OCT 2013
HORTH AMERICAH
SPECTRUM.IEEE.ORG

SAVING 50FTWARE

FROM OBLIVION

meorly 2010, Horvard e conomists Carmen Reinhart and Kenneth
Rogoff published an analysis of economic data from many countries and con-
cluded that when debt levels exceed 90 percent of gross national product, a
nation’s economic growth is threatened. With debt that high, expect growth to
become negative, they argued. m This analysis was done shortly after the 2008

recession, so it had enormous relevance to policymakers, many of whom were

promoting high levels of debt spending in the interest of stimulating their nations’

economies. At the same time, conservative politicians, such as Olli Rehn, then an

EU commissioner, and U.S. congressman Paul Ryan, used Reinhart

and Rogoft’s findings to argue for fiscal austerity. m Three years later,

Thomas Herndon, a graduate student at the University of Massachusetts,

discovered an error in the Excel spreadsheet that Reinhart and Rogoff

had used to make their calculations. The significance of the blun-

der was enormous: When the analysis was done properly, Herndon

showed, debt levels in excess of 90 percent were associated with

average growth of positive 2.2 percent, not the negative 0.1 percent

that Reinhart and Rogoff had found. m Herndon could easily test the

Harvard economists’ conclusions because the software that they had

used to calculate their results—Microsoft Excel-was readily available.

But what about much older findings for which the software origi-

nally used is hard to come by? m You might think that the solution—

preserving the relevant software for future researchers to use—should

be no big deal. After all, software is nothing more than a bunch of files,

and those files are easy enough to store on a hard drive or on tape in digital format.

For some software at least, the all-important source code could even be duplicated

on paper, avoiding the possibility that whatever digital medium it’s written to could

become obsolete. m Saving old programs in this way is done routinely, even for

decades-old software. You can find online, for example, a full program listing for

the Apollo Guidance Computer—code that took astronauts to the moon during the

1960s. It was transcribed from a paper copy and uploaded to GitHub in 2016.

Bv Mahadev Satvanaravanan

Musztrations by Hicholas Little

While perusing such vintage source code might
delight hard-core programmers, most people aren’t 3
interested in such things. What they want to do is use 11
the software. But keeping software in ready-to-run] 3 I
form over long periods of time is enormously difficult,
because to be able to run most old code, you need both
an old computer and an old operating system. =

You might have faced this challenge yourself, per-
haps while trying to play a computer game from your
youth. But being unable to run an old program can
have much more serious repercussions, particularly
for scientific and technical research.

Along with economists, many other researchers,
including physicists, chemists, biologists, and engineers, A Mosaic 1.0, a pioneering Web browser for the
routinely use software to slice and dice their data and :
visualize the results of their analyses. They simulate B — - ETiE o e .
phenomena with computer models that are written 990 4. Wanderer, a game fo DOS from 1988
in a variety of programming languages and that use a 5 2
wide range of supporting software libraries and refer- : : 5 do om 199 -
ence data sets. Such investigations and the software Office 4.3 fo do om 1994 8. ChemCollective 0
on which they are based are central to the discovery : @
and reporting of new research results.

Imagine that you’re an investigator and want to check
calculations done by another researcher 25 years ago. =
Would the relevant software still be around? The com- N Gl s
pany that made it may have disappeared. Even if a con-
temporary version of the software exists, will it still
accept the format of the original data? Will the calcu-
lations be identical in every respect—for example, in Dear Users--

The Software Development Division (SDD) at NCSA has worked on NCSA Mosaic for nearly four years,

the handling Of rounding errors—to thOSC obtained and we've learned a 1ot in the process. We've appreciated your feedback, your support, and the tons

of email you've sent.

using a computer of a generation ago? Probably not. But now it i for us 1o concentrate on other sress o interest. Active developrment is being

completed on all three platforms, and we're wrapping up the Tingl versions that will continue to be
Researchers’ growing dependence on Computers available from our anonymous ftp server (ftp.ncsa.uiuc.edu).

and the difficulty they encounter when attempting to Soe o 163 Going. B e wate b3 pravidingse1ephans oF ol Suppot fo Hocei any 1onge e

run old software are hampering their ability to check ey e e e e end s e conime .

published results. The problem of obsolescent software Troe emitien

is thus eroding the very premise of reproducibility— ' i A i o i Bl . - '

which is, after all, the bedrock of science. a2 e Q@ O
The issue also affects matters that could be subject T_”ew MapKeys S oBB_dE Moo male glaves 25 years of 2ge = %

to litigation. Suppose, for example, that an engineer’s File Options Window Help

calculations show that a building design is robust, but = O

the roof of that building nevertheless collapses. Did the

engineer make a mistake, or was the software used for 7 , Control Panel Print Manager Clpboatd M};Sr-atsn%?

the calculations faulty? It would be hard to know years

later if the software could no longer be run. ! e % ,,é? =D
That’s why my colleagues and I at Carnegie Mellon =| Mapkey Yoo, FFEdor Resdie B

University, in Pittsburgh, have been developing ways to 5 i Sl] sf;gg i

archive programs in forms that can be run easily today and el

into the future. My fellow computer scientists Benjamin

Gilbert and Jan Harkes did most of the required coding.

But the collaboration has also involved software archivist s

Daniel Ryan andlibrarians Gloriana St. Clair’ Erika Linke’ 840 ~data = 4||||Free Coh::)e';ifdsales by 4/[|(c840_46 No. of malevsal;ivaet“:esn years of age + MS Exel MS Excel Mt Po%int % i D e B ‘

and Keith Webster, who naturally have a keen interest in 1 Ejection Silieisatolored Females | —[lcB40 47 Mool male Slaves 10,23 years ol age i Samples Setup PoweiPoint ReadmeHelp AutoConvert

roperly preserving this slice of modern culture.
P Bgcalilsle) this pI‘O_]iCt is more one of archival preserva- 1 Nive Variable: | 1840 Census :: Male Slaves by Age :: c840_48 No. of male slaves 24-35 years of age

tion than mainstream computer science, we garnered

Oregon Trail

L]
®

Conditions
April 6, 1848

X

A

River
~L

x~The Oregon'l‘rail'\ Mountains || Surny

b MR s

53 } T‘r’aﬂ Distance
L% To Lendmark: 4 mi.
— Landark | yaveled: 98 i,
Fo_r(

- Wagon

9 Pace: Steady
o Rations: Filling
=&pril1, 1848 « 3| Food Left: 925 lbs.
You started down the teail with 10 oxen, 20 sets Health: Good
of clothing, 1,000 bullets, 3 wagon wheels, 3)
wagon axles, 3 wagon tongues, 1,000 pounds Wagon: Moving
of food, and $810.00.

You decided to continue. =

Zeke was hitten by a snake. 3

January 7, 1997

Toa Molarfty)

F & &

Species Molarity
H+ 1.005e-7
OH- 1.005e-7
CgH120¢ 1.000e0

=] Microsoft Office [~l=]

= B
£

. y 7
%ﬁccessones Games Startl Microsoft Word Readme Word Setup Microsoft MS Excel %

Word Help Excel Readme ATl ee o— B, —a
Microsoft

PH Meter
1 /é'
’
5

3& | 0CT 2015 | HORTH AMERICAM | SPECTRUM.IEEE.ORG SPECTRUM.IEEE.ORG | HORTH AMERICAHM | 0OCT 2018 | 349

VIRTUAL MACHINE

8. Data file, script, simulation model, etc.
(for example, Excel spreadsheet)

7.0ld application

(forexample, Chaste)

6. 0ld operating system (guest 05)
(forexample, Windows 3.1)

4, Yirtval Machine monitor (KVYM/QEMU)
3; \'MNYQIXV

2. Dperating system (Linux) (host 0S)
1.Today’s hardware (x86)

LAYERS OF ABSTRACTION: Olive requires many layers of software
abstraction to create a suitable virtual machine. That virtual machine
then runs the old operating system and application.

financial support for it not from the usual government fund-
ing agencies for computer science but from the Alfred P.
Sloan Foundation and the Institute for Museum and Library
Services. With that support, we showed how to reconstitute
long-gone computing environments and make them avail-
able online so that any computer user can, in essence, go
back in time with just a click of the mouse.

We created a system called Olive—an acronym for Open
Library of Images for Virtualized Execution. Olive delivers over
the Internet an experience that in every way matches what
you would have obtained by running an application, operating
system, and computer from the past. So once you install Olive,
you can interact with some very old software as if it were brand
new. Think of it as a Wayback Machine for executable content.

TO UMDERSTAND HOW OLIVE canbringold comput-
ing environments back to life, you have to dig through quite a few
layers of software abstraction. At the very bottom is the common
base of much of today’s computer technology: a standard desk-
top or laptop endowed with one or more x86 microprocessors.
On that computer, we run the Linux operating system, which
forms the second layer in Olive’s stack of technology.

Sitting immediately above the operating system is software
written in my lab called VMNetX, for Virtual Machine Network
Execution. A virtual machine is a computing environment

40 | 0CT 2015 | HORTH AMERICAH | SPECTRUM.IEEE.ORG

that mimics one kind of computer using software running
on a different kind of computer. VMNetX is special in that it
allows virtual machines to be stored on a central server and
then executed on demand by a remote system. The advantage
of this arrangement is that your computer doesn’t need to
download the virtual machine’s entire disk and memory state
from the server before running that virtual machine. Instead,
the information stored on disk and in memory is retrieved in
chunks as needed by the next layer up: the virtual-machine
monitor (also called a hypervisor), which can keep several
virtual machines going at once.

Each one of those virtual machines runs a hardware emulator,
which is the next layer in the Olive stack. That emulator presents
the illusion of being a now-obsolete computer—for example,
an old Macintosh Quadra with its 1990s-era Motorola 68040
CPU. (The emulation layer can be omitted if the archived soft-
ware you want to explore runs on an x86-based computer.)

The next layer up is the old operating system needed for the
archived software to work. That operating system has access
to a virtual disk, which mimics actual disk storage, providing
what looks like the usual file system to still-higher components
in this great layer cake of software abstraction.

Above the old operating system is the archived program
itself. This may represent the very top of the heap, or there
could be an additional layer, consisting of data that must be
fed to the archived application to get it to do what you want.

The upper layers of Olive are specific to particular archived
applications and are stored on a central server. The lower lay-
ers are installed on the user’s own computer in the form of the
Olive client software package. When you launch an archived
application, the Olive client fetches parts of the relevant upper
layers as needed from the central server.

THAT'S WHAT vou’LL FIMD under the hood. But
what can Olive do? Today, Olive consists of 17 different virtual
machines that can run a variety of operating systems and appli-
cations. The choice of what to include in that set was driven
by a mix of curiosity, availability, and personal interests. For
example, one member of our team fondly remembered play-
ing The Oregon Trail when he was in school in the early 1990s.
That led us to acquire an old Mac version of the game and to
get it running again through Olive. Once word of that accom-
plishment got out, many people started approaching us to
see if we could resurrect their favorite software from the past.

The oldest application we’ve revived is Mystery House, a
graphics-enabled game from the early 1980s for the Apple II
computer. Another program is NCSA Mosaic, which people of
a certain age might remember as the browser that introduced
them to the wonders of the World Wide Web.

Olive provides a version of Mosaic that was written in 1993
for Apple’s Macintosh System 7.5 operating system. That
operating system runs on an emulation of the Motorola
68040 CPU, which in turn is created by software running
on an actual x86-based computer that runs Linux. In spite of

all this virtualization, performance is pretty good, because
modern computers are so much faster than the original
Apple hardware.

Pointing Olive’s reconstituted Mosaic browser at today’s
Web is instructive: Because Mosaic predates Web technolo-
gies such as JavaScript, HTTP 1.1, Cascading Style Sheets, and
HTML 5, it is unable to render most sites. But you can have
some fun tracking down websites composed so long ago that
they still look just fine.

What else can Olive do? Maybe you’re wondering what
tools businesses were using shortly after Intel introduced
the Pentium processor. Olive can help with that, too. Just fire
up Microsoft Office 4.3 from 1994 (which thankfully predates
the annoying automated office assistant “Clippy”).

Perhaps you just want to spend a nostalgic evening play-
ing Doom for DOS—or trying to understand what made such

first-person shooter games so popular in the early 1990s. Or
maybe you need to redo your 1997 taxes and can’t find the
disk for that year’s version of TurboTax in your attic. Have
no fear: Olive has you covered.

On the more serious side, Olive includes Chaste 3.1. The
name of this software is short for Cancer, Heart and Soft
Tissue Environment. It’s a simulation package developed
at the University of Oxford for computationally demanding
problems in biology and physiology. Version 3.1 of Chaste was
tied to a research paper published in March 2013. Within two
years of publication, though, the source code for Chaste 3.1
no longer compiled on new Linux releases. That’s emblem-
atic of the challenge to scientific reproducibility Olive was
designed to address.

To keep Chaste 3.1 working, Olive provides a Linux environ-
ment that’s frozen in time. Olive’s re-creation of Chaste also con-

tains the example data that was published with the 2013 paper.
Running the data through Chaste produces visualizations of
certain muscle functions. Future physiology researchers who
wish to explore those visualizations or make modifications
to the published software will be able to use Olive to edit the
code on the virtual machine and then run it.

For now, though, Olive is available only to a limited group
of users. Because of software-licensing restrictions, Olive’s
collection of vintage software is currently accessible only
to people who have been collaborating on the project. The
relevant companies will need to give permissions to present
Olive’s re-creations to broader audiences.

We are not alone in our quest to keep old software alive.
For example, the Internet Archive is preserving thousands
of old programs using an emulation of MS-DOS that runs
in the user’s browser. And a project being mounted at Yale,
called EaaSI (Emulation as a Service Infrastructure), hopes
to make available thousands of emulated software environ-
ments from the past. The scholars and librarians involved
with the Software Preservation Network have been coor-
dinating this and similar efforts. They are also working to
address the copyright issues that arise when old software is
kept running in this way.

OLIVE HAS COME A LONG WAY, butitis still far
from being a fully developed system. In addition to the prob-
lem of restrictive software licensing, various technical road-
blocks remain.

One challenge is how to import new data to be processed
by an old application. Right now, such data has to be entered
manually, which is both laborious and error prone. Doing
so also limits the amount of data that can be analyzed. Even
if we were to add a mechanism to import data, the amount
that could be saved would be limited to the size of the vir-
tual machine’s virtual disk. That may not seem like a prob-
lem, but you have to remember that the file systems on older
computers sometimes had what now seem like quaint limits
on the amount of data they could store.

Another hurdle is how to emulate graphics processing units
(GPUs). For a long while now, the scientific community has
been leveraging the parallel-processing power of GPUs to
speed up many sorts of calculations. To archive executable
versions of software that takes advantage of GPUs, Olive would
need to re-create virtual versions of those chips, a thorny task.
That’s because GPU interfaces—what gets input to them and
what they output—are not standardized.

Clearly there’s quite a bit of work to do before we can declare
that we have solved the problem of archiving executable con-
tent. But Olive represents a good start at creating the kinds
of systems that will be required to ensure that software from
the past can live on to be explored, tested, and used long into
the future. m

7 POSTYOUR COMMENTS at https:/spectrum.ieee.org/olive 1018

SPECTRUM.IEEE.ORG | HORTH AMERICAH | 0OCT 2018 | 41

