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Problem
Use cases: Pause/cancel function calls
Timed function calls:
    •  Ensure reliable return from libraries with weak timing 
        constraints (e.g., image decoders)
    •  Preempt straggler nodes in cluster fanout

Userland scheduling:
    •  Implement preemptive threading or coroutines
    •  Share a process with user code (e.g., FaaS) while 
        maintaining control of the CPU core

DEFINITION: A lightweight preemptible function is an
unmodi�ed function invoked with bounded execution time. 

GOAL: Maintain low system-wide tail latency even when 
using code not trusted for timely completion.

Dynamic call rerouting:
    •  Replace the global o�set table during timed functions
        to retarget dynamic calls against a di�erent GNU 
        linker/loader namespace.
    •  Generating a 100-entry GOT takes ~60μs (installing takes 1μs)
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ProblemFeatures: Preemption and cancellation
Building a library for timed function calls that provides:
    •  Preemption on 10s of microseconds timescales
    •  Resource tracking for cleanup upon cancellation
    •  An API that avoids abnormal control �ow (e.g., repeated
        or absent function returns)

Invoke lambda() with a timeout using our API:
res = launch(lambda, TIMEOUT);
if(is_completion(res)) {
  // lambda() completed within the allotted time.
  print(“Return value: “ + unpack(res));
} else {
  // lambda() timed out; give it a bit more time.
  res = resume(res, TIMEOUT);
}

ProblemChallenge: Global state
Client code:
    •  Should not use shared state mutated by a preemptible
        function until that function completes

Library code:

Implementing preemption and checkpoint/restore

Subscribe to SIGALRM to periodically regain CPU control.
Achieve 90% of baseline SHA-256 throughput by 20μs.

Run a timed function on its own stack to support resumption.
Checkpointing and restoring takes about 3μs.
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Preemption: Use POSIX timers Checkpoint/restore: Use POSIX contexts
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