Sol Boucher and Evan Klei C

FabComp: ISA document

SCI-453-01 04/09/14

1 Overview

Our Fabulous Computation Machine, or FabComp for short, is a 16-bit general-purpose
register—based, big-endian CISC architecture. It proudly features an extensive collection of
keystroke-saving instructions, 16 general-purpose registers, and 9 memory address modes.
Instructions use hybrid encoding, with the opcode word’s format fixed, but between 0 and
6 trailing immediate words. Comparisons are done using conditional registers, but we also
provide conditional-and-branch instructions for convenience.

2 Instruction format

2.1 Opcode word

Every instruction begins with an opcode word that always follows this format:

meaning of immediate flags

value

opcode word format

meaning

00

opcode

immediate | am0 | aml | am?2

01

15 8

7 615 43 2|10

10
11

no operands are immediates

operand 2 is an immediate value
operand 1 is an immediate value
operands 1 and 2 are immediates

The immediate flags can override the address modes of operands 1 and 2: if set, the cor-
responding operand will be an immediate value rather than a register or memory address.
Otherwise, the corresponding am (address mode) bits are consulted:

meaning of address mode flags

value | meaning first immediate instruction word
00 | skip: No operand None
01 | immediate address: Memory address [-type
10 | PC-relative: Offset from program counter [-type
11 | other: Immediate word will specify address mode R-type
2.2 Immediate words
There are three types of immediate words:
[-type immediate word format S-type immediate word format
immediate short immediate 0 | short immediate 1

15

0115

8|7 0

R-type immediate word format
secondary am | reg0 | regl | reg2

15 1211187 413 0
meaning of secondary address mode flags

value | meaning next immediate word(s)
000 | Register value: reg0 specifies a register None

001 | Register indirect: Find EA in register reg0 None

010 | Scaled: EA calculated as offset from reg0 S-type

011 | Doubly scaled: For 2-dimensional arrays with based in register S-type

100 | Auto increment: Find EA in register reg0, then increment None

101 | Auto decrement: Find EA in register reg0, then decrement None

110 | Scaled displacement: EA calculated as offset from immedate S-type then I-type
111 | Doubly scaled displacment: 2-dimensional immediate-based S-type then I-type

3 Instruction set

We support the following instructions, all of which are encoded with a standard opcode word:

3.1 List of instructions

opcode | mnemonic | description
0 | 00000000 HALT Stop running
00000001 AND Perform bitwise and
00000010 OR Perform bitwise or
00000011 XOR Perform bitwise xor
00000100 LSFT Perform bitwise left shift
00000101 NAND Perform bitwise nand
00000110 NOR Perform bitwise nor
00000111 XNOR Perform bitwise xnor
00001000 RSFT Perform bitwise right shift
00001001 LAND Performs logical and
00001010 LOR Performs logical or
00001011 LXOR Performs logical xor
1100001100 RASFT Perform bitwise right arithmatic shift
00001101 | LNAND | Performs logical nand
00001110 LNOR Performs logical nor
00001111 LXNOR | Performs logical xnor
00010000 SLT Compares if one object is less than another
00010001 SGT Compares if one object is greater than another
00010010 SEQ Compares if two objects are equal
00010011 SNE Compares if two objects are not equal
00010100 SLE Compares if one object is less than or equal to another
00010101 SGE Compares if one object is greater than or equal to another
00010110 ADD Perform signed arithmetic addition
00010111 SUB Perform signed arithmetic subtraction
00011000 BLT Branches if one object is less than the other
00011001 BGT Branches if one object is greater than the other
9 00011010 BEQ Branches if two objects are equal
00011011 BNE Branches if two objects aren’t equal
00011100 BLE Branches if one object is less than or equal to the other
00011101 BGE Branches if one object is greater than or equal to the other
31 00011110 PRNT Prints the value at the specified location
00011111 LNOT Performs a logical not
4 00100000 SIZ Compares if the object is zero
00100001 SNZ Compares if the object is not zero
00100010 NOT Performs a bitwise not
00100011 NEG Performs a arithmetic negation
5 00100100 BIZ Branch if the object is zero
00100101 BNZ Branch if the object is not zero
6 00100110 INCR Increments the data in the given location
00100111 DECR Decriments the data in the given location
00101000 JMP Jumps to the location given
7 100101001 JAL Jumps to the location given and sets the RA
00101010 CALL Jumps to the location and puts the address on the stack
8 1 00101011 RET Jumps to the location most recently put on the stack
9 | 00101100 MOV Moves object from one space to another

3

3.2 Verification rules

Each numbered grouping in the instruction set table is validated as follows:

0. e No validation
1. e 2-3 ops
2. e 3 ops

e op0 is not a register

3. e 1 op*
4. e 1-2 ops
5. e 2 ops

e op0 is not a register
6. e 1 op

7. e 1lop

e op0 is not a register
8. e 0 ops

9. e 2 ops

4 Memory specifications

The memory space is split into 16 bit-words, arranged big-endian. Each location is identified
via a 16-bit address, which points to a whole word. Because addresses are assigned to words
instead of bytes, it impossible to have unassigned accesses. The bus to and from memory is
16 bits, and the ISA only supports transferring a single word at a time.

5 List of registers

The architecture exposes the following 16 general-purpose registers:

Register | Description
$a0-%$a2 | Argument Registers
$v | Return data Register
$s0-$s3 | Saved Registers
$t0-$t5 | Temporary Registers
$sp | Stack Pointer
$ra | Return Address

*Although the operand is passed in position 0, it must be treated as a source operand

6 Address modes and formats

6.1 Calculating Address Modes

Address Mode | Effective Address

Immediate Address | imm
PC Relative | EA = $pc
Register Indirect | EA = $reg0
Scaled | EA = $reg0 + $regl << imm0
Doubly Scaled | EA = Mem([$reg0 + $regl << imm0] + $reg2 << imml
Auto Increment | EA = $reg0 , $reg0 = $reg0 + 1
Auto Decrement | EA = $reg0 , $reg) = $reg0 — 1
Scaled Displacement | EA = imm + $reg0 << imm0
Doubly Scaled Displacemnt | EA = Mem[imm + $reg0 << imm0] + $regl << imml

