Putting the “Micro” Back in Microservices

Sol Boucher®, Anuj Kalia®, David G. Andersen®, Michael Kaminsky*
'Carnegie Mellon University, *Intel Labs

PROBLEM Language-based isolation

e Current serverless platforms exhibit

millisecond-scale invocation latencies. e User submits memory-safe Rust code
o No dereferencing null/dangling pointers

o All variables initialized

o Immutable data unchanged
GoALs e Provider only permits memory-safe or
explicitly trusted dependencies

e State-of-the-art networks/systems boast
microsecond-scale latencies.

e Reimagine serverless: shorter, faster jobs.
e Enable new use cases.

OUR WORK

e Redesign worker node isolation
mechanism to reduce invocation latency. 1. Regain CPU control from long microservice
o POSIX signal: 20-ps period!

2. Abort/clean up after microservice's code
o Throw Rust exception, catch in worker loop

Fine-grained preemption

Shared worker processes

0
e Eschew per-microservice containers S 25-
e Substitute per-core shared worker processes g
o Invoke by polling for requests S 20
=
= 1.5 -
@
-
(@)
>
e 1.0
E —— Baseline
3 051 —— Preemption
= 90%
=< 0.0

1IO 2IO 3IO 4IO 5IO
Preemption interval (us)

-

Invocation latency reduction

Invocation latency (us)

E Process-based isolation » Language-based isolation
"é’ 0% 1,

S 99%

g 90% | 40

(©

[z

% 990/0 | 45

o



