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FabComp: Hardware speci�cation

1 Hardware

The computer is composed of a largely isolated data unit and control unit, which are only
connected by a couple of direct buses.

1.1 Data path

All components of the data path have both 16-bit word size and address length. They are
connected as such:
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The system's storage components adhere to these speci�cations:

data path storage objects
name type purpose
PC counter register program counter
IR shift register† instruction register

MDR shift register main data register
TMP register temporary register
Mem memory main memory (program and data)
Reg 16-register bank general-purpose registers (see ISA document, section 5)
Val 3-register bank storage of immediate values
Addr 3-register bank storage of e�ective addresses

1.2 Control path

The word size and address widths within the control path are component-speci�c:

control path storage objects
name type word size purpose
µPC counter register 12-bit microprogram counter
µIR register 16-bit microinstruction register
cntl 3�register bank† 5-bit operand control �ags
tmp register 5-bit temporary control �ags
i counter register 2-bit track current working operand

regshift shift register 16-bit transfer register IDs from data path
µSP counter register 2-bit micro�stack pointer

µStack 3-register bank 12-bit subprocedure return addresses
µMem memory 16-bit data, 12-bit addr contains hardcoded microprogram

µJumpTab memory 12-bit data, 7-bit addr hardcoded jump table

control path buses
name length purpose

µABUS 12 Moves the address of microcode
µJBUS 7 Moves around the information for jumping
pBUS 4 Moves the register number into the cntl registers
pDBUS 5 Moves the cntl values between cntl registers and tmp

The 3 control registers are used to represent the source and destination operand locations:

control registers encoding/�ags
msb trailing bits signi�cance
0 4-bit register identi�er this operand/destination is located in the speci�ed GPR
1 0000 this operand is not used by the current operation
1 0001 this operand is located in register Val[1]
1 0010 this operand is located in register Val[2]
1 0011 this operand is located in the MDR
1 0100 this operand/destination is located at memory address Addr[0]
1 0101 this operand is located at memory address Addr[1]
1 0110 this operand is located at memory address Addr[2]

†These �ippable shift registers support hardware-based toggling of individual bits.
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2 Register transfer language

Here is the sequence of hardware actions performed by each phase of instruction processing:

2.1 Fetch phase

IR <- Mem[PC] # the instruction word

PC <- PC + 1

2.2 Decode phase

i <- 00

loop

if i != 00 AND IR(imm)(i) = 1 then

Val[i] <- Mem[PC]

cntl[i] <- 10000 | i

PC <- PC + 1

elif IR(ami) = 00 then
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cntl[i] <- 10000

elif IR(ami) = 01 or 10 then

Addr[i] <- Mem[PC]

cntl[i] <- 10100 | i

PC <- PC + 1

elif IR(ami) = 11 then

MDR <- Mem[PC] # the R-type immediate word

cntl[i] <- 10100 | i

PC <- PC + 1

if MDR(sam) = 000 then # register value

regshift <- MDR

regshift <- regshift >> 8 # reg0

cntl[i] <- 00000 | regshift

elif MDR(sam) = 001 then # register indirect

Addr[i] <- Reg[MDR(reg0)]

elif MDR(sam) = 010 then # scaled

Val[i] <- MDR

MDR <- Mem[PC] # the S-type immediate

PC <- PC + 1

MDR <- MDR >> 8

Addr[i] <- Reg[Val[i](reg1)] << MDR

Addr[i] <- Reg[Val[i](reg0)] + Addr[i]

elif MDR(sam) = 011 then # doubly scaled

Val[i] <- MDR

MDR <- Mem[PC]

TMP <- MDR

PC <- PC + 1

MDR <- MDR >> 8

Addr[i] <- Reg[Val[i](reg1)] << MDR

Addr[i] <- Reg[Val[i](reg0)] + Addr[i]

MDR <- Mem[Addr[i]]

Addr[i] <- MDR

MDR <- TMP & 0xff

MDR <- Reg[Val[i](reg2)] << MDR

Addr[i] <- Addr[i] + MDR

elif MDR(sam) = 100 then # auto increment

Val[i] <- MDR

Addr[i] <- Reg[Val[i](reg0)]

Reg[Val[i](reg0)] <- Reg[Val[i](reg0)] + 1

elif MDR(sam) = 101 then # auto decrement

Val[i] <- MDR

Addr[i] <- Reg[Val[i](reg0)]

Reg[Val[i](reg0)] <- Reg[Val[i](reg0)] - 1

elif MDR(sam) = 110 then # scaled displacement

Val[i] <- MDR

MDR <- Mem[PC] # the S-type immediate

PC <- PC + 1
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MDR <- MDR >> 8

Addr[i] <- Reg[Val[i](reg0)] << MDR

MDR <- Mem[PC] # the I-type immediate

PC <- PC + 1

Addr[i] <- Addr[i] + MDR

elif MDR(sam) = 111 then # doubly scaled displacement

Val[i] <- MDR

MDR <- Mem[PC] # the S-type immediate

PC <- PC + 1

TMP <- MDR

MDR <- MDR >> 8

Addr[i] <- Reg[Val[i](reg0)] << MDR

MDR <- Mem[PC] # the I-type immediate

PC <- PC + 1

Addr[i] <- Addr[i] + MDR

MDR <- Mem[Addr[i]]

Addr[i] <- MDR

MDR <- TMP & 0xff

MDR <- Reg[Val[i](reg1)] << MDR

Addr[i] <- Addr[i] + MDR

fi

fi

i <- i + 1

until i = 11 repeat

i <- 00

loop

if IR(ami) = 10 then # PC-relative

Addr[i] <- Addr[i] + PC

fi

i <- i + 1

until i = 11 repeat

2.3 Memory Load

i <- 00

loop

if cntl[i](4) = 1 AND cntl[i](2) = 1 then

Val[i] <- Mem[Addr[i]]

if i != 00 then

cntl[i](2) <- 0

fi

fi

i <- i + 1

until i = 11 repeat
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2.4 Execute

# call function at uJumpTab label IR(opc)

2.5 Writeback

if cntl[0](4) = 0 then

Reg[cntl[0](3..0)] <- MDR

elif cntl[0](2) = 1 then

Mem[Addr[cntl[0](3..0)]] <- MDR

fi

# jump to the very beginning

2.6 Supporting Functions

halt:

# bail out

and:

# call validator_one

MDR <- op1 & op2

# return

or:

# call validator_one

MDR <- op1 | op2

# return

xor:

# call validator_one

MDR <- op1 ^ op2

# return

lsft:

# call validator_one

MDR <- op1 << op2

# return

nand:

# call validator_one

# call and

cntl[1] <- 10011

cntl[2] <- 10000

# call not

# return

nor:

# call validator_one

# call or

cntl[1] <- 10011

cntl[2] <- 10000

# call not

# return

xnor:

6



# call validator_one

# call xor

cntl[1] <- 10011

cntl[2] <- 10000

# call not

# return

rsft:

# call validator_one

MDR <- op1 >> op2

# return

# logical goes here

# logical goes here

# logical goes here

rasft:

# call validator_one

MDR <- op1 >>> op2

# return

# illogical goes here

# illogical goes here

# illogical goes here

slt:

# call validator_one

# call sub

if MDR(15) = 1 then

MDR <- 1

else

MDR <- 0

fi

# return

sgt:

# call validator_one

MDR <- op2 - op1

if MDR(15) = 1 then

MDR <- 1

else

MDR <- 0

fi

# return

seq:

# call validator_one

# call sub

if MDR = 0 then

MDR <- 1

else

MDR <- 0

fi

# return
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sne:

# call validator_one

# call seq

cntl[1] <- 10011

cntl[2] <- 10000

# call siz

# return

sle:

# call validator_one

# call sgt

cntl[1] <- 10011

cntl[2] <- 10000

# call siz

# return

sge:

# call validator_one

# call slt

cntl[1] <- 10011

cntl[2] <- 10000

# call siz

# return

add:

# call validator_one

MDR <- op1 + op2

# return

sub:

# call validator_one

MDR <- op1 - op2

# return

# compbranch goes here

# compbranch goes here

# compbranch goes here

# compbranch goes here

# compbranch goes here

# compbranch goes here

prnt:

# call validator_three

# print out op1

# return

# siz goes here

siz: # handles lnot and siz

# call validator_four

if op1 = 0 then

MDR <- 1

else

MDR <- 0

fi
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# return

snz:

# call validator_four

# call siz

cntl[1] <- 10011

# call siz

# return

not:

# call validator_four

MDR <- ~ op1

# return

neg:

# call validator_four

MDR <- 0 - op1

# return

# simpbranch goes here

# simpbranch goes here

incr:

# call validator_six

# call add

# return

decr:

# call validator_six

# call sub

# return

jmp:

# call validator_seven

PC <- op0

cntl[0] <- 10011

# return

jal:

# call validator_seven

Reg[15] <- PC

PC <- op0

cntl[0] <- 10011

# return

call:

# call validator_seven

# call jal

Reg[14] <- Reg[14] - 1

Mem[Reg[14]] <- Reg[15]

# return

ret:

# call validator_eight

Addr[0] <- Mem[Reg[14]]

cntl[0] <- 10100

# call jmp
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Reg[14] <- Reg[14] + 1

# return

move:

# call validator_nine

MDR <- op1

# return

logical: # handles land, lor, lxor

tmp <- cntl[2]

cntl[2] <- 10000

# call snz

Val[1] <- MDR

cntl[1] <- tmp

cntl[2] <- 10000

# call snz

cntl[1] <- 10001

cntl[2] <- 10011

IR(opc)(3) <- 0 # IR(opc) - 8

# call function at uJumpTab label IR(opc)

# return

illogical: # handles lnand, lnor, lxnor

IR(opc)(2) <- 0 # IR(opc) - 4

# call logical

cntl[1] <- 10011

cntl[2] <- 10000

# call siz

# return

compbranch: # handles blt, bgt, beq, bne, ble, bge

# call validator_two

IR(opc)(3) <- 0 # IR(opc) - 8

# call function at uJumpTab label IR(opc)

if MDR = 1 then

PC <- op0

fi

cntl[0] <- 10011

# return

simpbranch: # handles biz, bnz

# call validator_five

IR(opc)(2) <- 0 # IR(opc) - 4

# call function at uJumpTab label IR(opc)

if MDR = 1 then

PC <- op0

fi

cntl[0] <- 10011
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# return

validator_one:

# Check for 2-3 ops, and detect/handle shorthand form

if cntl[0] = 10000 then

# bail out loudly

fi

if cntl[1] = 10000 then

# bail out loudly

fi

if cntl[2] = 10000 then

cntl[2] <- cntl[1]

cntl[1] <- cntl[0]

if cntl[1](4) = 1 AND cntl[1](2) = 1 then

cntl[1](2) <- 0

fi

fi

# return

validator_two:

# Check for 3 ops, op0 is not a register

if cntl[0] = 10000 then

# bail out loudly

fi

if cntl[1] = 10000 then

# bail out loudly

fi

if cntl[2] = 10000 then

# bail out loudly

fi

if cntl[0](4) = 0 then

# bail out loudly

fi

# return

validator_three:

# Check for 1 op, and shuttle it into position 1

if cntl[0] = 10000 then

# bail out loudly

fi

cntl[1] <- cntl[0]

cntl[0] <- 10011

if cntl[1](4) = 1 AND cntl[1](2) = 1 then

cntl[1](2) <- 0

fi

# return
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validator_four:

# Check for 1-2 ops, set cntl[1] if it was empty

if cntl[0] = 10000 then

# bail out loudly

fi

if cntl[1] = 10000 then

cntl[1] <- cntl[0]

if cntl[1](4) = 1 AND cntl[1](2) = 1 then

cntl[1](2) <- 0

fi

fi

# return

validator_five:

# Check for 2 ops, op0 is not a register

if cntl[0] = 10000 then

# bail out loudly

fi

if cntl[1] = 10000 then

# bail out loudly

fi

if cntl[0](4) = 0 then

# bail out loudly

fi

# return

validator_six:

# Check for 1 op, and prepare for binary operation with 1

if cntl[0] = 10000 then

# bail out loudly

fi

MDR <- 1

cntl[1] <- 10011

# return

validator_seven:

# Check for 1 op, op0 is not a register

if cntl[0] = 10000 then

# bail out loudly

fi

if cntl[0](4) = 0 then

# bail out loudly

fi

# return

validator_eight:

# Check for 0 op
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# return

validator_nine:

# Check for 2 ops

if cntl[0] = 10000 then

# bail out loudly

fi

if cntl[1] = 10000 then

# bail out loudly

fi

# return

3 Microinstruction format

Each microinstruction is encoded as a single word, with one of two possible formats:

C-type word format
0000 control points
15 12 11 0

J-type word format
type condition jump index
15 12 11 7 6 0

3.1 C-type microinstructions

This microinstruction type is used to set control points and move data around in the data
and control paths. The encoding is entirely vertical and therefore supports no parallelism
beyond that encoded into the discrete control point identi�ers themselves.

control point settings
encoding equivalent RTL
0x00 Addr[0] ← Mem[Reg[14]]
0x01 Addr[i] ← Addr[i] + MDR
0x02 Addr[i] ← Addr[i] + PC
0x03 Addr[i] ← MDR
0x04 Addr[i] ← Mem[PC]
0x05 Addr[i] ← Reg[MDR(reg0)]
0x06 Addr[i] ← Reg[Val[i](reg0)]
0x07 Addr[i] ← Reg[Val[i](reg0)] + Addr[i]
0x08 Addr[i] ← Reg[Val[i](reg0)] < < MDR
0x09 Addr[i] ← Reg[Val[i](reg1)] < < MDR
0x0a IR ← Mem[PC]
0x0b IR(opc)(2) ← 0
0x0c IR(opc)(3) ← 0
0x0d MDR ← 0
0x0e MDR ← 0 � op1
0x0f MDR ← 1
0x10 MDR ← MDR > > 8
0x11 MDR ← Mem[Addr[i]]
0x12 MDR ← Mem[PC]
0x13 MDR ← Reg[Val[i](reg1)] < < MDR
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0x14 MDR ← Reg[Val[i](reg2)] < < MDR
0x15 MDR ← TMP & 0x�
0x16 MDR ← op1
0x17 MDR ← op1 & op2
0x18 MDR ← op1 + op2
0x19 MDR ← op1 � op2
0x1a MDR ← op1 < < op2
0x1b MDR ← op1 > > op2
0x1c MDR ← op1 > > > op2
0x1d MDR ← op1 � op2
0x1e MDR ← op1 | op2
0x1f MDR ← op2 � op1
0x20 MDR ← � op1
0x21 Mem[Addr[cntl[0](3..0)]] ← MDR
0x22 Mem[Reg[14]] ← Reg[15]
0x23 PC ← PC + 1
0x24 PC ← op0
0x25 Reg[14] ← Reg[14] + 1
0x26 Reg[14] ← Reg[14] � 1
0x27 Reg[15] ← PC
0x28 Reg[Val[i](reg0)] ← Reg[Val[i](reg0)] + 1
0x29 Reg[Val[i](reg0)] ← Reg[Val[i](reg0)] � 1
0x2a Reg[cntl[0](3..0)] ← MDR
0x2b TMP ← MDR
0x2c Val[1] ← MDR
0x2d Val[i] ← MDR
0x2e Val[i] ← Mem[Addr[i]]
0x2f Val[i] ← Mem[PC]
0x30 cntl[0] ← 10011
0x31 cntl[0] ← 10100
0x32 cntl[1] ← 10001
0x33 cntl[1] ← 10011
0x34 cntl[1] ← cntl[0]
0x35 cntl[1] ← tmp
0x36 cntl[1](2) ← 0
0x37 cntl[2] ← 10000
0x38 cntl[2] ← 10011
0x39 cntl[2] ← cntl[1]
0x3a cntl[i] ← 00000 | regshift
0x3b cntl[i] ← 10000
0x3c cntl[i] ← 10000 | i
0x3d cntl[i] ← 10100 | i
0x3e cntl[i](2) ← 0
0x3f i ← 00
0x40 i ← i + 1
0x41 regshift ← MDR
0x42 regshift ← regshift > > 8
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0x43 tmp ← cntl[2]

3.2 J-type microinstructions

This microinstruction format is used for goto operations altering the micro�program counter
and microstack. The type �eld determines what type of control �ow change is occurring, as
well as which of the immediates will actually be used.

meaning of the type �eld
encoding function condition and jump �elds

0x0 (C-type microinstruction) N/A
0x1 jump to jump table label only jump used
0x2 jump to beginning of the microprogram both ignored
0x3 call function at jump table label only jump used
0x4 call function at jump table address IR(opc) both ignored
0x5 return from a call both ignored
0x6 halt system normally both ignored
0x7 halt system due to failed operand validation both ignored
0x8 print contents of op1 both ignored
0x9 (invalid) N/A
0xa branch to jump table label both used
0xb branch to beginning of the microprogram both ignored
0xc conditionally call function by jump table both used
0xd conditionally call function at IR(opc) only condition used
0xe conditionally return from a call only condition used
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If the goto is conditional, the condition bits determine the su�cient clause as follows:

possible conditional su�cient clauses
encoding expansion
0x00 IR(ami) = 00
0x01 IR(ami) = 01 or 10
0x02 IR(ami) = 10
0x03 IR(ami) = 11
0x04 MDR = 0
0x05 MDR = 1
0x06 MDR(15) = 1
0x07 MDR(sam) = 000
0x08 MDR(sam) = 001
0x09 MDR(sam) = 010
0x0a MDR(sam) = 011
0x0b MDR(sam) = 100
0x0c MDR(sam) = 101
0x0d MDR(sam) = 110
0x0e MDR(sam) = 111
0x0f cntl[0] = 10000
0x10 cntl[0](2) = 1
0x11 cntl[0](4) = 0
0x12 cntl[1] = 10000
0x13 cntl[1](4) = 1 AND cntl[1](2) = 1
0x14 cntl[2] = 10000
0x15 cntl[i](4) = 1 AND cntl[i](2) = 1
0x16 i != 00
0x17 i != 00 AND IR(imm)(i) = 1
0x18 i = 11
0x19 op1 = 0

Jump destinations are encoded as addresses in the jump table, which is stored in a dedicated
memory module within the control unit. Each location therein is analogous to a label, and
contains a microprogram memory address. The precise number and ordering of labels within
this table are unspeci�ed, except that the lowest addresses are to be used for the user-facing
instruction opcodes in the exact order enumerated under section 3.1 of the ISA document.
This requirement is imposed to allow e�cient decoding of user-generated instruction words.
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