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FabComp: Hardware specification

1 Hardware

The computer is composed of a largely isolated data unit and control unit, which are only
connected by a couple of direct buses.

1.1 Data path

All components of the data path have both 16-bit word size and address length. They are
connected as such:
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The system’s storage components adhere to these specifications:

data path storage objects
name type purpose
PC counter register | program counter
IR shift register’ | instruction register
MDR | shift register | main data register
TMP register temporary register
Mem memory main memory (program and data)
Reg | 16-register bank | general-purpose registers (see ISA document, section 5)
Val | 3-register bank | storage of immediate values
Addr | 3-register bank | storage of effective addresses

1.2 Control path

The word size and address widths within the control path are component-specific:

control path storage objects

name type word size purpose
uPC counter register 12-bit microprogram counter
plIR register 16-bit microinstruction register
cntl 3-register bank' 5-bit operand control flags
tmp register 5-bit temporary control flags
i counter register 2-bit track current working operand
regshift shift register 16-bit transfer register IDs from data path
wSP counter register 2-bit micro—stack pointer
uStack 3-register bank 12-bit subprocedure return addresses
puMem memory 16-bit data, 12-bit addr | contains hardcoded microprogram
pJumpTab memory 12-bit data, 7-bit addr | hardcoded jump table
control path buses
name | length | purpose
#wABUS 12 Moves the address of microcode
nJBUS 7 Moves around the information for jumping
pBUS 4 Moves the register number into the cntl registers
pDBUS D Moves the cntl values between cntl registers and tmp

The 3 control registers are used to represent the source and destination operand locations:

control registers encoding/flags

msb trailing bits significance
0 | 4-bit register identifier | this operand/destination is located in the specified GPR
1 0000 this operand is not used by the current operation
1 0001 this operand is located in register Val[l]
1 0010 this operand is located in register Val[2]
1 0011 this operand is located in the MDR
1 0100 this operand /destination is located at memory address Addr|[0]
1 0101 this operand is located at memory address Addr[1]
1 0110 this operand is located at memory address Addr|2]

TThese flippable shift registers support hardware-based toggling of individual bits.




to DBUS

2 Register transfer language

Here is the sequence of hardware actions performed by each phase of instruction processing

2.1 Fetch phase

IR <- Mem[PC] # the instruction word
PC <- PC + 1

2.2 Decode phase

i <- 00
loop
if i !'= 00 AND IR(imm) (i) = 1 then
Val[i] <- Mem[PC]
cntl[i] <- 10000 | i
PC <- PC + 1
elif IR(ami) = 00 then



cntl[i] <- 10000
elif IR(ami) = 01 or 10 then

Addr[i] <- Mem[PC]

cntl[i] <- 10100 | i

PC <- PC + 1

elif IR(ami) = 11 then

MDR <- Mem[PC] # the R-type immediate word

cntl[i] <- 10100 | i

PC <- PC + 1

if MDR(sam) = 000 then # register value
regshift <- MDR
regshift <- regshift >> 8 # reg0
cntl[i] <- 00000 | regshift

elif MDR(sam) = 001 then # register indirect
Addr[i] <- Reg[MDR(reg0)]

elif MDR(sam) = 010 then # scaled
Val[i] <- MDR
MDR <- Mem[PC] # the S-type immediate
PC <- PC + 1
MDR <- MDR >> 8
Addr[i] <- Regl[Vall[i](regl)] << MDR
Addr[i] <- ReglVallil(reg0)] + Addr[il

elif MDR(sam) = 011 then # doubly scaled
Val[i] <- MDR
MDR <- Mem[PC]
TMP <- MDR
PC <- PC + 1
MDR <- MDR >> 8
Addr[i] <- ReglVal[i](regl)] << MDR
Addr[i] <- ReglVall[il(reg0)] + Addr[il
MDR <- Mem[Addr[i]]
Addr[i] <- MDR
MDR <- TMP & Oxff
MDR <- Regl[Vall[il] (reg2)] << MDR
Addr[i] <- Addr[i] + MDR

elif MDR(sam) = 100 then # auto increment
Vall[i] <- MDR
Addr[i] <- Regl[Vallil](reg0)]
Regl[Vall[i] (reg0)] <- ReglVall[il(reg0)] + 1

elif MDR(sam) = 101 then # auto decrement
Val[i] <- MDR
Addr[i] <- Regl[Vallil](reg0)]
Regl[Vallil (reg0)] <- ReglVal[il (reg0)] - 1

elif MDR(sam) = 110 then # scaled displacement
Val[i] <- MDR
MDR <- Mem[PC] # the S-type immediate
PC <- PC + 1



MDR <- MDR >> 8
Addr[i] <- Regl[Vall[il(reg0)] << MDR
MDR <- Mem[PC] # the I-type immediate
PC <- PC + 1
Addr[i] <- Addr[i] + MDR
elif MDR(sam) = 111 then # doubly scaled displacement
Val[i] <- MDR
MDR <- Mem[PC] # the S-type immediate
PC <- PC + 1
TMP <- MDR
MDR <- MDR >> 8
Addr[i] <- ReglVal[il (reg0)] << MDR
MDR <- Mem[PC] # the I-type immediate
PC <- PC + 1
Addr[i] <- Addr[i] + MDR
MDR <- Mem[Addr[il]
Addr[i] <- MDR
MDR <- TMP & Oxff
MDR <- Regl[Vall[i] (regl)] << MDR
Addr[i] <- Addr[i] + MDR
fi
fi
i<-1i+1
until i1 = 11 repeat

i <- 00
loop
if IR(ami) = 10 then # PC-relative
Addr[i] <- Addr[i] + PC
fi
i<-1+1
until i = 11 repeat

2.3 Memory Load

i <- 00
loop
if cntl[i](4) = 1 AND cntl[i](2) = 1 then
Val[i] <- Mem[Addr[i]]
if i !'= 00 then
cntl[i](2) <- 0
fi
fi
i<-1+1
until i = 11 repeat



2.4 Execute

# call function at uJumpTab label IR(opc)

2.5 Writeback

if cntl1[0]1(4) = O then
Reglcntl1[0](3..0)] <- MDR

elif cntl1[0](2) = 1 then
Mem[Addr[cnt1[0](3..0)]] <- MDR

fi

# jump to the very beginning

2.6 Supporting Functions

halt:
# bail out

and:
# call validator_one
MDR <- opl & op2
# return

or:
# call validator_one
MDR <- opl | op2
# return

Xor:
# call validator_one
MDR <- opl ~ op2
# return

1sft:
# call validator_one
MDR <- opl << op2
# return

nand:
# call validator_one
# call and
cntl[1] <- 10011
cntl[2] <- 10000
# call not
# return

nor:
# call validator_one
# call or
cntl[1] <- 10011
cntl[2] <- 10000
# call not
# return

XNnor:



# call validator_one
# call xor
cntl[1] <- 10011
cntl[2] <- 10000
# call not
# return

rsft:
# call validator_one
MDR <- opl >> op2
# return

# logical goes here

# logical goes here

# logical goes here

rasft:
# call validator_one
MDR <- opl >>> op2
# return

# illogical goes here

# illogical goes here

# illogical goes here

slt:
# call validator_one
# call sub
if MDR(15) = 1 then
MDR <- 1
else
MDR <- 0
fi
# return
sgt:
# call validator_one
MDR <- op2 - opl
if MDR(15) = 1 then
MDR <- 1
else
MDR <- 0
fi
# return
seq:
# call validator_one
# call sub
if MDR = 0 then
MDR <- 1
else
MDR <- O
fi

# return



sne:
# call validator_one
# call seq
cntl[1] <- 10011
cntl[2] <- 10000
# call siz
# return

sle:
# call validator_one
# call sgt
cntl[1] <- 10011
cntl[2] <- 10000
# call siz
# return

sge:
# call validator_one
# call slt
cntl[1] <- 10011
cntl[2] <- 10000
# call siz
# return

add:
# call validator_one
MDR <- opl + op2
# return

sub:
# call validator_one
MDR <- opl - op2
# return

# compbranch goes here

# compbranch goes here

# compbranch goes here

# compbranch goes here

# compbranch goes here

# compbranch goes here

prat:
# call validator_three
# print out opl
# return

# siz goes here

siz: # handles 1lnot and siz
# call validator_four
if opl = 0 then

MDR <- 1
else
MDR <- 0

fi



# return
snz:
# call validator_four
# call siz
cntl[1] <- 10011
# call siz
# return
not:
# call validator_four
MDR <- ~ opl
# return
neg:
# call validator_four
MDR <- 0 - opl
# return
# simpbranch goes here
# simpbranch goes here
incr:
# call validator_six
# call add
# return
decr:
# call validator_six
call sub
# return

+*

jmp:
# call validator_seven
PC <- op0
cntl[0] <- 10011
# return

jal:
# call validator_seven
Reg[15] <- PC
PC <- op0
cntl[0] <- 10011
# return

call:
# call validator_seven
# call jal
Reg[14] <- Regl[14] - 1
Mem[Reg[14]] <- Regl15]
# return

ret:
# call validator_eight
Addr[0] <- Mem[Reg[141]
cntl[0] <- 10100
# call jmp



Reg[14] <- Reg[14] + 1
# return

move:
# call validator_nine
MDR <- opl
# return

logical: # handles land, lor, lxor
tmp <- cntl[2]
cntl[2] <- 10000
# call snz
Val[1] <- MDR
cntl[1] <- tmp
cntl[2] <- 10000
# call snz
cntl[1] <- 10001
cntl[2] <- 10011
IR(opc) (3) <- 0 # IR(opc) - 8
# call function at uJumpTab label IR(opc)
# return

illogical: # handles 1lnand, lnor, lxnor
IR(opc) (2) <- 0 # IR(opc) - 4
# call logical
cntl[1] <- 10011
cntl[2] <- 10000
# call siz
# return

compbranch: # handles blt, bgt, beq, bne, ble, bge
# call validator_two
IR(opc) (3) <- O # IR(opc) - 8
# call function at uJumpTab label IR(opc)
if MDR = 1 then

PC <- op0
fi
cntl[0] <- 10011
# return

simpbranch: # handles biz, bnz
# call validator_five
IR(opc) (2) <- O # IR(opc) - 4
# call function at uJumpTab label IR(opc)
if MDR = 1 then
PC <- op0
fi
cntl[0] <- 10011

10



# return

validator_one:
# Check for 2-3 ops, and detect/handle shorthand form
if cntl1[0] = 10000 then
# bail out loudly
fi
if cntl[1] = 10000 then
# bail out loudly
fi
if cntl[2] = 10000 then
cntl[2] <- cntl[1]
cntl[1] <- cntl[0]
if cntl[11(4) = 1 AND cntl[1](2) = 1 then
cntl[1](2) <- 0
fi
fi
# return

validator_two:

# Check for 3 ops, opO is not a register
if cntl[0] = 10000 then

# bail out loudly
fi
if cntl[1] = 10000 then

# bail out loudly
fi
if cntl[2] = 10000 then

# bail out loudly
fi
if cntl[0](4) = O then

# bail out loudly
fi
# return

validator_three:

# Check for 1 op, and shuttle it into position 1

if cntl1[0] = 10000 then
# bail out loudly

fi

cntl[1] <- cntl[0]

cntl[0] <- 10011

if cntl1[1](4) = 1 AND cntl[1](2) = 1 then
cntl[1](2) <- 0

fi

# return
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validator_four:
# Check for 1-2 ops, set cntl[1] if it was empty
if c¢ntl[0] = 10000 then
# bail out loudly
fi
if cntl[1] = 10000 then
cntl[1] <- cntl[0]
if cntl[11(4) = 1 AND cntl[1](2) = 1 then
cntl[1](2) <- 0
fi
fi
# return

validator_five:

# Check for 2 ops, opO is not a register
if cntl[0] = 10000 then

# bail out loudly
fi
if cntl[1] = 10000 then

# bail out loudly
fi
if cntl[0]1(4) = O then

# bail out loudly
fi
# return

validator_six:
# Check for 1 op, and prepare for binary operation with 1
if cntl[0] = 10000 then
# bail out loudly
fi
MDR <- 1
cntl[1] <- 10011
# return

validator_seven:
# Check for 1 op, opO is not a register
if cntl[0] = 10000 then
# bail out loudly
fi
if cntl1[0](4) = O then
# bail out loudly
fi
# return

validator_eight:
# Check for 0 op
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# return

validator_nine:
# Check for 2 ops
if cntl1[0] = 10000 then
# bail out loudly
fi
if cntl[1] = 10000 then
# bail out loudly
fi
# return

3 Microinstruction format

Each microinstruction is encoded as a single word, with one of two possible formats:

C-type word format J-type word format
0000 | control points || type | condition | jump index
1512 | 11 011512 |11 716 0

3.1 C-type microinstructions

This microinstruction type is used to set control points and move data around in the data
and control paths. The encoding is entirely vertical and therefore supports no parallelism
beyond that encoded into the discrete control point identifiers themselves.

control point settings
encoding | equivalent RTL
0x00 | Addr|0] +— Mem|Reg|[14]]
0x01 | Addr[i] « Addr[i] + MDR
0x02 | Addr[i] < Addr[i] + PC
0x03 | Addrli] «+ MDR
0x04 | Addr[i] < Mem|P(]
0x05 | Addr[i] < Reg|[MDR(reg0)]
0x06 | Addr[i] < Reg[Val[i](reg0)]
0x07 | Addr[i] < Reg|Val|i](reg0)] + Addr]i]
0x08 | Addr[i] «+ Reg|Valli](reg0)] < < MDR
0x09 | Addr[i] «+ Reg|Valli](regl)] < < MDR
0x0a | IR < Mem|PC]|
0x0b | IR(opc)(2) < 0
0x0c | IR(opc)(3) < 0
0x0d | MDR <« 0
0x0e MDR <+ 0 — opl
0x0f MDR «+ 1
0x10 MDR <+ MDR > > 8
0x11 MDR «+ Mem[Addrli]|
0x12 | MDR < Mem|PC]
0x13 | MDR < Reg|Valli](regl)] < < MDR

13



0x14
0x15
0x16
0x17
0x18
0x19
Oxla
0x1b
Oxlc
0x1d
Ox1le
Ox1f
0x20
0x21
0x22
0x23
0x24
0x25
0x26
0x27
0x28
0x29
0x2a
0x2b
0x2c
0x2d
0x2e
0x2f
0x30
0x31
0x32
0x33
0x34
0x35
0x36
0x37
0x38
0x39
Ox3a
0x3b
0x3c
0x3d
0x3e
0x3f
0x40
Ox41
0x42

MDR < Reg|Val[i](reg2)] < < MDR
MDR <« TMP & Oxff
MDR < opl

MDR < opl & op2
MDR < opl + op2

MDR < opl — op2

MDR <« opl < < op2
MDR <« opl > > op2
MDR <« opl > > > op2
MDR <« opl " op2
MDR < opl | op2

MDR <« op2 — opl

MDR < " opl
Mem|Addr[entl[0](3..0)]] < MDR
Mem|Reg[14]] < Reg[15]
PC + PC +1

PC <« op0
Reg|14] < Reg|14] + 1
Reg|14] < Reg[14] — 1
Reg|15] <+ PC
Reg[Val[i](reg0)] < Reg[Val[i](reg0)] + 1
Reg|Valli](reg0)| + Reg|Valli](reg0)| — 1
Reg|cntl|0](3..0)] <~ MDR
TMP < MDR

Val[1] + MDR

Valli] + MDR

Valli] - Mem[Addrli]]
Val[i] + Mem[PC]
cntl[0] < 10011

entl[0] + 10100

cntl[1] + 10001

cntl[1] « 10011

cntl[1] «+ cntl[0]

cntl|1] «— tmp

cntl[1](2) < 0

entl[2] + 10000

cntl[2] « 10011

cntl|2] < entl[1]

cntl|i] <— 00000 | regshift
cntl[i] « 10000

entl[i] < 10000 | i

cntl[i] < 10100 | i
cntlfi](2) < 0

1< 00

1< 1+1

regshift <~ MDR

regshift < regshift > > 8

14




| 0x43 | tmp < cntl[2]

3.2 J-type microinstructions

This microinstruction format is used for goto operations altering the micro—program counter
and microstack. The type field determines what type of control flow change is occurring, as
well as which of the immediates will actually be used.

meaning of the type field

encoding | function condition and jump fields
0x0 (C-type microinstruction) N/A
Ox1 jump to jump table label only jump used
0x2 jump to beginning of the microprogram both ignored
0x3 call function at jump table label only jump used
0x4 call function at jump table address IR(opc) both ignored
0xd return from a call both ignored
0x6 halt system normally both ignored
0x7 halt system due to failed operand validation both ignored
0x8 print contents of opl both ignored
0x9 (invalid) N/A
Oxa branch to jump table label both used
0xb branch to beginning of the microprogram both ignored
Oxc conditionally call function by jump table both used
0xd conditionally call function at IR(opc) only condition used
Oxe conditionally return from a call only condition used
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If the goto is conditional, the condition bits determine the sufficient clause as follows:

possible conditional sufficient clauses

encoding | expansion

0x00 | IR(ami) = 00

0x01 IR (ami) = 01 or 10

0x02 | IR(ami) = 10

0x03 | IR(ami) = 11

0x04 MDR =0

0x05 MDR =1

0x06 | MDR(15) = 1

0x07 | MDR(sam) = 000
0x08 | MDR(sam) = 001
0x09 | MDR(sam) — 010

0x0b | MDR(sam) = 100
0x0c MDR
0x0d MDR
0x0e MDR
0x0f | cutl[0] = 10000
0x10 | entl]0](2) = 1

0x11 | cntl|0](4) =0

0x12 | entl[1] = 10000

0x13 | centl[1](4) = 1 AND cntl[1](2) = 1
0x14 | cntl[2] = 10000

0x15 | cntlfi](4) = 1 AND cntl[i](2) =1

(
(
E
0x0a | MDR(sam) = 011
(
(
(
(
|

0x16 | i!= 00
0x17 | i!= 00 AND IR(imm)(i) — 1
0x18 |i=11

0x19 opl =0

Jump destinations are encoded as addresses in the jump table, which is stored in a dedicated
memory module within the control unit. Each location therein is analogous to a label, and
contains a microprogram memory address. The precise number and ordering of labels within
this table are unspecified, except that the lowest addresses are to be used for the user-facing
instruction opcodes in the exact order enumerated under section 3.1 of the ISA document.
This requirement is imposed to allow efficient decoding of user-generated instruction words.

16



