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Abstract 
In this paper we describe a single unifying abstraction 

called dynamic sets which can offer substantial benejits to 
search applications. These benejits include greater oppor- 
tunity in the I/O subsystem to aggressively exploit prefetch- 
ing and parallelism, as well as supportfor associative nam- 
ing to complement the hierarchical naming in typical jile 
systems. This paper motivates dynamic sets and presents 
the design of a system that embodies this abstraction. 

1 Introduction 

In this paper we consider the problem of high U 0  laten- 
cies during search or browsing in a large scale distributed 
data repository such as AFS[10] or the World Wide Web 
(WWW)[ 11. To solve the problem, we identify a new oper- 
ating system abstraction called dynamic sets. The essence 
of the abstraction is the explicit grouping of sets ofjile 
accesses and the communication of this grouping by appli- 
cations to the operating system. We demonstrate that this 
simple abstraction can have powerful performance impli- 
cations across a spectrum of operating characteristics. 

The advantage of dynamic sets lies in informed 
prefetching[9]. The disclosure of the membership of a 
group of related files is a hint of future access that can be 
exploited by the system to gain the benefits of prefetching: 
exploiting parallelism in the I/O subsystem, overlapping 
processing of data with its access, and higher resource 
utilization. In addition, by using a set to represent the 
grouping, the system is free to optimize the order in which 
the set members are fetched to further reduce the aggre- 
gate latency to process the set. The advantages of dynamic 
sets can be realized in a number of areas. For example, 
they can be used to cope with the increasing mismatch 
between CPU and disk speeds in high-performance com- 
puting systems. As another example, dynamic sets allow 
mobile clients to overlap processing of data with its access 
over low-bandwidth wireless links. As a third example, 
the explicit identification of associativity provided by dy- 
namic sets can partially compensate for the lack of temporal 
locality in contexts such as search. 

This research was supported by the Air Force Materiel Command 
(AFMC) and ARPA under contract number F196828-93-C-0193. Addi- 
tional support was provided by the IBM Corporation, Digital Equipment 
Corporation, and Intel Corporation. 

0-8186-7081-9/95 $04.00 0 1995 IEEE 
136 

Preliminary experience with dynamic sets[ 111 suggests 
that these potential benefits are indeed realizable. For 
example, our prototype implementation reduced the total 
elapsed time to fetch a group of objects over a high la- 
tency network by close to a factor of four. The benefits are, 
of course, highly dependent on the specific applications 
and system parameters, but the use of dynamic sets often 
helped and never hurt performance in all of the cases we 
considered. 

2 Motivation 

As users of the WWW or a variety of distributed file 
systems can attest, fetching remote data can involve large 
delays due to high network latencies. Some applications 
can exploit caching to reduce the impact of these delays, 
but others which exhibit little temporal locality tend to have 
poor cache hit rates. Search (and retrieval) is an example 
of this latter class. Although Unix-like file system inter- 
faces were not explicitly designed for it, they are frequently 
called upon to efficiently support many types of search. For 
instance, searching a collection of source files for a variable 
declaration is an everyday occurrence. More recently, the 
widespread use of browsing systems such as NCSA Mo- 
saic has enabled the construction of hypertext documents 
referencing numerous file system objects. 

To understand how dynamic sets can aid search, consider 
the execution of a simple search command, grep foo 
* . c, in a typical Unix system. The wildcard “*” is ex- 
panded by the shell, and the application program “grep” is 
given a sequence of filenames matching the pattern “* . c”. 
Each file is successively opened, read in its entirety while 
searching for occurrences of “f oo”, and then closed. Al- 
though the precise identity of files needed is determined 
once the wildcard expansion has been performed, this in- 
formation cannot be exploited by the operating system to 
prefetch the files from a disk or over the network. Further, 
the order of file opens is fixed at wildcard expansion time 
although searching those files in a different order would 
still preserve the semantics of the command. This means 
that the operating system cannot reduce the overall elapsed 
time for the command by reordering requests to exploit 
differences in the I/O latencies for different files. 

Although the simplicity of grep makes it a good choice 
to illustrate the power of sets, it is by no means the only 
application that can use dynamic sets. In fact grep is rep- 
resentative of a common Unix programming idiom. Search 
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applications with significant processing time (e.g. query- 
by-image-content (QBIC[8]) or that involve human actions 
(e.g. clicking for the next element) are other examples for 
which dynamic sets offer significant promise. 

These examples reveal two distinct limitations of current 
Unix systems. First, knowledge of related file accesses is 
lost to lower levels of the system even when it is evident to 
higher levels of the system. Second, an ordering of such file 
accesses is imposed too early in their handling. Dynamic 
sets address both these limitations by providing a way in 
which an application can expose a group of related accesses 
to lower levels of the system without imposing an unneces- 
sary ordering. Once so informed, the lower levels can then 
prefetch the objects in a more efficient order, exploit avail- 
able parallelism in the U 0  subsystem (such as independent 
disks), and overlap the high latency of accessing data with 
processing activity. 

A secondary benefit of dynamic sets is that they allow 
the superior scaling characteristics of hierarchical naming 
to be seamlessly combined with the convenient search ca- 
pability of associative naming. For instance, suppose MIT 
and CMU maintain databases indexing their computer sci- 
ence technical reports stored in world-wide AFS. A user 
of dynamic sets might browse for a report on some topic 
by using grep to search through files returned by a query 
run on the databases. Using dynamic sets, such a query 
would look like “grep “distributed systems” 
‘/afs/{mit,cmu}/tr-db/\select name from 
reports where author like “david”\’”. 

3 Design of SETS 

This section presents the highlights of the design of a 
realization of dynamic sets, which we call SETS. SETS has 
three goals. First, the set mechanism must be lightweight 
to minimize unnecessary overhead. Second, the seman- 
tics should be strong enough to satisfy application require- 
ments, but not be overly restrictive on system design. Third, 
the set interface should be easy to use, while allowing ap- 
plications to cleanly inform lower levels of future accesses. 

A set is a dynamically created collection of objects that 
only exists as long as the application that created it. If one 
wants a more permanent collection, one could create it by 
storing the set and its members in a persistent store. 

The mutability of sets and objects raises two important 
issues: “What is the proper definition of set membership?’ 
and “How current do the members of the set need to be?’. 
These questions have been answered in the context of dis- 
tributed databases (e.g. read-only transaction[3]), but we 
believe that these solutions are not appropriate to the large 
scale distributed systems such as WWW or AFS. First, 
many types of data do not need such strong guarantees[2,5]. 
Second, many current distributed storage systems do not 
provide the mechanisms necessary for SETS to guarantee 
data consistency. Third, and most importantly, higher de- 
grees of consistency impose large performance penalties. 
For instance, one technique to ensure serializability is to 
block mutations while a query is running. On a system 
that spans the Internet, however, this could adversely affect 
availability of data during partitions (a frequent occurrence 
on the Internet[7]) and the cost of distributedlocking would 
be prohibitive. 

For these reasons, SETS provides a much weaker con- 

1. Every object in the set satisfied the query at some point 

2. Once an object is in the set, it will remain in the set. 

Although these are weak promises, they strike a bal- 
ance between the needs of scalability and availability, and 
the need to offer useful semantics. We believe that these 
promises are sufficient to allow many forms of browsing 
or searching. An earlier paper sketches the space of weak 
consistency in this context, and contains a more detailed 
discussion of these issues[ 121. 

sistency guarantee, captured in these two assertions: 

during its run. 

3.1 SETS interface 
The operations in the SETS interface are presented in 

Figure 1. This subsection discusses the four basic oper- 
ations: setopen, setIterate, setDigest, and 
setclose. For brevity, we omit discussion of the other 
operations. 

Sets are created by calling setopen with a set path- 
name (using syntax explained in Section 3.2), and receiving 
a handle for the open set in return. The system expands the 
set pathname to obtain a list of names of individual objects 
in the set. SETS is free to determine the aggressiveness 
with which this expansion should be performed. In par- 
ticular, setopen does not require that any expansion be 
completed before the call returns. The system may also 
fetch individual objects in the set at this time, but is not 
required to do so. setclose terminates use of a set han- 
dle, allowing the system to free any resources used by the 
corresponding set. 

SETS provides two ways of examining the contents of 
an open set to allow both browsing (setDiges t) and iter- 
ation (setIterate). setDigest is very lightweight, 
presenting only summary information about the members. 
Each call to setIterate returns a standard Unix file de- 
scriptor for a previously unprocessed member. The former 
does not require fetching the member returned, while the 
latter requires that it at least partially be fetched. Use of 
setIterate provides the system with a stronger hint of 
future access, allowing the system to more safely allocate 
resources for prefetching. 

The following pseudo code is typical of the way standard 
Unix applications such as grep would use SETS. 

handle = setopen (argv [ 11 ) ; 
while ( (fd = setIterate(hand1e)) ! =  -1 ) { 

process ( fd) ; 
close (fd) ; 

1 
setclose (handle) ; 

The command is invoked with the specification of the set 
to process. The set is opened and the members are produced 
using setIterate. The routine process ( ) performs 
the application specific function, in the case of grep read- 
ing the file sequentially and searching for a specific string. 
When processing is complete, the member is closed, and 
upon termination of the iterator, the set is closed. As one 
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Basic 

Functions 

Auxi iary 

Functions 

set Handl e 
error Code 
f ileDesc 
errorcode 
se tHandle 
set Handl e 
errorcode 
err o y C  o de 
int 
boo1 
errorcode 

setopen( char *setpathname ); 
setclose( setHandle set ); 
setIterate( setHandle set, int flags ); 
setDigest( setHandle set, char *buf, int count ); 
setUNon( setHandle setl, setHandle set2, int flags ); 
setIntersect( setHandle setl, setHandle set2, int flags ); 
setRewindIterator( setHandle set ); 
setRewindDigest( setHandle set ); 
setsize( setHandle set ); 
setMember( setHandle set, char *elem ); 
setApply( setHandle set, void (*f)() ); 

Figure 1 : SETS system call interface 

can see, it is quite possible to modify existing applications 
to use sets with little or no knowledge of the details of the 
application. 

3.2 Naming 
When a set is opened, the application supplies a string 

specifying the names of the objects in the set. SETS under- 
stands three types of set specifications, an example of each 
being given in Figure 2. First, in an explicit speci$cation, a 
user enumerates the names of the members of the set, either 
using full names or pattern matching via csh wildcard nota- 
tion. Second, type-specific specifications are special strings 
that can be evaluated as queries by search engines, such as 
SQL databases or WAIS indexes[6], which will return the 
names of objects that satisfy the query. The specification 
indicates both the engine to be used and the string, so it 
is assumed that the proper query format is known to the 
specifier. Third, executable spec@cations are binaries that 
return a list of the names of files to be put in a set. This class 
of set specification raises many issues, such as security and 
heterogeneity, which are not addressed in this paper. Note 
that SETS is a framework which provides access to exist- 
ing services, and is not responsible for providing the search 
engines (many of which exist already). 

In order to integrate SETS with Unix, we have extended 
the csh wildcard notation to include all three forms of 
set specification. A name in the extended syntax can 
have a set specification in any component of the path- 
name. The portion of the pathname after the set speci- 
fication treats the set members as directories. For instance, 
/coda/{cmu,mit}/staff looks for a subdirectory 
of /coda/cmu and /coda/mit named staff. If no 
such directory exists, the resulting set is the empty-set. As 
another example, a type-specific specification applied to an 
object of the wrong type will also return the empty-set. A 
normal Unix name is just a special case of a set pathname 
that refers to only one object. 

4 Status and experience 

Our implementation of SETS has taken two forms. The 
first is a user-level prototype which was built to get an initial 
understanding of the performance of SETS. The second is a 
more functional kernel implementation, which is currently 
in progress. 

4.1 User-Level prototype 
The user-level prototype[ 1 11 is based on a simplistic dis- 

tributed file system. To use the prototype, applications link 
in two libraries; one exports the set interface in Figure 1, the 
other is the client end of the file system. The client parses 
pathnames of the form / <serv> / < local - f i le>, redi- 
recting YO requests on the file to the server on machine 
<serv>. No caching is done, although SETS prefetches 
objects and the client may preread an open file. 

To evaluate the prototype, we measured the performance 
along a number of dimensions. The experiments were 
based on a parameterized version of grep, which allows 
one to specify the amount of processing time as a function 
of the data size. In the experiments, we compared the time 
to process a set of files stored in the file system using SETS 
to the time without using SETS. Separate experiments ex- 
amined the effect that the amount of processing per byte, 
the number of objects in the set, the size of the files in the 
set, and the speed of the network had on the performance 
of SETS. 

Although the prototype’s absolute performance was 
modest due to implementation inefficiencies, the benefit 
of dynamic sets turned out to be substantial. We observed 
up to a factor of 4.25 (out of a predicted 4.39) speedup 
using one client and four servers. Although this appears to 
be a greater than linear speedup, it results not only from the 
four fold parallelism across the servers, but also from the 
parallelism between the client’s processing of the data and 
the fetching of it. In no case did the use of dynamic sets 
hurt performance. 

We codified our experience with the prototype into a 
linear performance model[ 111. The model was validated 
by comparing its results with measurements of the proto- 
type. The model confirms that use of dynamic sets should 
yield benefits in a number of environments, from mobile 
clients over slow networks to standard Unix applications to 
applications with high processing per byte of data. 

4.2 Kernel implementation 
Given the encouraging results of the prototype, we are 

currently adding the set interface (Figure 1) to the API of 
several Unix-like systems (Mach 2.6, NetBSD, and Linux). 
We chose to place SETS inside the kernel to be in close 
proximity to the name resolution code, and to allow a tight 
integration between SETS and the lower level file systems 
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Explicit: /coda/usr/dcs/*src*/*.c 

Type-spec$c: 

Executable: /coda/ sources / %myMakeDepend f oo . c% 
/coda/ (cmu , mit) /staff / \select home where name 1 ike " %david% " \ 

Because many Unix users are already familiar with the csh wildcard notation, we extended this syntax to support set specification. 
Explicit spec@cations use standard csh notation. Type spec@c spec@cafions have 3 portions: the prefix identifies the object on 
which the query will be run (such as a database), and is terminated by the first "\"; the query is delimited by "\. . . \"; and the suffix 
which will be appended to the query's results. Executable specGCations are similar to type specific; the prefix is the name of the 
working directory in which the binary will be run, and the "%" delimits the command used to invoke the binary. 

Figure 2: Examples of the three types of names supported by SETS. 

(UFS, AFS, Coda, etc). We believe this design choice 
allows SETS to get maximal performance, while allowing 
a set to contain objects from different file systems. 

At the time of this writing, a user of SETS can use csh 
wildcard notation, Informix SQL queries, or a subset of 
WWW URLs to specify queries. URLs that name HTML 
documents are treated as queries by parsing the HTML 
document, identifying all links to other documents, and 
creating a set to hold those documents. With this, a user of 
SETS can use Lycos', the WebCrawler2, or other WWW 
indexing tools to search for WWW documents, and enjoy 
the benefits of dynamic sets when examining the results. 

With this full implementation of SETS, we hope to ex- 
plore many issues that were raised by the prototype. First, 
how well can dynamic sets be integrated with an existing 
distributed file system? How will caching and dynamic 
sets interact in practice? Second, how difficult will it be 
for an implementation to achieve substantial improvement 
via dynamic adaptability? Third, what techniques can be 
exploited to increase support for mobile, weakly connected 
clients? Finally, how will dynamic sets perform when ex- 
posed to a real user community? Many issues of the effects 
of competition for and consumption of resources can only 
be explored when a system is supporting real user work- 
loads. 

5 Related work 

Our work is most closely related to two efforts previ- 
ously described in the literature, the Semantic File System 
(SFS)[4] and Transparent Informed Prefetching (TIP)[9]. 
The Semantic File System attempts to provide automatic 
indexing of information in a file system by creating an index 
at a server, and updating it as files are created or modified. 
The SFS extends the traditional Unix pathname mechanism 
to support conjunctive queries over a space of name-value 
attribute pairs. Dynamic sets has a very different focus: that 
of reducing the latency seen by a client. As such, the SFS 
does not attempt to address the primary issues focused on 
here. However, one could easily envision adding dynamic 
sets to SFS, thus merging the benefits of both systems. 
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As a method for prefetching, dynamic sets are similar in 
nature to Transparent Informed Prefetching (TIP)[9]. The 
use of sets allows the system to prefetch, lazily fetch, and/or 
reorder the fetching of objects in the set, whereas TIP hints 
are limited to prefetching. However, TIP hints can be used 
to specify how a file will (probably) be read (e.g. stride 
width), whereas dynamic sets only inform the system that 
an object will (probably) be accessed. TIP and SETS could 
easily be integrated; for instance one could envision using 
TIP to specify read access patterns while iterating on a set. 

6 Conclusion 

Search on mobile computers and wide-area information 
systems is likely to suffer from high U 0  latencies. Conven- 
tional techniques such as caching do not help because there 
is little or no locality to exploit in such workloads. The 
work described here is an attempt to exploit the character- 
istics of search to reduce the aggregate latency to access 
a group of objects. Early results have shown dynamic 
sets to be a promising path to this goal. We hope that 
the full-fledged implementation currently in progress will 
offer convincing evidence that dynamic sets are indeed a 
valuable abstraction in operating systems. 
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