
Sol Boucher and Evan Klei CSCI-453-01 04/09/14

FabComp: ISA document

1 Overview

Our Fabulous Computation Machine, or FabComp for short, is a 16-bit general-purpose
register–based, big-endian CISC architecture. It proudly features an extensive collection of
keystroke-saving instructions, 16 general-purpose registers, and 9 memory address modes.
Instructions use hybrid encoding, with the opcode word’s format fixed, but between 0 and
6 trailing immediate words. Comparisons are done using conditional registers, but we also
provide conditional-and-branch instructions for convenience.

2 Instruction format

2.1 Opcode word

Every instruction begins with an opcode word that always follows this format:

opcode word format
opcode immediate am0 am1 am2
15 8 7 6 5 4 3 2 1 0

meaning of immediate flags
value meaning

00 no operands are immediates
01 operand 2 is an immediate value
10 operand 1 is an immediate value
11 operands 1 and 2 are immediates

The immediate flags can override the address modes of operands 1 and 2: if set, the cor-
responding operand will be an immediate value rather than a register or memory address.
Otherwise, the corresponding am (address mode) bits are consulted:

meaning of address mode flags
value meaning first immediate instruction word

00 skip: No operand None
01 immediate address: Memory address I-type
10 PC-relative: Offset from program counter I-type
11 other: Immediate word will specify address mode R-type

2.2 Immediate words

There are three types of immediate words:

I-type immediate word format
immediate

15 0

S-type immediate word format
short immediate 0 short immediate 1
15 8 7 0

R-type immediate word format
secondary am reg0 reg1 reg2
15 12 11 8 7 4 3 0

meaning of secondary address mode flags
value meaning next immediate word(s)
000 Register value: reg0 specifies a register None
001 Register indirect: Find EA in register reg0 None
010 Scaled: EA calculated as offset from reg0 S-type
011 Doubly scaled: For 2-dimensional arrays with based in register S-type
100 Auto increment: Find EA in register reg0, then increment None
101 Auto decrement: Find EA in register reg0, then decrement None
110 Scaled displacement: EA calculated as offset from immedate S-type then I-type
111 Doubly scaled displacment: 2-dimensional immediate-based S-type then I-type

3 Instruction set

We support the following instructions, all of which are encoded with a standard opcode word:

2

3.1 List of instructions

opcode mnemonic description
0 00000000 HALT Stop running

1

00000001 AND Perform bitwise and
00000010 OR Perform bitwise or
00000011 XOR Perform bitwise xor
00000100 LSFT Perform bitwise left shift
00000101 NAND Perform bitwise nand
00000110 NOR Perform bitwise nor
00000111 XNOR Perform bitwise xnor
00001000 RSFT Perform bitwise right shift
00001001 LAND Performs logical and
00001010 LOR Performs logical or
00001011 LXOR Performs logical xor
00001100 RASFT Perform bitwise right arithmatic shift
00001101 LNAND Performs logical nand
00001110 LNOR Performs logical nor
00001111 LXNOR Performs logical xnor
00010000 SLT Compares if one object is less than another
00010001 SGT Compares if one object is greater than another
00010010 SEQ Compares if two objects are equal
00010011 SNE Compares if two objects are not equal
00010100 SLE Compares if one object is less than or equal to another
00010101 SGE Compares if one object is greater than or equal to another
00010110 ADD Perform signed arithmetic addition
00010111 SUB Perform signed arithmetic subtraction

2

00011000 BLT Branches if one object is less than the other
00011001 BGT Branches if one object is greater than the other
00011010 BEQ Branches if two objects are equal
00011011 BNE Branches if two objects aren’t equal
00011100 BLE Branches if one object is less than or equal to the other
00011101 BGE Branches if one object is greater than or equal to the other

3 00011110 PRNT Prints the value at the specified location

4

00011111 LNOT Performs a logical not
00100000 SIZ Compares if the object is zero
00100001 SNZ Compares if the object is not zero
00100010 NOT Performs a bitwise not
00100011 NEG Performs a arithmetic negation

5
00100100 BIZ Branch if the object is zero
00100101 BNZ Branch if the object is not zero

6
00100110 INCR Increments the data in the given location
00100111 DECR Decriments the data in the given location

7
00101000 JMP Jumps to the location given
00101001 JAL Jumps to the location given and sets the RA
00101010 CALL Jumps to the location and puts the address on the stack

8 00101011 RET Jumps to the location most recently put on the stack
9 00101100 MOV Moves object from one space to another

3

3.2 Verification rules

Each numbered grouping in the instruction set table is validated as follows:

0. • No validation

1. • 2-3 ops

2. • 3 ops

• op0 is not a register

3. • 1 op∗

4. • 1-2 ops

5. • 2 ops

• op0 is not a register

6. • 1 op

7. • 1 op

• op0 is not a register

8. • 0 ops

9. • 2 ops

4 Memory specifications

The memory space is split into 16 bit-words, arranged big-endian. Each location is identified
via a 16-bit address, which points to a whole word. Because addresses are assigned to words
instead of bytes, it impossible to have unassigned accesses. The bus to and from memory is
16 bits, and the ISA only supports transferring a single word at a time.

5 List of registers

The architecture exposes the following 16 general-purpose registers:

Register Description
$a0–$a2 Argument Registers

$v Return data Register
$s0–$s3 Saved Registers
$t0–$t5 Temporary Registers

$sp Stack Pointer
$ra Return Address

∗Although the operand is passed in position 0, it must be treated as a source operand

4

6 Address modes and formats

6.1 Calculating Address Modes

Address Mode Effective Address
Immediate Address imm

PC Relative EA = $pc
Register Indirect EA = $reg0

Scaled EA = $reg0 + $reg1 << imm0
Doubly Scaled EA = Mem[$reg0 + $reg1 << imm0] + $reg2 << imm1

Auto Increment EA = $reg0 , $reg0 = $reg0 + 1
Auto Decrement EA = $reg0 , $reg0 = $reg0 – 1

Scaled Displacement EA = imm + $reg0 << imm0
Doubly Scaled Displacemnt EA = Mem[imm + $reg0 << imm0] + $reg1 << imm1

5

