
Putting the “Micro” Back in Microservices
Sol Boucher†, Anuj Kalia†, David G. Andersen†, Michael Kaminsky‡

†Carnegie Mellon University, ‡Intel Labs

PROBLEM
● Current serverless platforms exhibit 

millisecond-scale invocation latencies.
● State-of-the-art networks/systems boast 
microsecond-scale latencies.

GOALS
● Reimagine serverless: shorter, faster jobs.
● Enable new use cases.

OUR WORK
● Redesign worker node isolation 

mechanism to reduce invocation latency.

Shared worker processes

● Eschew per-microservice containers
● Substitute per-core shared worker processes
○ Invoke by polling for requests

Worker node

CPU Worker process

μservice μservice

CPU Worker process

μservice μservice

Worker node

CPU

μsvc μsvc μsvc

CPU

μsvc μsvc μsvc

Invocation latency reduction

Language-based isolation

● User submits memory-safe Rust code
○ No dereferencing null/dangling pointers
○ All variables initialized
○ Immutable data unchanged

● Provider only permits memory-safe or 
explicitly trusted dependencies

Fine-grained preemption

1. Regain CPU control from long microservice
○ POSIX signal: 20-μs period!

2. Abort/clean up after microservice’s code
○ Throw Rust exception, catch in worker loop


