
Lightweight Preemptible Functions
Sol Boucher,∗Anuj Kalia†, David G. Andersen,∗ and Michael Kaminsky‡∗

∗Carnegie Mellon University †Microsoft Research ‡BrdgAI

Abstract
Lamenting the lack of a natural userland abstraction
for preemptive interruption and asynchronous cancel-
lation, we propose lightweight preemptible functions,
a mechanism for synchronously performing a function
call with a precise timeout that is lightweight, e�-
cient, and composable, all while being portable between
programming languages. We present the design of li-
binger, a library that provides this abstraction, on top of
which we build libturquoise, arguably the �rst general-
purpose and backwards-compatible preemptive thread
library implemented entirely in userland. Finally, we
demonstrate this software stack’s applicability to and
performance on the problems of combatting head-of-
line blocking and time-based DoS attacks.

1 Introduction
After years of struggling to gain adoption, the coroutine
has �nally become a mainstream abstraction for coop-
eratively scheduling function invocations. Languages
as diverse as C#, JavaScript, Kotlin, Python, and Rust
now support “async functions,” each of which expresses
its dependencies by “awaiting” a future (or promise);
rather than polling, the language yields if the awaited
result is not yet available.

Key to the popularity of this concurrency abstraction
is the ease and seamlessness of parallelizing it. Underly-
ing most futures runtimes is some form of green thread-
ing library, typically consisting of a scheduler that dis-
tributes work to a pool of OS-managed worker threads.
Without uncommon kernel support (e.g., scheduler acti-
vations [3]), however, this logical threading model ren-
ders the operating system unaware of individual tasks,
meaning context switches are purely cooperative. This
limitation is common among userland thread libraries,
and illustrates the need for a mechanism for preemptive
scheduling at �ner granularity than the kernel thread.

In this paper, we propose an abstraction for calling
a function with a timeout: Once invoked, the function
runs on the same thread as the caller. Should the func-
tion time out, it is preempted and its execution state is
returned as a continuation in case the caller later wishes

†This author was at Carnegie Mellon during this project.
‡This author was not at Carnegie Mellon during this project.

to resume it. The abstraction is exposed via a wrapper
function reminiscent of a thread spawn interface such as
pthread_create() (except synchronous). Despite their
synchronous nature, preemptible functions are useful
to programs that are parallel or rely on asynchronous
I/O; indeed, we later demonstrate how our abstraction
composes with futures and threads.

The central challenge of introducing preemption into
the contemporary programming model is supporting
existing code. Despite decades of improvement focused
on thread safety, modern systems stacks still contain
critical nonreentrancy, ranging from devices to the dy-
namic memory allocator’s heap region. Under POSIX,
code that interrupts other user code is safe only if it re-
stricts itself to calling async-signal-safe (roughly, reen-
trant) functions [27]. This restriction is all too famil-
iar to those programmers who have written signal han-
dlers: it is what makes it notoriously di�cult to write
nontrivial ones. Preemption of a timed function consti-
tutes its interruption by the rest of the program. This
implies that the rest of the program should be restricted
to calling reentrant functions; needless to say, such a
rule would be crippling. Addressing this problem is one
of the main contributions of this paper. Our main in-
sight here, as shown in Figure 1, is that some libraries
are naturally reentrant, while many others can be made
reentrant by automatically cloning their internal state
so that preempting one invocation does not leave the
library “broken” for concurrent callers.

The most obvious approach to implementing pre-
emptible functions is to map them to OS threads, where
the function would run on a new thread that could
be cancelled upon timeout. Unfortunately, cancelling
a thread is also hard. UNIX’s pthreads provide asyn-
chronous cancelability, but according to the Linux doc-
umentation, it

is rarely useful. Since the thread could be
cancelled at any time, it cannot safely re-
serve resources (e.g., allocating memory with
malloc()), acquire mutexes, semaphores, or
locks, and so on... some internal data struc-
tures (e.g., the linked list of free blocks man-
aged by the malloc() family of functions)
may be left in an inconsistent state if can-
cellation occurs in the middle of the function
call [25].

Is the library reentrant? Already safe to use
yes

Is all state internal to the library
(e.g., global variables)?

 no

Addressed by library copying
yes

Defer preemption.

 no (e.g., shared storage/hardware resource)

Figure 1: Taxonomy of support for library code. In
practice, we always apply one of the two mitigations.
Library copying is used by default, and is discussed in
Sections 5.1 and 5.2. Deferred preemption is needed to
preserve the semantics of malloc() and users of un-
copyable resources such as �le descriptors or network
adapters, and is applied according to a whitelist, as de-
scribed in Section 5.5.

The same is true on Windows, whose API documenta-
tion warns that asynchronously terminating a thread

can result in the following problems: If the
target thread owns a critical section, the criti-
cal section will not be released. If the target
thread is allocating memory from the heap,
the heap lock will not be released...

and goes on from there [28].
One might instead seek to implement preemptible

functions via the UNIX fork() call. Assuming a satis-
factory solution to the performance penalty of this ap-
proach, one signi�cant challenge would be providing
bidirectional object visibility and ownership. In a model
where each timed function executes in its own child pro-
cess, not only must data allocated by the parent be acces-
sible to the child, but the opposite must be true as well.
The fact that the child may terminate before the parent
raises allocation lifetime questions. And all this is with-
out addressing the di�culty of even calling fork() in
a multithreaded program: because doing so e�ectively
cancels all threads in the child process except the calling
one, the child process can experience the same problems
that plague thread cancellation [4].

These naïve designs share another shortcoming: in
reducing preemptible functions to a problem of paral-
lelism, they hurt performance by placing thread creation
on the critical path. Thus, the state-of-the-art abstrac-
tions’ high costs limit their composability. We observe
that, when calling a function with a timeout, it is con-
currency alone—and not parallelism—that is fundamen-
tal. Leveraging this key insight, we present a design that

separates interruption from asynchrony in order to pro-
vide preemption at granularities in the tens of microsec-
onds, orders of magnitude �ner than contemporary OS
schedulers’ millisecond timescales. Our research proto-
type1 is implemented entirely in userland, and requires
neither custom compiler or runtime support nor man-
aged runtime features such as garbage collection.

This paper makes three primary contributions: (1)
It proposes function calls that return a continuation
upon preemption, a novel primitive for unmanaged lan-
guages. (2) It introduces selective relinking, a compiler-
agnostic approach to automatically lifting safety restric-
tions related to nonreentrancy. (3) It demonstrates how
to support asynchronous function cancellation, a fea-
ture missing from state-of-the-art approaches to pre-
emption, even those that operate at the coarser gran-
ularity of a kernel thread.

2 Related work
A number of past projects (Table 1) have sought to pro-
vide bounded-time execution of chunks of code at sub-
process granularity. For the purpose of our discussion,
we refer to a portion of the program whose execution
should be bounded as timed code (a generalization of
a preemptible function); exactly how such code is delin-
eated depends on the system’s interface.

Interface notwithstanding, the systems’ most dis-
tinguishing characteristic is the mechanism by which
they enforce execution bounds. At one end of the
spectrum are cooperative multitasking systems where
timed code voluntarily cedes the CPU to another task via
a runtime check. (This is often done implicitly; a simple
example is a compiler that injects a conditional branch
at the beginning of any function call from timed code.)
Occupying the other extreme are preemptive systems
that externally pause timed code and transfer control to
a scheduler routine (e.g., via an interrupt service routine
or signal handler, possibly within the language’s VM).

The cooperative approach tends to be unable to inter-
rupt two classes of timed code: (1) blocking-call code
sections that cause long-running kernel traps (e.g., by
making I/O system calls), thereby preventing the inter-
ruption logic from being run; and (2) excessively-tight
loops whose body does not contain any yield points
(e.g., spin locks or long-running CPU instructions). Al-
though some cooperative systems re�ne their approach
with mechanisms to tolerate either blocking-call code
sections [1] or excessively-tight loops [32], we are not
aware of any that are capable of handling both cases.

One early instance of timed code support was the en-
gines feature of the Scheme 84 language [15]. Its in-

1Our system is open source; the code is available from
efficient.github.io/#lpf.

https://efficient.github.io/#lpf

Dependencies Third-party code support
System Preemptive Synchronous In userland Works without GC Preemptible Works without recompiling

Scheme engines X* X X † X
Lilt X X †* —

goroutines X †* —
�∀ X X X †* —

RT library X X X X
Shinjuku X X †
libinger X X X X X X

X* = the language speci�cation leaves the interaction with blocking system calls unclear
† = assuming the third-party library is written in a purely functional (stateless) fashion
†* = the third-party code must be written in the language without foreign dependencies

(beyond simple recompilation, this necessitates porting)

Table 1: Systems providing timed code at sub-process granularity

terface was a new engine keyword that behaved sim-
ilarly to lambda, but created a special “thunk” accept-
ing as an argument the number of ticks (abstract time
units) it should run for. The caller also supplied a call-
back function to receive the timed code’s return value
upon successful completion. Like the rest of the Scheme
language, engines were stateless: whenever one ran out
of computation time, it would return a replacement en-
gine recording the point of interruption. Engines’ im-
plementation relied heavily on Scheme’s managed run-
time, with ticks corresponding to virtual machine in-
structions and cleanup handled by the garbage collec-
tor. Although the paper mentions timer interrupts as an
alternative, it does not evaluate such an approach.
Lilt [32] introduced a language for writing programs

with statically-enforced timing policies. Its compiler
tracks the possible duration of each path through a pro-
gram and inserts yield operations wherever a timeout
could possibly occur. Although this approach requires
assigning the execution limit at compile time, the com-
piler is able to handle excessively-tight loops by in-
strumenting backward jumps. Blocking-call functions
remained a challenge, however: handling them would
have required operating system support, reminiscent of
Singularity’s static language-based isolation [12].

Some recent languages o�er explicit userland thread-
ing, which could be used to support timed code. One ex-
ample is the Go language’s [1] goroutines. Its runtime in-
cludes a cooperative scheduler that conditionally yields
at function call sites. This causes problems with tight
loops, which require the programmer to manually add
calls to the runtime.Gosched() yield function [7].

The solutions described thus far all assume languages
with a heavyweight, garbage-collected runtime. How-
ever, two recent systems seek to support timed code
with fewer dependencies: the �∀ language [8] and a C
thread library for realtime systems (here, “RT”) devel-

oped by Mollison and Anderson [22]. Both perform pre-
emption using timer interrupts, as proposed in the early
Scheme engines literature. They install a periodic sig-
nal handler for scheduling tasks and migrating them be-
tween cores, a lightweight approach that achieves com-
petitive scheduling latencies. However, as explained
later in this section, the compromise is interoperability
with existing code.

Shinjuku [17] is an operating system designed to per-
form preemption at microsecond scale. Built on the
Dune framework [5], it runs tasks on a worker thread
pool controlled by a single centralized dispatcher thread.
The latter polices how long each task has been run-
ning and sends an inter-processor interrupt (IPI) to any
worker whose task has timed out. The authors study
the cost of IPIs and the overheads imposed by perform-
ing them within a VT-x virtual machine, as required by
Dune. They then implement optimizations to reduce
these overheads at the expense of Shinjuku’s isolation
from the rest of the system.

As seen in Section 1, nonreentrant interfaces are in-
compatible with externally-imposed time limits. Be-
cause such interfaces are proli�c in popular dependen-
cies, no prior work allows timed code to transparently
call into third-party libraries. Scheme engines and Lilt
avoid this issue by only supporting functional code,
which cannot have shared state. Go is able to preempt
goroutines written in the language itself, but a goroutine
that makes any foreign calls to other languages is treated
as nonpreemptible by the runtime’s scheduler [11]. The
C∀ language’s preemption model is only safe for func-
tions guarded by its novel monitors: the authors caution
that “any challenges that are not [a result of extending
monitor semantics] are considered as solved problems
and therefore not discussed.” With its focus on real-
time embedded systems, RT assumes that the timed code
in its threads will avoid shared state; this assumption

struct linger_t {
bool is_complete;
cont_t continuation;

};

linger_t launch(Function func,
u64 time_us,
void *args);

void resume(linger_t *cont, u64 time_us);

Listing 1: Preemptible functions core interface

linger = launch(task, TIMEOUT, NULL);
if (!linger.is_complete) {

// Save @linger to a task queue to
// resume later
task_queue.push(linger);

}

// Handle other tasks
...
// Resume @task at some later point
linger = task_queue.pop();
resume(&linger, TIMEOUT);

Listing 2: Preemptible function usage example

mostly precludes calls to third-party libraries, though
the system supports the dynamic memory allocator by
treating it as speci�cally nonpreemptible. Rather than
dealing with shared state itself, Shinjuku asks applica-
tion authors to annotate any code with potential concur-
rency concerns using a nonpreemptible call_safe()
wrapper.

3 Timed functions: libinger
To address the literature’s shortcomings, we have devel-
oped libinger,2 a library providing a small API for timed
function dispatch (Listing 1):

• launch() invokes an ordinary function func with
a time cap of time_us. The call to launch() re-
turns when func completes, or after approximately
time_us microseconds if func has not returned by
then. In the latter case, libinger returns an opaque
continuation object recording the execution state.

• resume() causes a preemptible function to con-
tinue after a timeout. If execution again times out,
resume() updates its continuation so the process
may be repeated. Resuming a function that has al-
ready returned has no e�ect.

Listing 2 shows an example use of libinger in a
task queue manager designed to prevent latency-critical

2In the style of GNU’s libiberty, we named our system for the
command-line switch used to link against it. As the proverb goes,
“Don’t want your function calls to linger? Link with -linger.”

Dynamic linker

libgotcha

libinger ... Other control lib.
(e.g., libas-safe)

Your novel
preemptive library ... libturquoise

Your program
(if synchronous)

Your program
(if async/parallel)

Figure 2: Preemptible functions software stack.
Hexagonal boxes show the required runtime environ-
ment. Rectangular boxes represent components imple-
menting the preemptible functions abstraction. Ovals
represent components built on top of these. A pre-
emptible function’s body (i.e., func) may be de�ned di-
rectly in your program, or in some other loaded library.

tasks from blocking behind longer-running ones. The
caller invokes a task with a timeout. If the task does
not complete within the allotted time, the caller saves
its continuation in the task queue, handles other tasks,
and later resumes the �rst task.

In accordance with our goal of language agnosti-
cism, libinger exposes both C and Rust [2] APIs. To
demonstrate the �exibility and composability of the pre-
emptible function abstraction, we have also created lib-
turquoise, a preemptive userland thread library for Rust,
by porting an existing futures-based thread pool to li-
binger. We discuss this system in Section 4.

Figure 2 shows a dependency graph of the soft-
ware components comprising the preemptible functions
stack. The libinger library itself is implemented in ap-
proximately 2,500 lines of Rust. To support calls to non-
reentrant functions, it depends on another library, lib-
gotcha, which consists of another 3,000 lines of C, Rust,
and x86-64 assembly. We cover the details in Section 5.

We now examine libinger, starting with shared state.

3.1 Automatic handling of shared state
As we found in Section 1, a key design challenge fac-
ing libinger is the shared state problem: Suppose a pre-
emptible function � calls a stateful routine in a third-
party library !, and that � times out and is preempted
by libinger. Later, the user invokes another timed func-
tion �0, which also calls a stateful routine in !. This pat-
tern involves an unsynchronized concurrent access to !.
To avoid introducing such bugs, libinger must hide state
modi�cations in ! by � from the execution of �0.

One non-solution to this problem is to follow the ap-

proach taken by POSIX signal handlers and specify that
preemptible functions may not call third-party code,
but doing so would severely limit their usefulness (Sec-
tion 2). We opt instead to automatically and dynamically
create copies of ! to isolate state from di�erent timed
functions. Making this approach work on top of exist-
ing systems software required solving many design and
implementation challenges, which we cover when we
introduce libgotcha in Section 5.

3.2 Safe concurrency
Automatically handling shared state arising from non-
reentrant library interfaces is needed because the shar-
ing is transparent to the programmer. A di�erent prob-
lem arises when a programmer explicitly shares state
between a preemptible function and any other part of
the program. Unlike third-party library authors, this
programmer knows they are using preemptible func-
tions, a concurrency mechanism.

When using the C interface, the programmer bears
complete responsibility for writing race-free code (e.g.,
by using atomics and mutexes wherever necessary). The
libinger Rust API, however, leverages the language’s
�rst-class concurrency support to prevent such mis-
takes from compiling: launch()’s signature requires the
wrapped function to be Send safe (only reference state
in a thread-safe manner) [29].

While the Rust compiler rejects all code that shares
state unsafely, it is still possible to introduce correct-
ness bugs such as deadlock [30]. For example, a pro-
gram might block on a mutex held by the preemptible
function’s caller (recall that invocation is synchronous,
so blocking in a preemptible function does not cause it
to yield!). It is sometimes necessary to acquire such a
mutex, so libinger provides a way to do it: The API has
an additional function, pause(), that is a rough analog
of yield. After performing a try-lock operation, a pre-
emptible function can call pause() to immediately re-
turn to its caller as if it had timed out. The caller can tell
whether a function paused via a �ag on its continuation.

3.3 Execution stacks
When a preemptible function times out, libinger returns
a continuation object. The caller might pass this object
around the program, which could later resume() from a
di�erent stack frame. To handle this case, the launch()
function switches to a new, dedicated stack just before
invoking the user-provided function. This stack is then
stored in the continuation alongside the register context.

Because of the infeasibility of moving these stacks af-
ter a function has started executing, libinger currently
heap-allocates large 2-MB stacks so it can treat them as
having �xed size. To avoid an order of magnitude slow-
down from having such large dynamic allocations on

Caller’s stack:

...

launch()

Preemptible function’s stack:

[bottom]

F()[caller]

handler()

Figure 3: The stacks just before a timeout. Upon
discovering that the preemptible function has exceeded
its time bound, the handler jumps into the launch() (or
resume()) function, which in turn returns to the origi-
nal call site, removing its own stack frame in the process.

the critical path, libinger preallocates a pool of reusable
stacks when it is �rst used.

3.4 Timer interrupts
Whenever libinger is executing a user-provided func-
tion, we enable �ne-grained timer interrupts to monitor
that function’s elapsed running time. A timer interrupt
�res periodically,3 causing our signal handler to be in-
voked. If the function exceeds its timeout, this handler
saves a continuation by dumping the machine’s regis-
ters. It then performs an unstructured jump out of the
signal handler and back into the launch() or resume()
function, switching back to the caller’s stack as it does
so. Figure 3 shows the two stacks of execution that are
present while the signal handler is running.

A subsequent resume() call restores the registers
from the stored continuation, thereby jumping back into
the signal handler. The handler returns, resuming the
preemptible function from the instruction that was exe-
cuting when the preemption signal arrived.

To support blocking system calls, we use the
SA_RESTART �ag when installing the signal handler
to instruct libc to restart system calls that are inter-
rupted by the signal [26]. We direct signals at the
process’s speci�c threads that are running preemptible
functions by allocating signal numbers from a pool, an
approach that limits the number of simultaneous invo-
cations to the number of available signals; this restric-
tion could be lifted by instead using the Linux-speci�c
SIGEV_THREAD_ID timer noti�cation feature [31].

3.5 Cancellation
Should a caller decide not to �nish running a timed-out
preemptible function, it must deallocate it. In Rust, deal-

3Signal arrival is accurate to microsecond timescales, but exhibits
a warmup e�ect. For simplicity, we use a �xed signal frequency for
all preemptible functions, but this is not fundamental to the design.
In the future, we plan to adjust each function’s frequency based on its
timeout, and to delay the �rst signal until shortly before the prescribed
timeout (in the case of longer-running functions).

location happens implicitly via the linger_t type’s de-
structor, whereas users of the C interface are responsible
for explicitly calling the libinger cancel() function.

Cancellation cleans up libinger resources allocated by
launch(); however, the current implementation does
not automatically release resources already claimed by
the preemptible function itself. While the lack of a stan-
dard resource deallocation API makes such cleanup in-
herently hard to do in C, it is possible in Rust and other
languages in which destructor calls are ostensibly guar-
anteed. For instance, the approach proposed by Boucher
et al. [6] could be employed to raise a panic (exception)
on the preemptible function’s stack. This in turn would
cause the language runtime to unwind each stack frame,
invoking local variables’ destructors in the process.

4 Thread library: libturquoise
Until now, we have limited our discussion to syn-
chronous, single-threaded programs. In this section, we
will show that the preemptible function abstraction is
equally relevant to asynchronous and parallel programs,
and that it composes naturally with both futures and
threads. As a proof of concept, we have created lib-
turquoise,4 a preemptive userland thread library.

That libturquoise provides preemptive scheduling is a
signi�cant achievement: Shinjuku observes that “there
have been several e�orts to implement e�cient, user-
space thread libraries. They all focus on cooperative
scheduling” [17]. (Though RT from Section 2 could
be a counterexample, its lack of nonreentrancy support
renders it far from general purpose.) We attribute the
dearth of preemptive userland thread libraries to a lack
of natural abstractions to support them.

Before presenting the libturquoise design, we begin
with some context about futures.

4.1 Futures and asynchronous I/O
As mentioned in Section 1, futures are a primitive for
expressing asynchronous program tasks in a format
amenable to cooperative scheduling. Structuring a pro-
gram around futures makes it easy to achieve low la-
tency by enabling the runtime to reschedule slow oper-
ations o� the critical path. Alas, blocking system calls
(which cannot be rescheduled by userland) defeat this
approach.

The community has done extensive prior work to sup-
port asynchronous I/O via result callbacks [19, 18, 20,
23]. Futures runtimes such as Rust’s Hyper [16] have
adapted this approach by providing I/O libraries whose
functions return futures. Rather than duplicate this
work, we have integrated preemptible functions with
futures so they can leverage it.

4so called because it implements “green threading with a twist”

function PreemptibleFuture(Future fut,
Num timeout):

function adapt():
// Poll wrapped future in the usual way
while poll(fut) == NotReady:

pause()
fut.linger = launch(adapt, CREATE_ONLY)
fut.timeout = timeout
return fut

// Custom polling logic for preemptible futures
function poll(PreemptibleFuture fut):

resume(fut.linger, fut.timeout);
if has_finished(fut.linger):

return Ready
else

if called_pause(fut.linger):
notify_unblocked(fut.subscribers)

return NotReady

Listing 3: Futures adapter type (pseudocode)

4.2 Preemptible futures
For seamless interoperation between preemptible func-
tions and the futures ecosystem, we built a preemptible
future adapter that wraps the libinger API. Like a nor-
mal future, a preemptible future yields when its result is
not ready, but it can also time out.

Each language has its own futures interface, so pre-
emptible futures are not language agnostic like the pre-
emptible functions API. Fortunately, they are easy to
implement by using pause() to propagate cooperative
yields across the preemptive function boundary. We
give the type construction and polling algorithm in List-
ing 3; our Rust implementation is only 70 lines.

4.3 Preemptive userland threading
We built the libturquoise thread library by modifying
the tokio-threadpool [13] work-stealing scheduler from
the Rust futures ecosystem. Starting from version 0.1.16
of the upstream project, we added 50 lines of code that
wrap each incoming task in a preemptible future.

Currently, libturquoise assigns each future it launches
or resumes the same �xed time budget, although this de-
sign could be extended to support multiple job priorities.
When a task times out, the scheduler pops it from its
worker thread’s job queue and pushes it to the incoming
queue, o�ering it to any available worker for reschedul-
ing after all other waiting jobs have had a turn.

5 Shared state: libgotcha
We now present one more artifact, libgotcha. Despite
the name, it is more like a runtime that isolates hidden
shared state within an application. Although the rest of
the program does not interact directly with libgotcha, its

static bool two;
bool three;

linger_t caller(const char *s, u64 timeout) {
stdout = NULL;
two = true;
three = true;
return launch(timed, timeout, s);

}

void timed(void *s) {
assert(stdout); // (1)
assert(two); // (2)
assert(three); // (3)

}

Listing 4: Demo of isolated (1) vs. shared (2&3) state

presence has a global e�ect: once loaded into the process
image, it employs a technique we call selective relink-
ing to dynamically intercept and reroute many of the
program’s function calls and global variable accesses.

The goal of libgotcha is to establish around every pre-
emptible function a memory isolation boundary encom-
passing whatever third-party libraries that function in-
teracts with (Section 3.1). The result is that the only
state shared across the boundary is that explicitly passed
via arguments, return value, or closure—the same state
the application programmer is responsible for protect-
ing from concurrency violations (Section 3.2). Listing 4
shows the impact on an example program, and Figure 1
classi�es libraries by how libgotcha supports them.

Note that libgotcha operates at runtime; this con-
strains its visibility into the program, and therefore the
granularity of its operation, to shared libraries. It there-
fore assumes that the programmer will dynamically link
all third-party libraries, since otherwise there is no way
to tell them apart from the rest of the program at run-
time. We feel this restriction is reasonable because a
programmer wishing to use libinger or libgotcha must
already have control over their project’s build in order
to add the dependency.

Before introducing the libgotcha API and explaining
selective relinking, we now brie�y motivate the need for
libgotcha by demonstrating how existing system inter-
faces fail to provide the required type of isolation.

5.1 Library copying: namespaces
Expanding a preemptible function’s isolation boundary
to include libraries requires providing it with private
copies of those libraries. POSIX has long provided a
dlopen() interface to the dynamic linker for loading
shared objects at runtime; however, opening an already-
loaded library just increments a reference count, and
this function is therefore of no use for making copies.

typedef long libset_t;

bool libset_thread_set_next(libset_t);
libset_t libset_thread_get_next(void);
bool libset_reinit(libset_t);

Listing 5: libgotcha C interface

Fortunately, the GNU dynamic linker (ld-linux.so)
also supports Solaris-style namespaces, or isolated sets
of loaded libraries. For each namespace, ld-linux.so
maintains a separate set of loaded libraries whose de-
pendency graph and reference counts are tracked inde-
pendently from the rest of the program [9].

It may seem like namespaces provide the isolation
we need: whenever we launch(F), we can initialize a
namespace with a copy of the whole application and
transfer control into that namespace’s copy of F, rather
than the original. The problem with this approach is
that it breaks the lexical scoping of static variables. For
example, Listing 4 would fail assertion (2).

5.2 Library copying: libsets
We just saw that namespaces provide too much isola-
tion for our needs: because of their completely inde-
pendent dependency graphs, they never encounter any
state from another namespace, even according to nor-
mal scoping rules. However, we can use namespaces to
build the abstraction we need, which we term a libset.
A libset is like a namespace, except that the program
can decide whether symbols referenced within a libset
resolve to the same libset or a di�erent one. Control li-
braries such as libinger con�gure such libset switches
via libgotcha’s private control API, shown in Listing 5.

This abstraction serves our needs: when a launch(F)
happens, libinger assigns an available libset_t
exclusively to that preemptible function. Just
before calling F, it informs libgotcha by calling
libset_thread_set_next() to set the thread’s next
libset: any dynamic symbols used by the preemptible
function will resolve to this libset. The thread’s current
libset remains unchanged, however, so the preemptible
function itself executes from the same libset as its caller
and the two share access to the same global variables.

One scoping issue remains, though. Because dynamic
symbols can resolve back to a de�nition in the same exe-
cutable or shared object that used them, Listing 5 would
fail assertion (3) under the described rules. We want
global variables de�ned in F ’s object �le to have the
same scoping semantics regardless of whether they are
declared static, so libgotcha only performs a names-
pace switch when the use of a dynamic symbol occurs
in a di�erent executable or shared library than that sym-
bol’s de�nition.

5.3 Managing libsets
At program start, libgotcha initializes a pool of libsets,
each with a full complement of the program’s loaded ob-
ject �les. Throughout the program’s run libinger tracks
the libset assigned to each preemptible function that has
started running but not yet reached successful comple-
tion. When a preemptible function completes, libinger
assumes it has not corrupted its libset and returns it to
the pool of available ones. However, if a preemptible
function is canceled rather than being allowed to return,
libinger must assume that its libset’s shared state could
be corrupted. It unloads and reloads all objects in such
a libset by calling libset_reinit().

While libinger in principle runs on top of an unmod-
i�ed ld-linux.so, in practice initializing more than
one namespace tends to exhaust the statically-allocated
thread-local storage area. As a workaround, we build
glibc with an increased TLS_STATIC_SURPLUS. It is use-
ful to also raise the maximum number of namespaces by
increasing DL_NNS.

5.4 Selective relinking
Most of the complexity of libgotcha lies in the implemen-
tation of selective relinking, the mechanism underlying
libset switches.

Whenever a program uses a dynamic symbol, it looks
up its address in a data structure called the global o�set
table (GOT). As it loads the program, ld-linux.so ea-
gerly resolves the addresses of all global variables and
some functions and stores them in the GOT.

Selective relinking works by shadowing the GOT.5 As
soon as ld-linux.so �nishes populating the GOT, lib-
gotcha replaces every entry that should trigger a libset
switch with a fake address, storing the original one in
its shadow GOT, which is organized by the libset that
houses the de�nition. The fake address used depends
upon the type of symbol:

Functions’ addresses are replaced by the address of
a special function, procedure_linkage_override().
Whenever the program tries to call one of the af-
fected functions, this intermediary checks the thread’s
next libset, looks up the address of the appropriate
de�nition in the shadow GOT, and jumps to it. Be-
cause procedure_linkage_override() runs between
the caller’s call instruction and the real function, it is
written in assembly to avoid clobbering registers. In-
stead of being linked to their symbol de�nitions at load
time, some function calls resolve lazily the �rst time
they are called: their GOT entries initially point to a spe-
cial lookup function in the dynamic linker that rewrites
the GOT entry when invoked. Such memoization would
remove our intermediary, so we alter the ELF relocation

5Hence the name libgotcha.

entries of a�ected symbols to trick the dynamic linker
into updating our shadow GOT instead.

Global variables’ addresses are replaced with a unique
address within a mapped but inaccessible page. When
the program tries to read or write such an address, a
segmentation fault occurs; libgotcha handles the fault,
disassembles the faulting instruction to determine the
base address register of its address calculation,6 loads
the address from this register, computes the location of
the shadow GOT entry based on the fake address, checks
the thread’s next libset, and replaces the register’s con-
tents with the appropriate resolved address. It then re-
turns, causing the faulting instruction to be reexecuted
with the valid address this time.7

5.5 Uninterruptible code: uncopyable
The library-copying approach to memory isolation
works for the common case, and allows us to handle
most third-party libraries with no con�guration. How-
ever, in rare cases it is not appropriate. The main ex-
ample is the malloc() family of functions: in Section 1,
we observed that not sharing a common heap compli-
cates ownership transfer of objects allocated from inside
a preemptible function. To support dynamic memory al-
location and a few other special cases, libgotcha has an
internal whitelist of uncopyable symbols.

From libgotcha’s perspective, uncopyable symbols
di�er only in what happens on a libset switch. If
code executing in any libset other than the applica-
tion’s starting libset calls an uncopyable symbol, a
libset switch still occurs, but it returns to the start-
ing libset instead of the next libset; thus, all calls
to an uncopyable symbol are routed to a single,
globally-shared de�nition. When the function call
that caused one of these special libset switches re-
turns, the next libset is restored to its prior value.
The libgotcha control API provides one more func-
tion, libset_register_interruptible_callback(),
that allows others to request a noti�cation when one of
these libset restorations occurs.

Because it is never safe to preempt while executing in
the starting libset, the �rst thing the libinger preemption
handler described in Section 3.4 does is check whether
the thread’s next libset is set to the starting one; if so,
it disables preemption interrupts and immediately re-
turns. However, libinger registers an interruptible call-

6Although it is possible to generate code sequences that are incom-
patible with this approach (e.g., because they perform in-place pointer
arithmetic on a register rather than using displacement-mode address-
ing with a base address), we employ a few heuristics based on the
context of the instruction and fault; in our experience, these cover the
common cases.

7This does not break applications with existing segfault handlers:
we intercept their calls to sigaction(), and forward the signal along
to their handler when we are unable to resolve an address ourselves.

back that it uses to reenable preemption as soon as any
uncopyable function returns.

5.6 Limitations
The current version of libgotcha includes partial support
for thread-local storage (TLS). Like other globals, TLS
variables are copied along with the libset; this behav-
ior is correct because a thread might call into the same
library from multiple preemptible functions. However,
we do not yet support migrating TLS variables between
threads along with their preemptible function. This re-
striction is not fundamental: the TLS models we support
(general dynamic and local dynamic) use a support func-
tion called __tls_get_addr() to resolve addresses [10],
and libgotcha could substitute its own implementation
that remapped the running thread’s TLS accesses to that
of the preemptible function’s initial thread when execut-
ing outside the starting libset.

While selective relinking supports the ordinary
GLOB_DAT (eager) and JUMP_SLOT (lazy) ELF dynamic
relocation types, it is incompatible with the optimized
COPY class of dynamic variable relocations. The COPY
model works by allocating space for all libraries’ glob-
als in the executable, enabling static linking from the
program’s code (but not its dynamic libraries’). This
transformation defeats selective relinking for two rea-
sons: the use of static linking prevents identifying sym-
bol uses in the executable, and the cross-module migra-
tion causes breakages such as failing assertion (3) from
Listing 4. When building a program that depends on
libgotcha, programmers must instruct their compiler to
disable COPY relocations, as with the -fpic switch to
GCC and Clang. If libgotcha encounters any COPY relo-
cations in the executable, it prints a load-time warning.

Forsaking COPY relocations does incur a small perfor-
mance penalty, but exported global variables are rare
now that thread safety is a pervasive concern in sys-
tem design. Even the POSIX-speci�ed errno global is
gone: the Linux Standard Base speci�es that its address
is resolved via a call to the __errno_location() helper
function [21].

5.7 Case study: auto async-signal safety
We have now described the role of libgotcha, and how
libinger uses it to handle nonreentrancy. Before con-
cluding our discussion, however, we note that libgotcha
has other interesting uses in its own right.

As an example, we have used it to implement a small
library, libas-safe, that transparently allows an appli-
cation’s signal handlers to call functions that are not
async-signal safe, which is forbidden by POSIX because
it is normally unsafe.

Written in 127 lines of C, libas-safe works by injecting
code before main() to switch the program away from its

Operation Duration (`B)
launch() 4.6 ± 0.05
resume() 4.4 ± 0.02
cancel() 4767.7 ± 1168.7
fork() 207.5 ± 79.3

pthread_create() 32.5 ± 8.0

Table 2: Latency of preemptible function interface

starting libset. It shadows the system’s sigaction(),
providing an implementation that:

• Provides copy-based library isolation for signal
handlers by switching the thread’s next libset to the
starting libset while a signal handler is running.

• Allows use of uncopyable code such as malloc()
from a signal handler by deferring signal arrival
whenever the thread is already executing in the
starting libset, then delivering the deferred signal
when the interruptible callback �res.

In addition to making signal handlers a lot easier
to write, libas-safe can be used to automatically “�x”
deadlocks and other misbehaviors in misbehaved signal-
handling programs just by loading it via LD_PRELOAD.

We can imagine extending libgotcha to support other
use cases, such as simultaneously using di�erent ver-
sions or build con�gurations of the same library from a
single application.

6 Evaluation
We now evaluate preemptible function performance,
presenting several microbenchmarks and two exam-
ples of their application to improve existing systems’
resilience to malicious or otherwise long-running re-
quests. All experiments were run on an Intel Xeon E5-
2683 v4 (Broadwell) server running Linux 4.12.6, rustc
1.36.0, gcc 9.2.1, and glibc 2.29.

6.1 Microbenchmarks
Table 2 shows the overhead of libinger’s core functions.
Each test uses hundreds of preemptible functions, each
with its own stack and continuation, but sharing an im-
plementation; the goal is to measure invocation time, so
the function body immediately calls pause(). For com-
parison, we also measured the cost of calling fork()
then exit(), and of calling pthread_create() with
an empty function, while the parent thread waits using
waitpid() or pthread_join(), respectively.

The results show that, as long as preemptible func-
tions are eventually allowed to run to completion, they
are an order of magnitude faster than spawning a thread
and two orders of magnitude faster than forking a pro-
cess. Although cancellation takes milliseconds in the
benchmark application, this operation need not lie on

the critical path unless the application is cancelling tasks
frequently enough to exhaust its supply of libsets.

Recall that linking an application against libgotcha
imposes additional overhead on most dynamic symbol
accesses; we report these overheads in Table 3a. Eager
function calls account for almost all of a modern pro-
gram’s dynamic symbol accesses: lazy resolution only
occurs the �rst time a module calls a particular function
(Section 5.4) and globals are becoming rare (Section 5.6).

Table 3b shows that the libgotcha eager function call
overhead of 14 ns is on par with the cost of a trivial C
library function (gettimeofday()) and one-third that
of a simple system call (getpid()). This overhead af-
fects the entire program, regardless of the current libset
at the time of the call. Additionally, calls to uncopy-
able functions from within a preemptible function incur
several extra nanoseconds of latency to switch back to
the main namespace as described in Section 5; Table 3c
breaks this overhead down to show the cost of noti�-
cation callbacks at the conclusion of such a call (always
required by libinger).

6.2 Web server
To test whether our thread library could combat
head-of-line blocking in a large system, we bench-
marked hyper, the highest-performing Web server
in TechEmpower’s plaintext benchmark as of July
2019 [16]. The server uses tokio-threadpool for schedul-
ing; because the changes described in Section 4 are
transparent, making hyper preemptive was as easy as
building against libturquoise instead. In fact, we did not
even check out the hyper codebase. We con�gured lib-
turquoise with a task timeout of 2 ms, give or take a
100-`s libinger preemption interval, and con�gured it
to serve responses only after spinning in a busy loop for
a number of iterations speci�ed in each request. For our
client, we modi�ed version 4.1.0 of the wrk [14] closed-
loop HTTP load generator to separately record the la-
tency distributions of two di�erent request classes.

Our testbed consisted of two machines connected by
a direct 10-GbE link. We pinned hyper to the 16 physical
cores on the NIC’s NUMA node of our Broadwell server.
Our client machine, a Intel Xeon E5-2697 v3 (Haswell)
running Linux 4.10.0, ran a separate wrk process pinned
to each of the 14 logical cores on the NIC’s NUMA node.
Each client core maintained two concurrent pipelined
HTTP connections.

We used loop lengths of approximately 500 `s and
50 ms for short and long requests, respectively, view-
ing the latter requests as possible DoS attacks on the
system. We varied the percentage of long requests from
0% to 2% and measured the round-trip median and tail
latencies of short requests and the throughput of all re-
quests. Figure 4 plots the results for three server con�g-

urations: baseline is cooperative scheduling via tokio-
threadpool, baseline+libgotcha is the same but with
libgotcha loaded to assess the impact of slower dynamic
function calls, and baseline+libturquoise is preemp-
tive scheduling via libturquoise. A 2% long request mix
was enough to reduce the throughput of the libgotcha
server enough to impact the median short request la-
tency. The experiment shows that preemptible func-
tions keep the tail latency of short requests scaling lin-
early at the cost of a modest 4.5% median latency over-
head when not under attack.

6.3 Image decompression
The Web benchmark showed preemptive scheduling at
scale, but did not exercise preemptible function cancel-
lation. To demonstrate this feature, we consider decom-
pression bombs, �les that expand exponentially when
decoded, consuming enormous computation time in ad-
dition to their large memory footprint. PNG �les are
vulnerable to such an attack, and although libpng now
supports some mitigations [24], one cannot always ex-
pect (or trust) such functionality from third-party code.

We benchmarked the use of libpng’s “simple API”
to decode an in-memory PNG �le. We then com-
pared against synchronous isolation using preemptible
functions, as well as the naïve alternative mitiga-
tions proposed in Section 1. For preemptible func-
tions, we wrapped all uses of libpng in a call to
launch() and used a dedicated (but blocking) reaper
thread to remove the cost of cancellation from the crit-
ical path; for threads, we used pthread_create() fol-
lowed by pthread_timedjoin_np() and, conditionally,
pthread_cancel() and pthread_join(); and for pro-
cesses, we used fork() followed by sigtimedwait(), a
conditional kill(), then a waitpid() to reap the child.
We ran pthread_cancel() both with and without asyn-
chronous cancelability enabled, but the former always
deadlocked. The timeout was 10 ms in all cases.

Running on the benign RGB image
mirjam_meijer_mirjam_mei.png from version
1:0.18+dfsg-15 of Debian’s openclipart-png
package showed launch() to be both faster and
lower-variance than the other approaches, adding 355
`s or 5.2% over the baseline (Figure 5a). The results
for fork() represent a best-case scenario for that
technique, as we did not implement a shared memory
mechanism for sharing the bu�er, and the cost of
the system call will increase with the number pages
mapped by the process (which was small in this case).

Next, we tried a similarly-sized RGB decompression
bomb from revision b726584 of https://bomb.codes
(Figure 5b). Without asynchronous cancelability, the
pthreads approach was unable to interrupt the thread.
Here, launch() exceeded the deadline by just 100 `s, a

https://bomb.codes

Symbol resolution scheme Time without libgotcha (=B) Time with libgotcha (=B)
eager (load time) 2 ± 0 14 ± 0

lazy (runtime) 100 ± 1 125 ± 0
global variable 0 ± 0 3438 ± 13

(a) Generic symbols, without and with libgotcha
Baseline Time without libgotcha (=B)

gettimeofday() 19 ± 0
getpid() 44 ± 0

(b) Library functions and syscalls without libgotcha

Trigger Time with libgotcha (=B)
Uncopyable call 21 ± 0

Uncopyable call + callback 25 ± 0
(c) Uncopyable calls triggering a libset switch

Table 3: Runtime overheads of accessing dynamic symbols

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Prevalence of long requests (%)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

50
%

 la
te

nc
y

of
 S

HO
RT

 re
qu

es
ts

 (m
s)

Short median latency vs. long:short request ratio

baseline
baseline+libgotcha
baseline+libturquoise

(a) Median latency

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Prevalence of long requests (%)

0

5

10

15

20

25

30

35

40

90
%

 la
te

nc
y

of
 S

HO
RT

 re
qu

es
ts

 (m
s)

Short 90% tail latency vs. long:short request ratio

baseline
baseline+libgotcha
baseline+libturquoise

(b) 90% tail latency

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Prevalence of long requests (%)

0

10

20

30

40

50

60

99
%

 la
te

nc
y

of
 S

HO
RT

 re
qu

es
ts

 (m
s)

Short 99% tail latency vs. long:short request ratio

baseline
baseline+libgotcha
baseline+libturquoise

(c) 99% tail latency

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Prevalence of long requests (%)

0

200

400

600

800

1000

1200

1400

1600

Th
ro

ug
hp

ut
 o

f A
LL

 re
qu

es
ts

 (r
eq

s/
s)

Throughput vs. long:short request ratio
baseline
baseline+libgotcha
baseline+libturquoise

(d) Overall throughput

Figure 4: hyper Web server with 500--s (short) and 50-ms (long) requests

none
pthread_create

pthread_create+async

fork
launch

Decompression bomb mitigation strategy

0

2

4

6

8

De
co

de
 ti

m
e

(m
s)

 D

EA
DL

OC
K

Runtime on 332-KB benign image

(a) Benign image

870

875

880

885

none
pthread_create

pthread_create+async

fork
launch

Decompression bomb mitigation strategy

0

2

4

6

8

10

 D

EA
DL

OC
K

Runtime on 309-KB malicious image

(b) Malicious image

Figure 5: libpng in-memory image decode times

�gure that includes deviation due to the 100-`s preemp-
tion interval in addition to libinger’s own overhead. It
again had the lowest variance.

Applying preemptible functions proved easy: the
launch()/cancel() approach took just 20 lines of Rust,
including the implementation of a reaper thread to move
libset reinitialization o� the critical path. In comparison,
the fork()/sigtimedwait() approach required 25 lines
of Rust. Note that both benchmarks include unsafe Rust
(e.g., to use the libpng C library and zero-copy bu�ers).

7 Future work
One of our contributions is asynchronous cancellation,
something rarely supported by the state of the art. In
Section 3.5, we noted our lack of support for automated
resource cleanup; however, we outlined a possible ap-
proach for languages such as Rust, which we intend to
investigate further. Cancellation is currently our most
expensive operation because of the libset reinitialization
described in Section 5.3, but we plan to improve this by
restoring only the writeable regions of each module.

Another area for improvement is signal-handling per-
formance optimization: whereas Shinjuku is able to pre-
empt every 5 `s with a 10% throughput penalty [17], we
have observed a similar throughput drop while only pre-
empting every 20 `s via our technique [6]. We have not
yet heavily optimized libinger, and have reason to be-
lieve that doing so will allow our design to achieve a pre-
emption granularity midway between those �gures for
the same throughput cost. Because Shinjuku executes in
privilege ring 0, they preempt by issuing interprocessor
interrupts (IPIs) directly rather than using Linux signals.
Their microbenchmarks reveal an IPI:signal latency ra-
tio of roughly 1:2.5 (1,993 vs. 4,950 CPU cycles), indicat-

ing that we are not achieving peak performance. Fur-
thermore, a key design di�erence between our systems
suggests that this ratio probably understates the perfor-
mance we could achieve. In their benchmark, roughly
42% of cycles are spent sending each signal, a cost we
can amortize because our design uses recurring timer
signals to counter warmup e�ects. A further 6.9% of
benchmarked cycles are spent propagating the signal
between cores, which should not a�ect our system be-
cause we request the timer signals on the same core
that will receive them rather than using a central watch-
dog thread to preempt all workers. Context switching is
likely responsible for most of our unexpected latency: by
writing our signal handler very carefully, we should be
able to adopt the same optimizations they describe (skip-
ping signal mask and �oating-point register swaps).

The selective relinking technique that underlies our
interface allows safe pausing and cancellation in the
presence of shared state, independent of preemption
mechanism. In lieu of a timeout, control transfer might
result from another scheduling consideration, such as
real-time computing or task priority.

8 Conclusion
We presented the lightweight preemptible function, a
new composable abstraction for invoking a function
with a timeout. This enabled us to build a �rst-in-
class preemptive userland thread library by implement-
ing preemption atop a cooperative scheduler, rather
than the other way around. Our evaluation shows that
lightweight preemptible functions have overheads of a
few percent (lower than similar OS primitives), yet en-
able new functionality.

We believe the lightweight preemptible function ab-
straction naturally supports common features of large-
scale systems. For example: In support of graceful
degradation, a system might use a preemptible function
to abort the rendering of a video frame in order to ensure
SLA adherance. An RPC server might preserve work by
processing each request in a preemptible function and
memoizing the continuations; if a request timed out but
was later retried by the client, the server could resume
executing from where it left o�.

Acknowledgements
This work was supported by the U.S. National Science
Foundation under award CNS–1700521, as well as the
Intel Science and Technology Center for Visual Cloud
Systems. The authors thank Holden and the other mem-
bers of the Pittsburgh Rust Co�ee meetup for early im-
plementation discussions about the safe use of unstruc-
tured control �ow in Rust programs. We also thank our
shepherd, Tim Harris, for his helpful suggestions.

References
[1] The Go programming language. https://golang.org,

2019.
[2] The Rust programming language. https://www.

rust-lang.org, 2019.
[3] T. E. Anderson, B. N. Bershad, E. D. Lazowska, and H. M.

Levy. Scheduler activations: E�ective kernel support for
the user-level management of parallelism. In Proceed-
ings of the thirteenth ACM symposium on operating sys-
tem principles (SOSP ’91), 1991.

[4] A. Baumann, J. Appavoo, O. Krieger, and T. Roscoe. A
fork() in the road. In HotOS ’19: Proceedings of the work-
shop on hot topics in operating systems, May 2019.

[5] A. Belay, A. Bittau, A. Mashtizadeh, D. Terei, D. Mazères,
and C. Kozyrakis. Dune: Safe user-level access to priv-
ileged CPU features. In Proceedings of the 10th USENIX
conference on Operating Systems Design and Implemen-
taiton (OSDI’12), 2012.

[6] S. Boucher, A. Kalia, D. G. Andersen, and M. Kaminsky.
Putting the "micro" back in microservice. In 2018 USENIX
Annual Technical Conference, Boston, MA, 2018.

[7] A. Clements. Go runtime: tight loops should be
preemptible. https://github.com/golang/go/issues/10958,
2015.

[8] T. Delisle. Concurrency in C∀, 2018. URL https://
uwspace.uwaterloo.ca/handle/10012/12888.

[9] dlmopen. dlmopen(3) manual page from Linux man-
pages project, 2019.

[10] U. Drepper. ELF handling for thread-local storage.
Technical report, 2013. URL https://akkadia.org/
drepper/tls.pdf.

[11] D. Elo�. Go proposal: a faster C-call
mechanism for non-blocking C functions.
https://github.com/golang/go/issues/16051, 2016.

[12] G. H. et al. An overview of the Singularity project.
Technical Report MSR-TR-2005-135, Microsoft Re-
search Technical Reports, 2005. URL https://www.
microsoft.com/en-us/research/publication/
an-overview-of-the-singularity-project.

[13] GitHub. Tokio thread pool. https://github.com/
tokio-rs/tokio/tree/tokio-threadpool-0.1.16/
tokio-threadpool, 2019.

[14] GitHub. wrk: Modern HTTP benchmarking tool. https:
//github.com/wg/wrk, 2019.

[15] C. T. Haynes and D. P. Friedman. Engines build process
abstractions. Technical Report TR159, Indiana University
Computer Science Technical Reports, 1984. URL https:
//cs.indiana.edu/ftp/techreports/TR159.pdf.

[16] hyper. hyper: Fast and safe HTTP for the Rust language.
https://hyper.rs, 2019.

[17] K. Ka�es, T. Chong, J. T. Humphries, A. Belay, D. Maz-
ières, and C. Kozyrakis. Shinjuku: Preemptive schedul-
ing for microsecond-scale tail latency. In Proc. 16th
USENIX NSDI, Boston, MA, Feb. 2019.

[18] libev. libev. http://libev.schmorp.de.

[19] libevent. libevent. https://libevent.org.
[20] libuv. libuv: Cross-platform asynchronous I/O. https:

//libuv.org.
[21] Linux Standard Base Core speci�cation. __er-

rno_location. http://refspecs.linuxbase.org/
LSB_5.0.0/LSB-Core-generic/LSB-Core-generic/
baselib---errno-location.html, 2015.

[22] M. S. Mollison and J. H. Anderson. Bringing theory
into practice: A userspace library for multicore real-
time scheduling. In 2013 IEEE 19th Real-Time and Em-
bedded Technology and Applications Symposium (RTAS),
Philadelphia, PA, 2013.

[23] mordor. mordor: A high-performance I/O library based
on �bers. https://github.com/mozy/mordor.

[24] PNG reference library: libpng. Defending libpng applica-
tions against decompression bombs. https://libpng.
sourceforge.io/decompression_bombs.html, 2010.

[25] pthread_setcanceltype(3). pthread_setcanceltype() man-
ual page from Linux man-pages project, 2017.

[26] sigaction. sigaction(2) manual page from the Linux man-
pages project, 2019.

[27] signal-safety. signal-safety(7) manual page from Linux
man-pages project, 2019.

[28] TerminateThread. TerminateThread func-
tion. https://docs.microsoft.com/en-us/
windows/win32/api/processthreadsapi/
nf-processthreadsapi-terminatethread, 2018.

[29] The Rust Programming Language. Exten-
sible Concurrency with the Sync and Send
Traits. https://doc.rust-lang.org/book/
ch16-04-extensible-concurrency-sync-and-send.
html, 2019.

[30] The Rust Reference. Behavior not considered unsafe.
https://doc.rust-lang.org/stable/reference/
behavior-not-considered-unsafe.html, 2019.

[31] timer_create. timer_create(2) manual page from the
Linux man-pages project, May 2020.

[32] C. J. Vanderwaart. Static enforcement of timing
policies using code certi�cation. Technical Re-
port CMU-CS-06-143, Carnegie Mellon Computer
Science Technical Report Collection, 2006. URL
http://reports-archive.adm.cs.cmu.edu/anon/
2006/abstracts/06-143.html.

https://golang.org
https://www.rust-lang.org
https://www.rust-lang.org
https://uwspace.uwaterloo.ca/handle/10012/12888
https://uwspace.uwaterloo.ca/handle/10012/12888
https://akkadia.org/drepper/tls.pdf
https://akkadia.org/drepper/tls.pdf
https://www.microsoft.com/en-us/research/publication/an-overview-of-the-singularity-project
https://www.microsoft.com/en-us/research/publication/an-overview-of-the-singularity-project
https://www.microsoft.com/en-us/research/publication/an-overview-of-the-singularity-project
https://github.com/tokio-rs/tokio/tree/tokio-threadpool-0.1.16/tokio-threadpool
https://github.com/tokio-rs/tokio/tree/tokio-threadpool-0.1.16/tokio-threadpool
https://github.com/tokio-rs/tokio/tree/tokio-threadpool-0.1.16/tokio-threadpool
https://github.com/wg/wrk
https://github.com/wg/wrk
https://cs.indiana.edu/ftp/techreports/TR159.pdf
https://cs.indiana.edu/ftp/techreports/TR159.pdf
https://hyper.rs
http://libev.schmorp.de
https://libevent.org
https://libuv.org
https://libuv.org
http://refspecs.linuxbase.org/LSB_5.0.0/LSB-Core-generic/LSB-Core-generic/baselib---errno-location.html
http://refspecs.linuxbase.org/LSB_5.0.0/LSB-Core-generic/LSB-Core-generic/baselib---errno-location.html
http://refspecs.linuxbase.org/LSB_5.0.0/LSB-Core-generic/LSB-Core-generic/baselib---errno-location.html
https://github.com/mozy/mordor
https://libpng.sourceforge.io/decompression_bombs.html
https://libpng.sourceforge.io/decompression_bombs.html
https://docs.microsoft.com/en-us/windows/win32/api/processthreadsapi/nf-processthreadsapi-terminatethread
https://docs.microsoft.com/en-us/windows/win32/api/processthreadsapi/nf-processthreadsapi-terminatethread
https://docs.microsoft.com/en-us/windows/win32/api/processthreadsapi/nf-processthreadsapi-terminatethread
https://doc.rust-lang.org/book/ch16-04-extensible-concurrency-sync-and-send.html
https://doc.rust-lang.org/book/ch16-04-extensible-concurrency-sync-and-send.html
https://doc.rust-lang.org/book/ch16-04-extensible-concurrency-sync-and-send.html
https://doc.rust-lang.org/stable/reference/behavior-not-considered-unsafe.html
https://doc.rust-lang.org/stable/reference/behavior-not-considered-unsafe.html
http://reports-archive.adm.cs.cmu.edu/anon/2006/abstracts/06-143.html
http://reports-archive.adm.cs.cmu.edu/anon/2006/abstracts/06-143.html

	Introduction
	Related work
	Timed functions: libinger
	Automatic handling of shared state
	Safe concurrency
	Execution stacks
	Timer interrupts
	Cancellation

	Thread library: libturquoise
	Futures and asynchronous I/O
	Preemptible futures
	Preemptive userland threading

	Shared state: libgotcha
	Library copying: namespaces
	Library copying: libsets
	Managing libsets
	Selective relinking
	Uninterruptible code: uncopyable
	Limitations
	Case study: auto async-signal safety

	Evaluation
	Microbenchmarks
	Web server
	Image decompression

	Future work
	Conclusion

