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Abstract

We present Dimentia, a system that uses static analysis to detect possible
program logic errors related to dimensionality mismatches. Unlike prior
work, the system is completely automatic: it doesn’t require modifying
the software to be tested. We showcase its usefulness for finding logic

errors by presenting a small case study using examples from programming
competitions.



1 Introduction

Logic errors are a common type of bug that can be notoriously hard to catch. While there
is no hope of detecting all logical mistakes in source code, one can try to design specialized
software to detect a specific class of probable bug. To this end, we propose a static bug
detection technique that uses dimensional analysis to flag possible programmer mistakes. We
propose one such static bug detection technique that tracks the manner in which variables
are used throughout a compilation unit.

Examine the C4++ source code in Listing 1. If we remove the statement / sq-dist(...)
marked in red, the code contains a dimensional bug. To see the bug, it is important to know
that the variables v, g and pts[] hold 2-D points. Let’s denote the dimension of the unit
distance of this 2-D plane as E. It can be inferred that the dimension of dot_prod is EZ.
Without the statement in red, the dimension of alpha is also E?. But this implies that
pts[i] .x + alpha*v.x will be adding together variables of dimension £ and E®, a clear
dimensional bug. The proposed method vows to catch such bugs.

Listing 1: Example of a dimensional bug

double dot_prod = (g.x-ptsl[i].x)*v.x + (g.y-ptsli]l.y)*v.y;
double alpha = dot_prod / sq_dist(v, {0, 0});
if (.0) Ao

Pt cand = {pts[i].x + alpha*v.x, pts[i]l.y + alpha*v.y};

}

The example from Listing 1 comes from a competitive programming event, and although
it has been edited for clarity, it illustrates a mistake that one of the authors actually made
during the contest.

2 Related work

Checking dimensional consistency is a classical topic in software analysis. Intermixing physi-
cal units with native program code and utilizing dimensionality checking appeared in Ada [3]
and Pascal [1, 2|. These approaches share a common theme: they first define a language
extension used to associate a variable with an expressive physical unit, then use rule-based
inference to catch dimensionality bugs.

For instance, [3] builds a package allowing the programmer to declare general classes of
data (e.g. DISTANCE and TIME) as well as specific units (e.g. CM and SEC). Variables and
constants can then be annotated with these types of metadata, respectively. The author’s
package requires the programmer to define data classes” multiplicative relationships, which is
done by supplying matrices of coefficients. When it encounters an expression in the program,
the package retrieves these matrices by looking up the operands’ classes by units. It then
verifies that the program’s computations are consistent with this dimensionality information.

Although past work in dimensional analysis offers rich semantic checking of programs
thanks to its perfect understanding of variables’ data classes, this comes with the cost of
requiring significant programmer effort. Data classes must be explicitly defined and related,



and every non-dimensionless variable must be explicitly related to a unit. We observe that,
while having such detailed information enables very accurate verification, it is possible to
perform dimensional analysis without any additional information about the program or its
variables.

This approach shifts the focus from one of directly detecting correctness violations to one
of finding consistency violations: it lacks the information to identify semantic errors when
they appear in isolation, but given a larger program, is able to identify conflicting uses of
values. Moreover, because no additional labor is imposed on the programmer, such a system
is more likely to be used, especially in situations such as competitive programming, where
rapid detection of bugs is important but development time that is paramount.

3 Our approach

In order to associate a dimension with a variable (or more generally, a semantic type),
we define the scalar degree of a semantic type as the sum of exponents on its units; for
instance, lengths’ (often expressed in meters) degree would be 1, areas’ (often expressed in
meters squared) would be 2 and accelerations’ (often expressed in meters per seconds square,
[ms™2]) would be —1.

We write °(x) = d to indicate that the type associated with the source program variable
(or temporary register) x has degree d, so if 1 were a length and a were an area, we might
write °(1) = 1 and °(a) = 2. In processing a program that provides no information about
data classes, we aim to deduce the degrees of variables based on their actual use in the
program.

This is done by establishing consistency rules that must be satisfied when a mathematical
operation is applied between variables. For instance, an instruction z := x + y only makes
sense if °z =° x =° y. The implemented list of rules is shown in Table 1.

Instruction Equation generated
Zi=aty °(2) = °(x) = “(v)
zi=r—y °(2) = °(x) = *(y)
Zi=Ty °(2) = °(x) + °(y)
zi=afy °(2) = “(x) = °(y)

T =y “(x) = °(y)
z<y “(x) = °(y)

Table 1: Rules for degree consistency

Note that each of rules is essentially a linear equation between the arguments’ degrees.
At the end of instruction processing, we are left with a single matrix consisting the system
of such equations, the remaining task is to find out whether each variable was used in an
internally consistent manner throughout the program.

Denoting the matrix by A and the list of degrees by x, our consistency rules furnish a
linear system Az = 0. Note that the system is homogeneous, so x = 0 is always a valid
(consistent) solution. In order to identify a potential bug, we define a dimensionless type, a
type that cannot have a non-zero degree without violating the constraints. For instance, a



instruction of the form z = z - a would imply that the type of a is dimensionless (must have
degree 0). The presence of variables with dimensionless type indicates there is no consistent
way to assign a nontrivial unit to them, and by extension that there may be a logic error.

While this approach can help us find potentially inconsistent variables, it doesn’t directly
allow us to pinpoint the locations of possible bugs in the program. To accomplish this, we
flag a source code line as potentially inconsistent if removing it from the program would
reduce the number of dimensionless types.

3.1 Implementation

We created the tool Dimentia that follows the approach described in Section 3. It is im-
plemented as an LLVM 3.7 analysis pass; as such, it is invoked using the framework’s opt
optimization utility and can accept either LLVM IR assembly code or an LLVM bitcode ob-
ject. The decision to implement as a pass rather than as part of the language frontend was
made to keep it language-agnostic. In fact, since our method doesn’t require programmer
annotations, it should be possible to run it unmodified on programs compiled by any LLVM
frontend, regardless of source language (although we’ve only tested with Clang). However,
since our aim is to detect errors in the source program, we must be able relate registers back
to their high-level variables and map instructions to the source lines that generated them:;
for this, we use debugging annotations generated by the frontend, and require that the user
has compiled in debug mode.

Dimentia actually consists of two separate passes, but the first is solely responsible for
processing debugging information: it builds lookup tables that bidirectionally associate
registers with source program variables. To do this, it walks the globals section of the
1lvm.dbg.cu compilation unit debugging metadata, then searches for 11vm.dbg.declare
and 11lvm.dbg.value intrinsic instructions in the body of the program. After the pass com-
pletes, these lookup tables are provided to a second pass that’s responsible for the actual
dimensional analysis.

The bulk of the work done by this pass is in examining all of the program’s instructions
and generating corresponding degree equations. At the beginning of the program, a column
is allocated for each source program variable, as enumerated by the first pass. Thereafter,
as each instruction is processed, entries for operands that map directly to source program
variables are placed directly in the columns for those variables in order to keep the size of
the matrices down. Whenever an instruction involves a temporary register, the pass checks
whether a column has been allocated for it. If so, the column is reused; otherwise, a new one
is created and this action recorded so future instructions are aware of it. (Because LLVM
shares Constant objects globally, we skip generating equations that include compile-time
constants in order to avoid reporting false positives resulting from phantom associations
between degrees.) Each equation is stored in a variable-width array because the presence
of temporary registers means that the number of columns isn’t known until all instructions
have been processed.

While this is all that’s required to handle scalar types, vector types pose challenges of their
own. In order to accommodate arrays and structured types, we handle the getelementptr,
load, and store instructions specially. The former instruction creates a matrix column (and
hence, common degree) to be shared among accesses of that class of equivalent locations. For



arrays, we make the assumption that the same sort of data is stored throughout, so we define
their class as all elements of that same array. For structured types, the semantic relationship
is cross-sectional, and we define the class of a particular element as that same element of
any instance of the same struct. These column redirections are stored in a separate table
that is consulted only when processing the pointer operand of load and store instructions.

With all instructions processed and the individual equations produced, we resize each by
adding zeroes at the end until the system forms a non-ragged matrix. We're now ready to
search for dimensionless variables.

If we denote the matrix as A and the degree vector as x, we have a homogeneous linear
system Az = 0. Thus, every element of the null space N(A) is a valid assignment to the
degree vector x. Hence in order to find a variable at index ¢ that is dimensionless, we have to
check whether every vector of the null space has a 0 at the index ¢. Note that it is sufficient
to check any spanning set of vectors of the null space for that condition.

We are left with finding a spanning set for the null space, which is easy to obtain via
singular value decomposition (SVD). Rather than writing our own SVD implementation, we
used the one available in Lapack 3.

The final ingredient in our approach, identification of potentially non-consistent source
lines, is done in a straightforward manner: for each source line, we remove all the linear
equations generated by that source line and re-run the analysis. If the number of dimen-
sionless types decreases, we flag the line, with one exception: in order to cut down on the
number of false positives, we ignore lines that eliminate temporaries from the dimensionless
set without affecting any source program variables.

We then use the approach described above, combined with a final consultation of the
program’s debugging annotations, to identify potentially dimensionless variables and prob-
lematic lines and trace them back to source program locations that should be presented to
the user.

3.2 Limitations

Dimentia presently suffers from a few noteworthy limitations.

e Unhandled arithmetic operations. We don’t generate equations for modulus (re-
mainder) operations or bitwise arithmetic because it’s non-obvious what effect these
operations have on variables’ degree relationships.

e Pointers and pointer arithmetic. While we can handle memory accesses directly
into arrays and structures, we don’t perform special tracking of pointers or their mod-
ification. For this reason, performing pointer arithmetic prior to a dereference may
produce unexpected results.

e Functions, arguments, and return values. We don’t presently track the associ-
ations between call sites and functions, arguments, and parameters, or return state-
ments and call evaluations. This means that, although we can detect dimensional
errors within individual functions, we cannot tell whether a function is misused by
client code.



e Platform specificity. The current implementation uses LLVM object addresses as
hash codes as part of the process of mapping a value to the matrix column storing infor-
mation about its degree. While this model works without hackery on source variables,
temporaries, and arrays—we simply use the address of the corresponding DIVariable,
Value, or DIVariable of the entire array, respectively—it requires some tweaking in
order to accommodate the cross-sectional lookups necessary for associating the fields
of different struct instances. To handle this case, we start with the StructType object
describing the global definition of that struct type; however, since there are no global
LLVM objects corresponding to the individual positions within the struct, we cannot
simply use an address. Instead, we pack the offset into the struct into the top sixteen
bits of the address, which works because x86-64 machines have a 64-bit word size but
only a 48-bit address bus. Of course, other platforms may use these address bits, and
in such a case, this approach could result in hash and equality collisions.

e Oversized structure offsets. As stated above, we pack structure offsets into 16 bits,
which is likely to be too small for particularly large types.

e Arrays within structures. In order to find the offset into a struct for the purpose
of associating an access with the appropriate degree class, we need the offset into that
structure to be a compile-time constant. Unfortunately, when an array appears within
a structure, this is not the case, so we’re unable to compute the hash codes for such
accesses. While it would be possible to compute the partial constants of accesses in
order to collapse all accesses within the array element down, this would complicate the
code for handling memory operations, and is currently not implemented.

4 FEvaluation

We evaluated the tool on several programs that were written for programming competitions.
Some of the examples were hand-picked; others were randomly selected. Each code sample
had between 53 and 200 lines of C++ or C code. The results are depicted in Table 2.

Name SLOC (IR) Runtime Flagged variables Flagged lines Known bugs
quadrilateral.c 107 (561) 0.040s 4 3 Yes
proposal-full.cpp 88 (4522) 4.622s 10 4 Yes
cf-1.cpp 53 (3059) 0.139s 0 0 No
cf-2.cpp 77 (3896) 1.175s 1 1 No
cf-3.cpp 200 (11350) 4m14s 0 0 No

Table 2: Evaluation results

Here we present a small case study of the various cases we encountered in the code.

Our first example is a 107 SLOC hand-written program that does various area computa-
tion. At one point, we purposely made an error in the error calculation code. Our tool flags
three lines in total, two of which are depicted in the following listing. There is no way to
actually decide which line is the erroneous one, as the only thing our tool can infer is their



inconsistency. Dimentia makes it easy to find this particular bug thanks to the set of lines
it outputs.

if (shape == SHAPE_RECTANGLE) {
area = param[0] * param[1];

} else { // shape == SHAPE_SQUARE
area = param[0] + param[O0];

}

In the introduction we had an (edited) code excerpt from proposal-full.cpp, a real
programming contest solution with a bug. Its full version is shown below. Variables pts[]
and gmid are 2-D points with fields .x and .y. Our tool highlights four lines in total, two of
which are shown in red below. (The other two are false positives related to the propagation
of dimensionless variables throughout the code.) The two flagged lines indicate that if we
assume that points have a degree d, then alpha should have degree 2d and pts([pi] .x +
alpha*v.x would be adding together variables of degree d and 3d, implying d = 0. In this
case, our tool’s output is nearly perfect and would immensely help us find the bug.

Pt v = {ptslpjl.x - ptslpil.x, ptslpjl.y - ptslpil.y};
double alpha = (gmid.x-ptslpil].x)*v.x + (gmid.y-ptslpil.y)*v.y;
if (alpha >= -eps && alpha <= 1l+eps) {

Pt cand = {pts[pi].x + alpha*v.x, pts[pil.y + alphax*v.y};

double sum = O0;
REP(gi, ng) sum += get_sq_dist(gens[gi], cand);
ans = min(ans, sum);

}

In the source file cf-2.cpp we encounter the next code segment:

if (ccw(pts[il, ptslk], pts[jl) > 0) {
dpl[il[j] += dpl[il[k] * dplk][j];
dp[il[j] %= mod;

}

The line in red is flagged. The dp array represents the number of objects that that can be
constructed with some kind of recursive structure. Since this value is calculated by multi-
plying the number of ways its substructures can be constructed, it is definitely dimensionless
(can not have a unit associated with it). The reported variable/line is dimensionless, but it
does not correspond to a bug; we expect other instances of dynamic programming problems
to trigger similar false positives.

5 Conclusion

Our experience with Dimentia demonstrates that this dimensional inference technique works
surprisingly well. It very effectively discovers most dimensional bugs and the reporting makes
it very easy to find and fix the cause of such errors. Moreover, after changing our handling
of Constants and equations that only eliminate dimensionless temporaries, the only false
positives we’'ve encountered have been in programs that make use of dynamic programming.



6 Future work

In order to create a tool that would be suitable for use in production, the limitations discussed
earlier would need to be addressed. It may also be desirable to be able to check across
compilation units: especially if support for function argument and return value checking
were implemented, this would allow inference of the relationship between these quantities
even when functions were implemented in a different module of a codebase than they were
used. Another barrier to adoption is the system’s runtime on large programs or those with
multiple template specializations. Fixing this may require a smarter method of pinpointing
the lines responsible for dimensionality bugs (instead of the current approach of iteratively
removing equations).
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