
Using Dynamic Sets to Overcome High U 0 Latencies During Search

David Steere M. Satyanarayanan

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 152 13
{dcs,satya}@cs.cmu.edu

Abstract
In this paper we describe a single unifying abstraction

called dynamic sets which can offer substantial benejits to
search applications. These benejits include greater oppor-
tunity in the I/O subsystem to aggressively exploit prefetch-
ing and parallelism, as well as supportfor associative nam-
ing to complement the hierarchical naming in typical jile
systems. This paper motivates dynamic sets and presents
the design of a system that embodies this abstraction.

1 Introduction

In this paper we consider the problem of high U 0 laten-
cies during search or browsing in a large scale distributed
data repository such as AFS[10] or the World Wide Web
(WWW)[11. To solve the problem, we identify a new oper-
ating system abstraction called dynamic sets. The essence
of the abstraction is the explicit grouping of sets ofjile
accesses and the communication of this grouping by appli-
cations to the operating system. We demonstrate that this
simple abstraction can have powerful performance impli-
cations across a spectrum of operating characteristics.

The advantage of dynamic sets lies in informed
prefetching[9]. The disclosure of the membership of a
group of related files is a hint of future access that can be
exploited by the system to gain the benefits of prefetching:
exploiting parallelism in the I/O subsystem, overlapping
processing of data with its access, and higher resource
utilization. In addition, by using a set to represent the
grouping, the system is free to optimize the order in which
the set members are fetched to further reduce the aggre-
gate latency to process the set. The advantages of dynamic
sets can be realized in a number of areas. For example,
they can be used to cope with the increasing mismatch
between CPU and disk speeds in high-performance com-
puting systems. As another example, dynamic sets allow
mobile clients to overlap processing of data with its access
over low-bandwidth wireless links. As a third example,
the explicit identification of associativity provided by dy-
namic sets can partially compensate for the lack of temporal
locality in contexts such as search.

This research was supported by the Air Force Materiel Command
(AFMC) and ARPA under contract number F196828-93-C-0193. Addi-
tional support was provided by the IBM Corporation, Digital Equipment
Corporation, and Intel Corporation.

0-8186-7081-9/95 $04.00 0 1995 IEEE
136

Preliminary experience with dynamic sets[111 suggests
that these potential benefits are indeed realizable. For
example, our prototype implementation reduced the total
elapsed time to fetch a group of objects over a high la-
tency network by close to a factor of four. The benefits are,
of course, highly dependent on the specific applications
and system parameters, but the use of dynamic sets often
helped and never hurt performance in all of the cases we
considered.

2 Motivation

As users of the WWW or a variety of distributed file
systems can attest, fetching remote data can involve large
delays due to high network latencies. Some applications
can exploit caching to reduce the impact of these delays,
but others which exhibit little temporal locality tend to have
poor cache hit rates. Search (and retrieval) is an example
of this latter class. Although Unix-like file system inter-
faces were not explicitly designed for it, they are frequently
called upon to efficiently support many types of search. For
instance, searching a collection of source files for a variable
declaration is an everyday occurrence. More recently, the
widespread use of browsing systems such as NCSA Mo-
saic has enabled the construction of hypertext documents
referencing numerous file system objects.

To understand how dynamic sets can aid search, consider
the execution of a simple search command, grep foo
* . c, in a typical Unix system. The wildcard “*” is ex-
panded by the shell, and the application program “grep” is
given a sequence of filenames matching the pattern “* . c”.
Each file is successively opened, read in its entirety while
searching for occurrences of “f oo”, and then closed. Al-
though the precise identity of files needed is determined
once the wildcard expansion has been performed, this in-
formation cannot be exploited by the operating system to
prefetch the files from a disk or over the network. Further,
the order of file opens is fixed at wildcard expansion time
although searching those files in a different order would
still preserve the semantics of the command. This means
that the operating system cannot reduce the overall elapsed
time for the command by reordering requests to exploit
differences in the I/O latencies for different files.

Although the simplicity of grep makes it a good choice
to illustrate the power of sets, it is by no means the only
application that can use dynamic sets. In fact grep is rep-
resentative of a common Unix programming idiom. Search

mailto:dcs,satya}@cs.cmu.edu

applications with significant processing time (e.g. query-
by-image-content (QBIC[8]) or that involve human actions
(e.g. clicking for the next element) are other examples for
which dynamic sets offer significant promise.

These examples reveal two distinct limitations of current
Unix systems. First, knowledge of related file accesses is
lost to lower levels of the system even when it is evident to
higher levels of the system. Second, an ordering of such file
accesses is imposed too early in their handling. Dynamic
sets address both these limitations by providing a way in
which an application can expose a group of related accesses
to lower levels of the system without imposing an unneces-
sary ordering. Once so informed, the lower levels can then
prefetch the objects in a more efficient order, exploit avail-
able parallelism in the U 0 subsystem (such as independent
disks), and overlap the high latency of accessing data with
processing activity.

A secondary benefit of dynamic sets is that they allow
the superior scaling characteristics of hierarchical naming
to be seamlessly combined with the convenient search ca-
pability of associative naming. For instance, suppose MIT
and CMU maintain databases indexing their computer sci-
ence technical reports stored in world-wide AFS. A user
of dynamic sets might browse for a report on some topic
by using grep to search through files returned by a query
run on the databases. Using dynamic sets, such a query
would look like “grep “distributed systems”
‘/afs/{mit,cmu}/tr-db/\select name from
reports where author like “david”\’”.

3 Design of SETS

This section presents the highlights of the design of a
realization of dynamic sets, which we call SETS. SETS has
three goals. First, the set mechanism must be lightweight
to minimize unnecessary overhead. Second, the seman-
tics should be strong enough to satisfy application require-
ments, but not be overly restrictive on system design. Third,
the set interface should be easy to use, while allowing ap-
plications to cleanly inform lower levels of future accesses.

A set is a dynamically created collection of objects that
only exists as long as the application that created it. If one
wants a more permanent collection, one could create it by
storing the set and its members in a persistent store.

The mutability of sets and objects raises two important
issues: “What is the proper definition of set membership?’
and “How current do the members of the set need to be?’.
These questions have been answered in the context of dis-
tributed databases (e.g. read-only transaction[3]), but we
believe that these solutions are not appropriate to the large
scale distributed systems such as WWW or AFS. First,
many types of data do not need such strong guarantees[2,5].
Second, many current distributed storage systems do not
provide the mechanisms necessary for SETS to guarantee
data consistency. Third, and most importantly, higher de-
grees of consistency impose large performance penalties.
For instance, one technique to ensure serializability is to
block mutations while a query is running. On a system
that spans the Internet, however, this could adversely affect
availability of data during partitions (a frequent occurrence
on the Internet[7]) and the cost of distributedlocking would
be prohibitive.

For these reasons, SETS provides a much weaker con-

1. Every object in the set satisfied the query at some point

2. Once an object is in the set, it will remain in the set.

Although these are weak promises, they strike a bal-
ance between the needs of scalability and availability, and
the need to offer useful semantics. We believe that these
promises are sufficient to allow many forms of browsing
or searching. An earlier paper sketches the space of weak
consistency in this context, and contains a more detailed
discussion of these issues[121.

sistency guarantee, captured in these two assertions:

during its run.

3.1 SETS interface
The operations in the SETS interface are presented in

Figure 1. This subsection discusses the four basic oper-
ations: setopen, setIterate, setDigest, and
setclose. For brevity, we omit discussion of the other
operations.

Sets are created by calling setopen with a set path-
name (using syntax explained in Section 3.2), and receiving
a handle for the open set in return. The system expands the
set pathname to obtain a list of names of individual objects
in the set. SETS is free to determine the aggressiveness
with which this expansion should be performed. In par-
ticular, setopen does not require that any expansion be
completed before the call returns. The system may also
fetch individual objects in the set at this time, but is not
required to do so. setclose terminates use of a set han-
dle, allowing the system to free any resources used by the
corresponding set.

SETS provides two ways of examining the contents of
an open set to allow both browsing (setDiges t) and iter-
ation (setIterate). setDigest is very lightweight,
presenting only summary information about the members.
Each call to setIterate returns a standard Unix file de-
scriptor for a previously unprocessed member. The former
does not require fetching the member returned, while the
latter requires that it at least partially be fetched. Use of
setIterate provides the system with a stronger hint of
future access, allowing the system to more safely allocate
resources for prefetching.

The following pseudo code is typical of the way standard
Unix applications such as grep would use SETS.

handle = setopen (argv [11) ;
while ((fd = setIterate(hand1e)) ! = -1) {

process (fd) ;
close (fd) ;

1
setclose (handle) ;

The command is invoked with the specification of the set
to process. The set is opened and the members are produced
using setIterate. The routine process () performs
the application specific function, in the case of grep read-
ing the file sequentially and searching for a specific string.
When processing is complete, the member is closed, and
upon termination of the iterator, the set is closed. As one

137

Basic

Functions

Auxi iary

Functions

set Handl e
error Code
f ileDesc
errorcode
se tHandle
set Handl e
errorcode
err o y C o de
int
boo1
errorcode

setopen(char *setpathname);
setclose(setHandle set);
setIterate(setHandle set, int flags);
setDigest(setHandle set, char *buf, int count);
setUNon(setHandle setl, setHandle set2, int flags);
setIntersect(setHandle setl, setHandle set2, int flags);
setRewindIterator(setHandle set);
setRewindDigest(setHandle set);
setsize(setHandle set);
setMember(setHandle set, char *elem);
setApply(setHandle set, void (*f)());

Figure 1 : SETS system call interface

can see, it is quite possible to modify existing applications
to use sets with little or no knowledge of the details of the
application.

3.2 Naming
When a set is opened, the application supplies a string

specifying the names of the objects in the set. SETS under-
stands three types of set specifications, an example of each
being given in Figure 2. First, in an explicit speci$cation, a
user enumerates the names of the members of the set, either
using full names or pattern matching via csh wildcard nota-
tion. Second, type-specific specifications are special strings
that can be evaluated as queries by search engines, such as
SQL databases or WAIS indexes[6], which will return the
names of objects that satisfy the query. The specification
indicates both the engine to be used and the string, so it
is assumed that the proper query format is known to the
specifier. Third, executable spec@cations are binaries that
return a list of the names of files to be put in a set. This class
of set specification raises many issues, such as security and
heterogeneity, which are not addressed in this paper. Note
that SETS is a framework which provides access to exist-
ing services, and is not responsible for providing the search
engines (many of which exist already).

In order to integrate SETS with Unix, we have extended
the csh wildcard notation to include all three forms of
set specification. A name in the extended syntax can
have a set specification in any component of the path-
name. The portion of the pathname after the set speci-
fication treats the set members as directories. For instance,
/coda/{cmu,mit}/staff looks for a subdirectory
of /coda/cmu and /coda/mit named staff. If no
such directory exists, the resulting set is the empty-set. As
another example, a type-specific specification applied to an
object of the wrong type will also return the empty-set. A
normal Unix name is just a special case of a set pathname
that refers to only one object.

4 Status and experience

Our implementation of SETS has taken two forms. The
first is a user-level prototype which was built to get an initial
understanding of the performance of SETS. The second is a
more functional kernel implementation, which is currently
in progress.

4.1 User-Level prototype
The user-level prototype[1 11 is based on a simplistic dis-

tributed file system. To use the prototype, applications link
in two libraries; one exports the set interface in Figure 1, the
other is the client end of the file system. The client parses
pathnames of the form / <serv> / < local - f i le>, redi-
recting YO requests on the file to the server on machine
<serv>. No caching is done, although SETS prefetches
objects and the client may preread an open file.

To evaluate the prototype, we measured the performance
along a number of dimensions. The experiments were
based on a parameterized version of grep, which allows
one to specify the amount of processing time as a function
of the data size. In the experiments, we compared the time
to process a set of files stored in the file system using SETS
to the time without using SETS. Separate experiments ex-
amined the effect that the amount of processing per byte,
the number of objects in the set, the size of the files in the
set, and the speed of the network had on the performance
of SETS.

Although the prototype’s absolute performance was
modest due to implementation inefficiencies, the benefit
of dynamic sets turned out to be substantial. We observed
up to a factor of 4.25 (out of a predicted 4.39) speedup
using one client and four servers. Although this appears to
be a greater than linear speedup, it results not only from the
four fold parallelism across the servers, but also from the
parallelism between the client’s processing of the data and
the fetching of it. In no case did the use of dynamic sets
hurt performance.

We codified our experience with the prototype into a
linear performance model[111. The model was validated
by comparing its results with measurements of the proto-
type. The model confirms that use of dynamic sets should
yield benefits in a number of environments, from mobile
clients over slow networks to standard Unix applications to
applications with high processing per byte of data.

4.2 Kernel implementation
Given the encouraging results of the prototype, we are

currently adding the set interface (Figure 1) to the API of
several Unix-like systems (Mach 2.6, NetBSD, and Linux).
We chose to place SETS inside the kernel to be in close
proximity to the name resolution code, and to allow a tight
integration between SETS and the lower level file systems

138

Explicit: /coda/usr/dcs/*src*/*.c

Type-spec$c:

Executable: /coda/ sources / %myMakeDepend f oo . c%
/coda/ (cmu , mit) /staff / \select home where name 1 ike " %david% " \

Because many Unix users are already familiar with the csh wildcard notation, we extended this syntax to support set specification.
Explicit spec@cations use standard csh notation. Type spec@c spec@cafions have 3 portions: the prefix identifies the object on
which the query will be run (such as a database), and is terminated by the first "\"; the query is delimited by "\. . . \"; and the suffix
which will be appended to the query's results. Executable specGCations are similar to type specific; the prefix is the name of the
working directory in which the binary will be run, and the "%" delimits the command used to invoke the binary.

Figure 2: Examples of the three types of names supported by SETS.

(UFS, AFS, Coda, etc). We believe this design choice
allows SETS to get maximal performance, while allowing
a set to contain objects from different file systems.

At the time of this writing, a user of SETS can use csh
wildcard notation, Informix SQL queries, or a subset of
WWW URLs to specify queries. URLs that name HTML
documents are treated as queries by parsing the HTML
document, identifying all links to other documents, and
creating a set to hold those documents. With this, a user of
SETS can use Lycos', the WebCrawler2, or other WWW
indexing tools to search for WWW documents, and enjoy
the benefits of dynamic sets when examining the results.

With this full implementation of SETS, we hope to ex-
plore many issues that were raised by the prototype. First,
how well can dynamic sets be integrated with an existing
distributed file system? How will caching and dynamic
sets interact in practice? Second, how difficult will it be
for an implementation to achieve substantial improvement
via dynamic adaptability? Third, what techniques can be
exploited to increase support for mobile, weakly connected
clients? Finally, how will dynamic sets perform when ex-
posed to a real user community? Many issues of the effects
of competition for and consumption of resources can only
be explored when a system is supporting real user work-
loads.

5 Related work

Our work is most closely related to two efforts previ-
ously described in the literature, the Semantic File System
(SFS)[4] and Transparent Informed Prefetching (TIP)[9].
The Semantic File System attempts to provide automatic
indexing of information in a file system by creating an index
at a server, and updating it as files are created or modified.
The SFS extends the traditional Unix pathname mechanism
to support conjunctive queries over a space of name-value
attribute pairs. Dynamic sets has a very different focus: that
of reducing the latency seen by a client. As such, the SFS
does not attempt to address the primary issues focused on
here. However, one could easily envision adding dynamic
sets to SFS, thus merging the benefits of both systems.

http://lycos.cs.cmu.edu/cgi-binlpursuit

http://www.biotech.washington.edu/WebCrawler/WebQuery.html

As a method for prefetching, dynamic sets are similar in
nature to Transparent Informed Prefetching (TIP)[9]. The
use of sets allows the system to prefetch, lazily fetch, and/or
reorder the fetching of objects in the set, whereas TIP hints
are limited to prefetching. However, TIP hints can be used
to specify how a file will (probably) be read (e.g. stride
width), whereas dynamic sets only inform the system that
an object will (probably) be accessed. TIP and SETS could
easily be integrated; for instance one could envision using
TIP to specify read access patterns while iterating on a set.

6 Conclusion

Search on mobile computers and wide-area information
systems is likely to suffer from high U 0 latencies. Conven-
tional techniques such as caching do not help because there
is little or no locality to exploit in such workloads. The
work described here is an attempt to exploit the character-
istics of search to reduce the aggregate latency to access
a group of objects. Early results have shown dynamic
sets to be a promising path to this goal. We hope that
the full-fledged implementation currently in progress will
offer convincing evidence that dynamic sets are indeed a
valuable abstraction in operating systems.

References

T. Bemers-Lee, R Cailliau, A. Luotonen, H.F. Nielsen, and
A. Secret. The World Wide Web. Communications ofthe
ACM, 37(8), August 1994.

A.D. Birrell, R. Levin, R.M. Needham, and M.D. Schroeder.
Grapevine: An exercise in distributed computing. Commu-
nications of the ACM, 25(4), April 1982.

H. Garcia-Molina and G. Wiederhold. Read-only trans-
actions in a distributed database. ACM Transactions on
Database Systems, 7(2), June 1982.

D. K. Gifford, P. Jouvelot, M. A. Sheldon, and J. W. O'Toole,
Jr. Semantic file systems. In Proceedings ofthe 13th ACM
Symposium on Operating Systems Principles, October 1991.

R. Golding. A weak-consistency architecture for distributed
information services. Computing Systems, 5(4), Fall 1992.

139

http://lycos.cs.cmu.edu/cgi-binlpursuit
http://www.biotech.washington.edu/WebCrawler/WebQuery.html

[6] B. Kahle and A. Medlar. An information system for corpo-
rate users: Wide area information servers. ConneXions -
The Interoperability Report, 5(11), Nov 1991.

[7] D.D.E Long, J.L. Carroll, and C.J. Park. A study of the
reliability of internet sites. In Proceedings of the 10th IEEE
Symposiumon Reliable DistributedSystems, Pisa, Italy, Sept
1991.

[8] W. Niblack, R. Barber, W. Equitz, M. fickner, E. Glasman,
D. Petkovic, P. Yanker, and C. Faloutsos. The QBIC project:
Querying images by content using color, texture, and shape.
TechnicalReport RJ 9203 (8151 1), IBM ResearchDivision,
1993.

[9] R. H. Patterson and G. A. Gibson. Exposing YO concur-

rency with informed prefetching. In Proceedings of the 3rd
International Conference on Parallel and Distributed Infor-
mation Systems, Austin, IX, September 1994.

[101 M. Spasojevic and M. Satyanarayanan. A usage profile and
evaluation of a wide-area distributed file system. In Winter
Usenix Conference Proceedings, San Francisco, CA, 1994.

[l l] D. Steere and M. Satyanarayanan. A case for dynamic sets
in operating systems. Technical Report CMU-CS-94-216,
School of Computer Science, Camegie Mellon University,
November 1994.

[12] J. Wing and D. Steere. Specifying weak sets. Techni-
cal Report CMU-CS-94-194, School of Computer Science,
Carnegie Mellon University, September 1994.

140

