
Lightweight Preemptible Functions
Sol Boucher†, Anuj Kalia†, David G. Andersen†, Michael Kaminsky‡

†Carnegie Mellon University, ‡Intel Labs

Problem
Use cases: Pause/cancel function calls
Timed function calls:
 • Ensure reliable return from libraries with weak timing
 constraints (e.g., image decoders)
 • Preempt straggler nodes in cluster fanout

Userland scheduling:
 • Implement preemptive threading or coroutines
 • Share a process with user code (e.g., FaaS) while
 maintaining control of the CPU core

DEFINITION: A lightweight preemptible function is an
unmodi�ed function invoked with bounded execution time.

GOAL: Maintain low system-wide tail latency even when
using code not trusted for timely completion.

Dynamic call rerouting:
 • Replace the global o�set table during timed functions
 to retarget dynamic calls against a di�erent GNU
 linker/loader namespace.
 • Generating a 100-entry GOT takes ~60μs (installing takes 1μs)

Related publication
Sol Boucher, Anuj Kalia, David G. Andersen, and Michael
Kaminsky. Putting the “micro” back in microservices (short paper).
USENIX ATC ‘18, Boston, MA, USA, 2018.

ProblemFeatures: Preemption and cancellation
Building a library for timed function calls that provides:
 • Preemption on 10s of microseconds timescales
 • Resource tracking for cleanup upon cancellation
 • An API that avoids abnormal control �ow (e.g., repeated
 or absent function returns)

Invoke lambda() with a timeout using our API:
res = launch(lambda, TIMEOUT);
if(is_completion(res)) {
 // lambda() completed within the allotted time.
 print(“Return value: “ + unpack(res));
} else {
 // lambda() timed out; give it a bit more time.
 res = resume(res, TIMEOUT);
}

ProblemChallenge: Global state
Client code:
 • Should not use shared state mutated by a preemptible
 function until that function completes

Library code:

Implementing preemption and checkpoint/restore

Subscribe to SIGALRM to periodically regain CPU control.
Achieve 90% of baseline SHA-256 throughput by 20μs.

Run a timed function on its own stack to support resumption.
Checkpointing and restoring takes about 3μs.

...

launch()

[stub]

lambda()[caller]

checkpoint invoke

Preemption: Use POSIX timers Checkpoint/restore: Use POSIX contexts

Domain Solution
C library functions Interposing

Third-party libraries Dynamic call rerouting

