice call

/turtlebot node/set_operation mode 1

. At this point, it is safe to plug the charger into the iRobot Create. If
you want to turn off the laptop as well, continue with the below steps
instead.

. Shut down the robot laptop: $ sudo halt
. Turn off the Create by pressing its power button.
. Plug in the chargers for the iRobot Create and the laptop.

Setting up a Development Workstation

. Ready a machine for your use. (We'll assume you're using Ubuntu
10.04 through 11.10.)

. Ensure that your system has either a hostname or a static IP that is
visible from the robot.

. Download  the ROS  package signing key: $ wget
http://packages.ros.org/ros.key

. Add the signing key to your system: $ sudo apt-key add ros.key

. Add the ROS repository to your system: $ sudo apt-add-repository
http://packages.ros.org/ros/ubuntu

. Update your repository cache: $ sudo apt-get update

. Install the TurtleBot desktop suite: $ sudo apt-get install
ros—electric-turtlebot-desktop

. Edit your bash configuration($ $EDITOR ~/.bashrc), adding the fol-
lowing lines to the end:
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e source /opt/ros/electric/setup.bash
e export ROS_MASTER URI=http://turtlebot.rit.edu:11311
o export ROS_PACKAGE_PATH=<directory where you’ll store your-

source code>:$ROS_PACKAGE_PATH

9. Write and close the file, then enter the following command in each of
your open terminals: $ source ~/.bashrc

10. Install the Chrony NTP daemon: $ sudo apt-get install chrony

11. Synchronize the clock: $§ sudo ntpdate ntp.rit.edu

12. If the robot and the workstation both have hostnames, but they are
in different domains, perform the following steps. (In this exam-
ple, the robot is at turtlebot.rit.edu and the workstation is at
turtlecmd.wireless.rit.edu.)

(a)

(b)

(e)
(f)

On each machine, right-click the Network Manager applet in the
notification area, choose Edit Connections..., and open the prop-
erties for the specific connection that is being used.

On the IPv4 Settings tab, change the Method dropdown to
Automatic (DHCP) address only.

In the DNS servers field, enter the same DNS servers that
were being used, with commas in between (e.g. 129.21.3.17,
129.21.4.18).

In the Search domains field, enter the local machine’s domain first,
followed by the remote machine’s. For instance, in our example,
one might enter rit.edu., wireless.rit.edu. on the robot
and wireless.rit.edu., rit.edu. on the workstation.

Save all your changes and exit the Network Connections dialog.

Force a reconnection by clicking on the Network Manager applet,
then selecting the network to which you are already connected.

13. If the workstation has no qualified hostname and is to be reached via
a static IP, make the following changes on the robot instead:

(a)

Edit the robot’s hosts file: $ sudo $EDITOR /etc/hosts
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(b) For each static host, add a line such as: (IP address)
(hostname). It is important to note that the hostname you use
must exactly match the output of $ hostname on the development
workstation.

(c) Save the file and quit; the changes should take effect immediately
and automatically.

4 Upgrading to the Latest Version of PCL

The version of the Point Cloud Library shipped with ROS lags significantly
behind that available directly from the community. These instructions show
how to install the latest version of PCL on top of an existing ROS Electric
installation.

1.

Create a folder to contain the build files and a replacement copy of the
perception pcl stack: $ mkdir “/ros

Install the Python package management utilities: $ sudo apt-get
install python-setuptools

Install the dependencies for the rosinstall utility: $ sudo
easy_install -U rosinstall

Create a new ROS overlay in the current directory: $ rosinstall .
/opt/ros/electric

Install any missing build dependencies: $ rosdep install
perception_pcl

Obtain a rosinstall file describing the repository for the
perception stack: $ roslocate info perception_pcl )
perception_pcl.rosinstall

Edit the rosinstall file to point at the correct repository
for Electric: $ sed -i s/unstable/electric_unstable/
perception_pcl.rosinstall

Fetch  the makefiles for the stack: $ rosinstall .
perception_pcl.rosinstall

Inform your shell of the overlay’s location: $ source setup.bash
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10.
11.
12.
13.
14.
15.

16.
17.
18.
19.
20.
21.

22.

Move into the cminpack directory: $ cd perception pcl/cminpack
Build the package: $ make

Move into the flann directory: $ cd ../flann

Build the package: $ make

Move into the pcl directory: $ cd ../pcl

Select the most recent tagged version of the code, for instance: $ sed
-i s/\\/trunk/\\/tags\\/pcl-1.6.0/ Makefile

Build the PCL codebase: $ make

Move into the pcl_ros directory: $ cd ../pcl_ros
Build the ROS PCL bindings: $ make

Move back out into the stack: $ cd ..

Build the stack’s particulars: $ make

Edit your bashrc file to add the following line after the line that sources
the system-wide ROS setup.bash: source “/ros/setup.bash

If you intend on continuing to use your current terminals, enter the
following in each after saving the file: $ source ~/.bashrc

5 Backporting in a Class from the PCL Trunk

Often, the trunk version of the Point Cloud Library will fail to compile;
therefore, it may be desirable to backport a specific class from trunk into a
released copy of the library. For instance, the code written for this project
relies on the OrganizedEdgeDetection class, which—at the time of writing—is
only available from trunk. These steps present an example of how to backport
revision 6467 of this specific class and the new subsystem on which it relies
into the 1.6.0 release of PCL. We'll assume that the steps from of
the Appendix have already been completed.

1.

Change to the source directory of your newly-compiled copy of the
Point Cloud Library: $ roscd pcl/build/pcl_trunk
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10.

11.

12.
13.

Download the required 2d  subsystem: $ svn checkout
http://svn.pointclouds.org/pcl/trunk/2d0r6467

Move into the directory that is to contain the OrganizedEdgeDetection
header: $ cd features/include/pcl/features

Download the header: $ svn export http://
svn.pointclouds.org/pcl/trunk/features/include/pcl/
features/organized_edge _detection.h@r6467

Move into the directory that is to contain the templated code: $ cd
impl

Download the templated source: $ svn export http://
svn.pointclouds.org/pcl/trunk/features/include/pcl/
features/impl/organized _edge_detection.hpp@r6467

Move into the directory that is to contain the instantiations: $ cd

../../../../src

Download the instantiations list: $ svn export
http://svn.pointclouds.org/pcl/trunk/features/src/
organized_edge_detection.cpp@r6467

Move back into the root of the code directory: $ cd ../..

Edit the features package’s build configuration: $ $EDITOR
features/CMakeLists.txt

(a) At the end of the SUBSYS_DEPS list, add: 2d

(b) Under set(incs, add: include/pcl/${SUBSYS_NAME}/
organized_edge_detection.h

(c) Under set(impl_incs, add: include/pcl/${SUBSYS_NAME}/
impl/organized_edge _detection.hpp

(d) Under set(srcs, add: src/organized edge detection.cpp

Apply the necessary patches, as described in the included directory
that comes with my code.

Return to the package root: $ roscd pcl
Build in the changes and relink: $ make
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6 ROS Glossary

e message. A ROS communication packet that carries information be-
tween nodes in a single direction. New message types may be de-
clared by creating text files in a package’s msg directory and en-
abling the rosbuild genmsg() directive in its CMakeLists.txt file.
The composition of existing message types may be found using
the rosmsg show command. ROS automatically generates a C++
struct for each message type; these struct types are declared in
the (package)/(messagetype).h headers; these must be included be-
fore they may be used. Two examples of useful message types are
std msgs/Int32—an int—and geometry msgs/Twist—used for driv-
ing the Create around.

e node. A single ROS executable, which may be added to a
package by appending a rosbuild add executable directive to the
CMakeLists.txt file of the latter. Once the package has been com-
piled using GNU Make, each of its nodes may be run using the rosrun
command.

e package. A “project” containing executables and/or libraries; new
packages may be created with the roscreate-pkg command, and ex-
isting ones may be imported into a dependent one by adding depend
tags to its manifest.xml file. A couple of important packages are
roscpp, which contains the ros/ros.h header that allows one to in-
terface with ROS, and pcl_ros, which depends on the pcl package to
provide the Point Cloud Library bindings.

e parameter. A variable hosted on the ROS parameter server; it is
persistent across multiple runs of a node, provided that the ROS master
is not restarted. Depending upon the node’s implementation, changing
one of its parameters while it is running may also affect its continued
behavior. The user interface to the parameter server is provided by
the rosparam command, while the C++ API supports the analogous
setParam, getParam, deleteParam, and other methods located in the
ros: :NodeHandle class.

e service. A link between ROS nodes allowing two-way communica-
tion carried in the form of service types from a client to a server.
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The user may call an existing service using the rosservice com-
mand, while C++ programs may create and call services via the
ros::ServiceServer and ros: :ServiceClient classes, which may be
built by means of the advertiseService and serviceClient methods
of ros::NodeHandle. Service types—the analog of messages from the
world of topics—may be declared in text files within a package’s srv
directory after enabling its CMakeLists.txt file’s rosbuild_gensrv()
call. Service types’ components may be seen with the rosservice
show invocation, and C++ service structs are generated and used sim-
ilarly to those for messages. One example of a service used on the
TurtleBot is /turtlebot node/set operation mode, which takes an
integer—usually 1, 2, or 3—responds whether it is valid, and brings the
iRobot Create into either Passive, Safety, or Full mode, respectively.

e topic. A link between ROS nodes that allows one-way communication
of information carried in the form of messages from a publisher to one
or more subscribers. The user may publish or subscribe to a topic by
means of the rostopic command, while C++ programs may do so
by creating a ros::Publisher or ros::Subscriber object using the
ros: :NodeHandle class’s advertise or subscribe method. Examples
of topics on the TurtleBot are /cmd_vel—modified in order to to con-
trol the Create’s drive and steering—and /cloud throttled—which
provides the point cloud from the Kinect.

7 ROS Commands

This section aims to list the commands needed to interface with ROS and
briefly address their commonly-used arguments. For the sake of clarity, the
following conventions are used: unless otherwise noted, arguments in (angled
brackets) are required, while those in [square brackets| are optional.

e roscore brings up a ROS master, which is useful for experimenting
with ROS on one’s workstation when the TurtleBot is not online.
However, in order to actually use this master instead of the Turtle-
Bot’s, one must do the following in each pertinent shell: $ export
ROS_MASTER URI=http://localhost:11311
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roscd (package) is a convenience script that allows one to immediately
move into the root directory of the specified package.

roscreate-pkg (package) [dependencies| initializes package direc-
tories to contain the source code for one or more modules. The package
directory structure will be created in a new subdirectory called package
within the current folder, which must appear in $R0S_PACKAGE PATH.
Typically, the dependencies should include the roscpp package—which
contains the ROS C++ bindings—as well as any other ROS packages
that will be used, such as pcl_ros. The dependencies may be mod-
ified later by editing the manifest.xml file in the root directory of
the package to add additional depend tags. ROS nodes may be added
to a project by adding a rosbuild_add_executable directive to the
CMakeLists.txt file, also located in the package root.

rosmsg (verb) (arguments) shows information about currently-
defined message types that may be passed over topics. When verb is
show and the arguments are (package)/(messagetype), for instance,
an “API reference” of the types and names of the variables in the mes-
sage’s corresponding struct hierarchy is displayed.

rosparam (verb) (parameterpath) supports verbs such as: list,
set, get, and delete. In the case of the former, the parameterpath may
be omitted if a complete listing is desired. The set invocation expects
an additional argument containing the new value to be appended.

rosrun (package) (node) is simply used to execute a node once the
package has been compiled with make.

rosservice (verb) (servicepath) allows interfacing with the presently-
available services over which service types may be sent. When verb is
list, servicepath may optionally be omitted, in which case all services
will be shown. With call, the user may call a service by passing ar-
guments and receive a response as supported by the service type. The
type verb is important, as it returns the package and service type cor-
responding to the service at the specified path.

rossvc (verb) (arguments) allows querying currently-defined service
types for passing over services. When verb is show and the arguments
are of the form (package)/(servicetype), the command outputs an
“API reference”—style listing of the types and names of the variables in
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the struct type representing the service type.

rostopic (verb) (topicpath) provides a bridge to currently-advertised
topics over which messages may be passed. When verd is 1ist, topic-
path may optionally be omitted to list all available topics. With echo,
the user may subscribe to a topic and view the data that is being sub-
scribed to it. Conversely, invocation with pub allows publishing to the
topic, which will influence the nodes that are presently subscribed to it.
The type verb is particularly useful: it prints the package and message
type of a given registered topic.

8 Useful Links

Unfortunately, much of the ROS documentation is rather terse and un-
friendly. Here, I've made an effort to catalog the documentation that I
found most helpful. I've also included documentation from the PCL web-
site, which is perhaps better organized and certainly more comprehensive
than that available on the ROS Wiki.

ROS TurtleBot wiki: http://ros.org/wiki/TurtleBot

ROS tutorials: http://ros.org/wiki/R0OS/Tutorials

ROS C++ tutorials: http://ros.org/wiki/roscpp/Tutorials
ROS C++ overview: http://ros.org/wiki/roscpp/0Overview

ROS C++ API reference: http://ros.org/doc/electric/api/
roscpp/html

ROS Kinect calibration tutorials: http://ros.org/wiki/openni_
launch/Tutorials

ROS PCL data type integration examples: http://ros.org/wiki/
pcl_ros

PCL  tutorials: http://pointclouds.org/documentation/
tutorials

PCL API reference (1.1.0): http://docs.pointclouds.org/1.1.0
PCL API reference (1.6.0): http://docs.pointclouds.org/1.6.0
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e PCL API reference (trunk): http://docs.pointclouds.org/trunk

9 Code Listing

#include "ros/ros.h”

#include ”pcl_ros/point_cloud .h”

#include ”pcl/point_types.h”

#include "pcl/filters/passthrough.h”

#include 7 pcl/filters/voxel_grid.h”

#include " pcl/features/organized_edge_detection.h”
#include "pcl/filters/radius_outlier_-removal.h”
#include ”geometry msgs/Twist.h”

/%%
Represents a request for a particular drive action, which
may be to go straight , turn left, or turn right

*/

enum DriveAction

{
b
/%%

Performs obstacle detection and avoidance using two
algorithms simultaneously
*/

class TandemObstacleAvoidance

{

FORWARD, LEFT, RIGHT

private:

ros :: NodeHandle node;

ros :: Publisher velocity;

ros :: Publisher panorama; //downsampled cloud

ros :: Publisher height; //heightRange’s region of
interest

ros :: Publisher ground; //groundEdges’s region of
interest

ros :: Publisher occlusions; //ground—level
occlusions
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DriveAction currentMOTION; //pilot’s account of
what was last done: detection algorithms should
not modify!

DriveAction directionsPrimary; //the height range
algorithm ’s suggestion

DriveAction directionsSecondary; //the ground edges
algorithm ’s suggestion

std :: list <int> heightRangeFrontSamples;

double last GROUND_CLOSEY, last GROUND_CLOSEZ,
last. GROUND _FARY, last GROUND_FARZ; //only
recalculate the below when necessary

double GROUNDSLOPE, GROUND._YINTERCEPT; //model the
ground’s location

DriveAction groundLastForcedTurn; //which way we
would have turned: should never be set to

FORWARD

const charx directionRepresentation (DriveAction
plan)
{

switch (plan)
{
case LEFT:
return "LEFT” ;
case RIGHT:
return "RIGHT” ;
default:
return "FORWARD’ ;

}

public:

/xx

Constructs the object, starts the algorithms, and
blocks until the node is asked to shut down. By
default , all calculations are performed, but no
commands are actually sent to the drive system
unless the user sets the <tt>drive_move</tt>
parameter to <tt>true</tt>, using the <tt>
rosparam</tt> command, for instance.
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65
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67
68

@param handle a <tt>NodeHandle</tt> defined with

*/

the nodespace containing the runtime parameters,
including <tt>drive-move</tt>

TandemObstacleAvoidance (ros :: NodeHandle& handle):

}

/%%

node (handle), velocity (node.advertise<
geometry_msgs :: Twist>(" /cmd_vel”, 1)),
panorama(node. advertise<pcl:: PointCloud<pcl
::PointXYZ> >(”panorama”, 1)), height(node.
advertise<pcl:: PointCloud<pcl :: PointXYZ> >(”
height”, 1)), ground(node.advertise<pcl::
PointCloud<pcl :: PointXYZ> >(”ground”, 1)),
occlusions (node.advertise<pcl:: PointCloud<
pcl:: PointXYZ> >(" occlusions”, 1)),
current MOTION (FORWARD) , directionsPrimary (
FORWARD) , directionsSecondary (FORWARD) ,
last GROUND_CLOSEY (0) , last GROUND_CLOSEZ(0)
, last GROUND_FARY (0) , last. GROUND_FARZ(0) ,
groundLastForcedTurn (LEFT)

ros :: MultiThreadedSpinner threads(3);

ros :: Subscriber heightRange=node.subscribe (”/
cloud_throttled”, 1, &
TandemObstacleAvoidance :: heightRange , this);

ros :: Subscriber groundEdges=node.subscribe(”/
cloud_throttled”, 1, &
TandemObstacleAvoidance :: groundEdges, this);

ros :: Timer pilot=node.createTimer (ros:: Duration

(0.1), &TandemObstacleAvoidance :: pilot , this

) ;

threads.spin(); //blocks until the node is
interrupted

Performs the primary obstacle detection and motion

planning by downsampling the tunnel—Ilike region
in front of the robot and matching its
approximate height and width
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@param cloud a Boost pointer to the <tt>PointCloud

</tt> from the sensor

*/

void heightRange (const pcl:: PointCloud<pcl::

{

PointXYZ>::Ptr& cloud)

" generated as described

//declare ”constants ,’
in pilot

double CROP_XRADIUS, CROP_YMIN, CROP_-YMAX,
CROP_ZMIN, CROP.ZMAX, HEIGHT DOWNSAMPLING :

int HEIGHT SAMPLES;

bool HEIGHT_VERBOSE;

* generated as described

//populate ”"constants ,’
in pilot
node . getParamCached (” crop_xradius” ,
CROP XRADIUS) ;
node . getParamCached (” );
node . getParamCached (” crop_ymax” , CROP.YMAX) ;
node . getParamCached (” crop_zmin” , CROP_ZMIN)
node . getParamCached (” crop_zmax” ;, CROPZMAX)
node . getParamCached (" height_downsampling” ,
HEIGHT DOWNSAMPLING) ;
node . getParamCached (" height_samples” ,
HEIGHT SAMPLES) ;
node . getParamCached (" height_verbose” ,

HEIGHT_VERBOSE) ;

crop_-ymin” ; CROP_-YMIN

”

)

I

//variable declarations/initializations

pcl::PassThrough<pcl :: PointXYZ> crop;

pcl:: VoxelGrid<pcl ::PointXYZ> downsample;

pcl :: PointCloud<pcl :: PointXYZ >:: Ptr downsampled
(new pcl::PointCloud<pcl::PointXYZ>);

pcl:: PointCloud<pcl :: PointXYZ >::Ptr front (new
pcl:: PointCloud<pcl :: PointXYZ>);

int averageObstacles=0; //number of points in
our way after averaging our readings

//downsample cloud
downsample . setInputCloud (cloud) ;
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if (HEIGHT DOWNSAMPLING>=0) downsample.
setLeafSize (( float )HEIGHT DOWNSAMPLING, (
float )HEIGHT DOWNSAMPLING, (float)
HEIGHT DOWNSAMPLING) ;

downsample. filter (xdownsampled) ;

//crop the cloud

crop.setInputCloud (downsampled) ;

crop.setFilterFieldName ("x");

crop.setFilterLimits(—CROP_XRADIUS,
CROP_XRADIUS) ;

crop. filter (xfront);

crop.setIlnputCloud (front);
crop.setFilterFieldName ("y”);
crop.setFilterLimits (CROP-YMIN, CROP_-YMAX) ;

crop. filter (xfront);

crop.setInputCloud (front);
crop.setFilterFieldName (72" );
crop.setFilterLimits (CROPZMIN, CROPZMAX)
crop. filter (xfront);

if (current MOTION!=FORWARD)
heightRangeFrontSamples. clear (); //use
straight smapshots while turning

heightRangeFrontSamples. push_front (front—>size
());

while (heightRangeFrontSamples. size () >(unsigned)
HEIGHT SAMPLES) heightRangeFrontSamples.
pop-back(); //constrain our backlog

//compute average number of points
for (std::list <int >::iterator location=
heightRangeFrontSamples.begin(); location!=
heightRangeFrontSamples.end(); location++)
averageObstacles+=xlocation ;
averageObstacles/=heightRangeFrontSamples. size

OF
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125 //let ’s DRIVE!

126 if (averageObstacles >0) //something is in our
way !

127 {

128 float centroidX=0;

129

130 //compute the centroid of the detected

points
131 for (pcl:: PointCloud<pcl :: PointXYZ >::

iterator point=front—>begin(); point<
front—end (); point++)

132 centroid X+=point —>x;

133 centroidX /=front—>size () ;

134

135 if (HEIGHT_VERBOSE)

136 ROS_INFO ("HEIGHT _.RANGE.. : : .Seeing .%4d

points.in._our._way\n.—>_Centroid._is.
at . %.3f_1”, averageObstacles ,

centroidX);
137
138 if (centroidX <0) //obstacle(s) ’[s] centroid
is off to left
139 directionsPrimary=RIGHT;
140 else //centroidX>=0
141 directionsPrimary=LEFT;
142 }
143 else //nothing to see here
144 directionsPrimary=FORWARD:;
145
146 //send our imagery to any connected wvisualizer
147 panorama. publish (xdownsampled) ;
148 height . publish (x front ) ;
149 }
150
151 /% *
152 Performs secondary obstacle detection and motion

planning by detecting curvature changes on,

boundaries of, and absense of the ground plane
153 @param cloud a Boost pointer to the (organized) <tt

>PointCloud</tt> from the sensor
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173

*/

void groundEdges(const pcl::PointCloud<pcl::

{

PointXYZRGB>:: Ptr& cloud)

//declare ”constants,” generated as described
in pilot

double CROPXRADIUS, CROP_YMIN, CROP_-YMAX,
CROP_ZMIN, CROPZMAX, GROUNDBUMPERFRONTAL,
GROUND_BUMPERLATERAL, GROUND_CLOSEY,
GROUND_CLOSEZ, GROUNDZFARY, GROUND_FARZ,
GROUND.TOLERANCEFINE, GROUND.TOLERANCEROUGH,

GROUNDNORMALSMOOTHING,

GROUND.THRESHOLDLOWER,
GROUND_THRESHOLDHIGHER, GROUND_OUTLIERRADIUS

int GROUNDNORMALESTIMATION,
GROUND_OUTLIERNEIGHBORS;

bool GROUND_VERBOSE;

//populate "constants ,”
in pilot

node . getParamCached (” crop_xradius” ,
CROP_XRADIUS) ;

node . getParamCached

generated as described

)

(”crop_ymin” , CROP_YMIN)

node . getParamCached (” crop_ymax” , CROP.YMAX) ;

node . getParamCached (” crop_zmin” , CROP_ZMIN) ;

node . getParamCached (” crop_zmax” , CROPZMAX) ;

node . getParamCached (” ground _bumperfrontal” ,
GROUND BUMPERFRONTAL) ;

node . getParamCached (” ground_bumperlateral” |
GROUNDBUMPERLATERAL) ;

node . getParamCached (” ground _closey” ,
GROUND_CLOSEY) ;

node . getParamCached (” ground _closez” |
GROUND_CLOSEZ) ;

node . getParamCached (” ground _fary” , GROUNDFARY)

)

node . getParamCached (” ground_farz” , GROUNDFARZ)

9
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189
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node . getParamCached (” ground _tolerancefine” |

GROUND_TOLERANCEFINE) ;

node . getParamCached (” ground _tolerancerough” |
GROUND_.TOLERANCEROUGH)) ;

node . getParamCached (” ground _normalsmoothing” ,
GROUND NORMALSMOOTHING) ;

node . getParamCached (” ground_thresholdlower” |
GROUND.THRESHOLDLOWER)) ;

node . getParamCached (” ground_thresholdhigher” |
GROUND_THRESHOLDHIGHER) ;

node . getParamCached (” ground_outlierradius”
GROUND_OUTLIERRADIUS) ;

node . getParamCached (” ground _normalestimation” ,
GROUND NORMALESTIMATION) ;

node . getParamCached (" ground _outlierneighbors” |
GROUND._OUTLIERNEIGHBORS) ;

node . getParamCached (” ground_verbose” ,
GROUND_VERBOSE) ;

//model the plane of the ground iff the user
changed its keypoints

if (GROUND.CLOSEY!=last GROUND_CLOSEY ||
GROUND _CLOSEZ!=last GROUND_CLOSEZ ||
GROUNDFARY!=last GROUND_FARY || GROUND_FARZ
I=last GROUND_FARZ)

GROUND_SLOPE=(GROUND FARY-GROUND_CLOSEY) / (
GROUND_FARZ-GROUND_CLOSEZ) ;

GROUND_YINTERCEPT=(GROUND_CLOSEY+
GROUNDFARY) /2—GROUND_SLOPEx (
GROUND.CLOSEZ+GROUND_FARZ) /2

last_ GROUND_CLOSEY=GROUND_CLOSEY ;

last. GROUND_FARY=GROUNDFARY ;

last_GROUND_CLOSEZ=GROUND.CLOSEZ ;

last_ GROUND_FARZ=GROUND FARZ;

}

//variable declarations/initializations
pcl :: PassThrough<pcl :: PointXYZRGB> crop;
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224
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pcl :: OrganizedEdgeDetection<pcl :: PointXYZRGB,
pcl:: Label> detect;

pcl:: RadiusOutlierRemoval<pcl :: PointXYZRGB>
remove ;

pcl:: PointCloud<pecl :: PointXYZRGB>:: Ptr points (
new pcl::PointCloud<pcl :: PointXYZRGB>);

pcl:: PointCloud<pcl :: Label> edgePoints;

std :: vector<pcl:: PointIndices> edges;

pcl:: PointCloud<pcl :: PointXYZRGB >:: Ptr
navigation (new pcl:: PointCloud<pecl ::
PointXYZRGB>) ;

int trueGroundPoints=0; //size of the ground
itself , not including any obstacles

double trueGroundXTotal=0; //total of all the
ground’s x—coordinates

//crop to focus exclusively on the approzimate
range of ground points

crop.setInputCloud (cloud);

crop.setFilterFieldName ("x");

crop.setFilterLimits(—CROP_XRADIUS-
GROUNDBUMPERLATERAL, CROP_XRADIUS+
GROUND BUMPERLATERAL) ;

crop .setKeepOrganized (true) ;

crop. filter (xpoints);

crop.setInputCloud (points);
crop.setFilterFieldName ("y”);
crop.setFilterLimits (CROP.-YMAX, 1);
crop.setKeepOrganized (true) ;

crop. filter (xpoints);

crop.setInputCloud (points);

crop.setFilterFieldName (”2”);

crop.setFilterLimits (CROPZMIN, CROPZMAX+
GROUND BUMPERFRONTAL) ;

crop .setKeepOrganized (true) ;

crop. filter (xpoints);

//ignore everything that is not the ground
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for (pcl:: PointCloud<pecl :: PointXYZRGB>::iterator
location=points—>begin(); location<points—>
end(); location++)

double distanceFromGroundPlane=fabs (
location—=>y /*point ’s actual y—coordinate
x/ — (GROUNDSLOPExlocation —>z+
GROUND_YINTERCEPT) /* ground ’s expected y—
coordinatex/);

if (distanceFromGroundPlane>
GROUND.TOLERANCEROUGH) //this point isn’
t anywhere mear the ground
{ //these aren’t the points we’re looking
for
location —>x=std :: numeric_limits <float
>::quiet_NaN () ;
location —>y=std :: numeric_limits <float
>::quiet_NaN () ;
location —>z=std :: numeric_limits <float
>::quiet_NaN () ;

}

else if(distanceFromGroundPlane<=
GROUND_TOLERANCEFINE && fabs (location —>x
)<CROP_XRADIUS-GROUND BUMPERLATERAL &&
location —>z>GROUND_CLOSEZ+
GROUNDBUMPERFRONTAL && location —>z<
CROP_ZMAX-GROUND BUMPERFRONTAL) //
actually part of the ground and in the
subregion where we do mot tolerate
intruding plane edges

trueGroundPoints—++;
trueGroundXTotal+=location —>x;

}

//else part of the ground border or a
contacting object: just keep it
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261

if (trueGroundPoints >0) //don’t waste time if we

‘re blind

//detect edges

detect .setInputCloud (points);

detect .setEdgeType(detect .
EDGELABEL HIGH CURVATURE+detect .
EDGELABEL NAN BOUNDARY) ;

if (GROUNDNORMALESTIMATION>=0) detect .
setHighCurvatureNormalEstimationMethod ((
pcl::IntegrallmageNormalEstimation<pcl ::
PointXYZRGB, pcl::Normal >::
NormalEstimationMethod )

GROUND NORMALESTIMATION) ;

if (GROUND NORMALSMOOTHING>=0) detect .
setHighCurvatureNormalSmoothingSize ((
float ) GROUND NORMALSMOOTHING) ;

i f (GROUND.THRESHOLDLOWER>=0) detect .
setHighCurvatureEdgeThresholdLower ((
float GROUND.THRESHOLDLOWER) ;

if (GROUND_.THRESHOLDHIGHER>=0) detect .
setHighCurvatureEdgeThresholdHigher ((
float ) GROUND THRESHOLDHIGHER) ;

detect .compute(edgePoints , edges);

if (GROUND_VERBOSE)

ROS_INFO ("GROUND_EDGES.. : : _Saw._raw .%41u .
curves.and._%4lu_borders” , edges[3].
indices.size (), edges[0].indices.
size ()

//assemble the detected points
navigation—>header=points—>header;
for (std::vector<pcl:: PointIndices >::
iterator edge=edges.begin(); edge<edges.
end(); edge++)
for (std :: vector<int >::iterator
pointIndex=edge—>indices .begin () ;
pointIndex<edge—>indices .end () ;
pointIndex++)
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284

if (fabs ((*points) [*pointIndex].x)<

CROP_XRADIUS-

GROUND BUMPERLATERAL && (*points

) [* pointIndex | . 2>GROUND_CLOSEZ+

GROUNDBUMPERFRONTAL && (*points

) [* pointIndex | . z<CROPZMAX—

GROUNDBUMPERFRONTAL) //point is
far enough from the edge
navigation—>push_back ((* points)

[* pointIndex]) ;

//eliminate outliers

if (GROUND_OUTLIERRADIUS>=0 && navigation —>
size ()>0)

{

remove.setInputCloud (navigation);
remove.setRadiusSearch ((float)
GROUND_OUTLIERRADIUS) ;
if (GROUND_OUTLIERNEIGHBORS>=0) remove.
setMinNeighborsInRadius (
GROUND_OUTLIERNEIGHBORS) ;
remove. filter (xnavigation);
}
}
else if (GROUND.VERBOSE) ROS_INFO (”GROUND_EDGES.
:: .Lost.sight _of_the_ground!”);

//plan our next move

if (navigation—>size () >0) //curve or plane
boundary in our way

{

float centroidX=0;

//where are our obstructions centered?
for (pcl:: PointCloud<pcl :: PointXYZRGB > ::
iterator point=navigation—>begin () ;
point<navigation—>end (); point++)
centroidX4=point—>x;
centroidX/=navigation—>size () ;
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300
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303
304
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308
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310

if (GROUND_VERBOSE) ROS_INFO (”GROUND_EDGES._
;i .Seeing Y3lu_offending .points_centered
cat_%.3f_1”, navigation—>size (),
centroidX);

//choose a course of action
if (centroidX <0) //offenders mostly to our
left
directionsSecondary=RIGHT;
else //centroidX>=0
directionsSecondary=LEFT;
groundLastForcedTurn=directionsSecondary ;
//continue the same turn even if we lose
sight of the ground in the next frame
}
else if(trueGroundPoints==0) //where’d the
ground go?
{

if (GROUND_VERBOSE) ROS_INFO (”GROUND_EDGES..
:: .Ground._has._vanished;_calling .for.
emergency.evasive _maneuvers!”);

directionsSecondary=groundLastForcedTurn;

}

else //we’re all clear
{
directionsSecondary=ORWARD;
groundLastForcedTurn=trueGroundXTotal/
trueGroundPoints >0 ? RIGHT : LEFT; //in
case we lose sight of the ground in the
next frame, we’ll turn toward the
direction where more of it is visible

}

ground . publish (x points);
occlusions . publish (xnavigation);

}
/xk

Integrates the decisions of the two obstacle
detection methods and sends an appropriate drive

50



311

312
313
314
315

316
317
318
319
320
321
322
323
324
325

326
327
328
329
330
331
332
333
334

335

336
337

338
339
340
341
342

command only if the <tt>drive_move</tt>
parameter 1S set

@param time the <tt>TimerEvent</tt> that triggered
our schedule

J1df ,d/\a

*/
void pilot (const ros::TimerEvent& time)
{
//declare ”constants,” plus Vim macros to
generate them from “populate ’constants’”
H#if 0
:inoremap <cr> <esc>
$r;j
#endif

double DRIVE_LINEARSPEED, DRIVE ANGULARSPEED;
bool DRIVEMOVE, DRIVE_VERBOSE;
//populate "constants,” plus a Vim macro to
generate them from 7clean up parameters”
#if 0
:inoremap <cr> <esc>

>>>>"f . 16sget
eaCached

f” 177yyt’7 f)i ,
"ypvT, 17

#endif

node . getParamCached (” drive_linearspeed” ,
DRIVE_LINEARSPEED) ;

node . getParamCached (” drive_angularspeed” ,
DRIVE_ ANGULARSPEED) ;

node . getParamCached (” drive_move” , DRIVEMOVE) ;

node . getParamCached (” drive_verbose” |
DRIVE_VERBOSE) ;

//variable declarations
DriveAction newMotion;
geometry_msgs :: Twist decision;
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//decide what to do, given the advice we’ ve
received

if (directionsPrimary!=directionsSecondary) //
algorithms are at odds

{

if (DRIVE_-VERBOSE)
ROSINFO (”PILOT. :: _.One_recommendation .
says.%bs_and._.the_other _counters . %5s”
, directionRepresentation (
directionsPrimary) ,
directionRepresentation (
directionsSecondary));

if (directionsPrimary=FORWARD) newMotion=
directionsSecondary ;
else if(directionsSecondary=ORWARD)
newMotion=directionsPrimary ;
else newMotion=directionsSecondary; //it
thought about this harder
¥
else //we’re agreed!
newMotion=directionsPrimary ;

//don’t reverse the direction of a turn

if (newMotion!=FORWARD && currentMOTION!=FORWARD
&& newMotion!=current MOTION)

{

if (DRIVE_.VERBOSE) ROSINFO(”PILOT.:: .
Overrode._recommended_oscillation”);

newMotion=currentMOTION; //keep rotating in
the same direction we were

}

//make our move
switch (newMotion)
{
case LEFT:
if (DRIVE_.VERBOSE) ROS_INFO(”PILOT.:: .
Turning .%5s” , "LEFT”) ;
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decision .angular . z=DRIVE_ANGULARSPEED;
break ;

case RIGHT:
if (DRIVE_.VERBOSE) ROS_INFO(”PILOT.:: .

Turning .%5s” , "RIGHT” ) ;

decision .angular . z=DRIVE_ ANGULARSPEED;
break ;

default:
decision.linear .x=DRIVE_LINEARSPEED;

if (DRIVEMOVE) velocity.publish(decision);

//tell the obstacle detectors what we’ve done
current MOTION=newMotion ;

}s

int main(int argc, charxx argv)
{
ros::init (argc, argv, "xbot_surface”); //string here is
the node name
ros :: NodeHandle node(”surface”); //string here is the
namespace for parameters

//initial parameter values

node.setParam (” crop_xradius”, 0.2); //should be
slightly greater than robot’s radius

node.setParam (” crop_ymin” , —0.07); //should be slightly
above robot’s height

node.setParam (”crop_ymax”, 0.35); //should be slightly
above the ground’s highest point

node.setParam (” crop_zmin”, 0.0); //greater than zero
erxcludes points close to robot
node.setParam (”crop_zmax”, 1.5); //farthest to search

for obstacles: lower for tighter maneuvering, higher
for greater safety

node.setParam (” height _downsampling”, 0.04); //less is
more: should be low enough to eliminate noise from
the region of interest (mnegative for [really bad]
default)
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404

405

406

407
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409

410

node.setParam (” height _samples” , 5); //number of samples
to average: should be low enough to prevent false
positives

node.setParam (” height_verbose”, false);

node.setParam (” ground_bumperfrontal”, 0.1); //eztra
uncropped space on the front and back edges of the
plane whose edges, borders, and presence are
disregarded; mnote that for the front edge only, this
is used with ground_closez to tolerate the gap
between the robot and plane

node.setParam (” ground_bumperlateral”, 0.02); //extra
uncropped space on the left and right edges of the
plane whose edges, borders, and presence are
disregarded

node.setParam (” ground_closey”, 0.3525); //y—coordinate
of the closest point on the ground

node.setParam (” ground_closez”, 0.8); //corresponding z—
coordinate for bumper border and modeling the plane

node.setParam (” ground _fary”, 0.47); //y—coordinate of a
far point on the ground

node.setParam (” ground _farz”, 2.5); //corresponding z—
coordinate for modeling the plane
node.setParam (” ground_tolerancefine”, 0.03); //mazimum

y—coordinate deviation of points that are still
considered part of the ground itself

node.setParam (” ground_tolerancerough”, 0.1); //mazimum
y—coordinate deviation of points that are evaluated
at all

node.setParam (” ground_normalsmoothing” , —1.0); //
smoothing size for mnormal estimation (negative for
default)

node.setParam (” ground _thresholdlower” , 1.0); //for
curvature—based edge detection: cutoff for
consideration as possible edges (negative for
default)

node.setParam (” ground _thresholdhigher”, 1.7); //for
curvature—based edge detection: cutoff for definite
classification as edges (negative for default)

node.setParam (” ground_outlierradius”, 0.05); //radius
used for meighbor search to filter out outliers (
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negative to disable outlier removal)

411 node.setParam (” ground_normalestimation”, —1); //normal
estimation method: as defined in
IntegrallmageNormalEstimation (negative for default)

412 node.setParam (” ground_outlierneighbors”, 6); //minimum
neighbors to be spared by outlier persecution (
negative for default)

413 node .setParam (” ground _verbose” , false);

414 node.setParam (” drive_linearspeed”, 0.5);

415 node.setParam (” drive_angularspeed”, 0.3);

416 node.setParam (” drive_move” , false);

417 node.setParam (” drive_verbose” , true);

418

419 TandemObstacleAvoidance workhorse(node); //block to do
obstacle avoidance

420

421 //clean up parameters, plus a Vim macro to generate
them from 7default parameter values”

422 #if 0

423 :inoremap <cr> <esc>

424 “f.13sdelete

425 f,dt) f;C;

426 ]

427 #endif

428 node. deleteParam (” crop_xradius”);

429 node . deleteParam (” crop_ymin”) ;

430 node . deleteParam (” crop_ymax” ) ;

431 node . deleteParam (” crop_zmin”) ;

432 node . deleteParam (” crop_zmax” ) ;

433 node . deleteParam (” height downsampling” ) ;

434 node. deleteParam (” height_samples”);

435 node . deleteParam (” height_verbose”);

436 node. deleteParam (” ground_bumperfrontal”) ;

437 node . deleteParam (” ground _bumperlateral” ) ;

438 node. deleteParam (” ground_closey”) ;

439 node. deleteParam (” ground_closez”) ;

440 node. deleteParam (” ground _fary”) ;

441 node . deleteParam (” ground_farz” ) ;

442 node. deleteParam (” ground_tolerancefine”);

443 node. deleteParam (” ground_tolerancerough”);
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444
445
446
447
448
449
450
451
452
453
454
455}

node .
node.
node .
node.
node .
node.
node .
node.
node .
node.
node .

”ground _normalsmoothing” ) ;

ground_thresholdlower” ) ;

deleteParam
deleteParam
deleteParam (” ground _thresholdhigher”);

7

deleteParam (” ground_outlierradius”);
deleteParam (” ground_normalestimation”) ;
deleteParam (” ground_verbose” ) ;
deleteParam (” drive_linearspeed”);
deleteParam (” drive_angularspeed”);

Y

deleteParam (” drive_move”) ;

(
(
(
(
(
deleteParam (” ground_outlierneighbors”);
(
(
(
(
deleteParam (” drive_verbose”);
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