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PROBLEM
● Current serverless platforms exhibit 

millisecond-scale invocation latencies.
● State-of-the-art networks/systems boast 
microsecond-scale latencies.

GOALS
● Reimagine serverless: shorter, faster jobs.
● Enable new use cases.

OUR WORK
● Redesign worker node isolation 

mechanism to reduce invocation latency.

Shared worker processes

● Eschew per-microservice containers
● Substitute per-core shared worker processes
○ Invoke by polling for requests
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Invocation latency reduction

Language-based isolation

● User submits memory-safe Rust code
○ No dereferencing null/dangling pointers
○ All variables initialized
○ Immutable data unchanged

● Provider only permits memory-safe or 
explicitly trusted dependencies

Fine-grained preemption

1. Regain CPU control from long microservice
○ POSIX signal: 20-μs period!

2. Abort/clean up after microservice’s code
○ Throw Rust exception, catch in worker loop


