
M. Satyanarayanan
satya@cs.cmu.edu

School of Computer Science, Carnegie Mellon University

How significant is the recent explosion of activity in
mobile computing? Hardly a day passes without some new
evidence of the proliferation of portable computers in the
marketplace, or of the growing demand tbr wireless
communication. Support for mobility has been the fbcus of a
number of experimental systems and a f?w commercial
products. The growing number of conferences, workshops,
and specialized publications shows the intensity of
interest in this field. Clearly, a lot of very smart and
capable people in academia and industry are
investing their time, energy and money in mobile
computing.

But frenzied activity is hardly proof of lasting
value. Nagging doubts about mobile computing
persist in the minds of thoughtful individuals. Are
we .just riding the hardware technology curve? Are
there any real intellectual challenges? Are there deep
issues to be investigated, or are we just pandering to
the latest fad? Do we have any insights to offer to the
rest of Computer Science, or are we merely a parasitic field?

This paper is my attempt to answer these questions. As
detailed below, I believe that mobile computing represents a
true inflection point in Computer Science. It forces us to
race new constraints and address new challenges. The
problems it generates are deep, and elude easy solution.
What we learn in trying to solve these problems can be of
considerable value in a much broader context.

Mobile computing is characterized by four constraints:

Mobile elements are resource-poor relative to static"
elements.
For a given cost and level of technology, considerations
of weight, power, size and ergonomics will exact a
penalty in computational resources such as processor
speed, memory size, and disk capacity. While mobile
elements will improve in absolute ability, they will
always be resource-poor relative to static elements.

Mobility is inherently hazardous.
A Wall Street stockbroker is more likely to be mugged
on the streets of Manhattan and have his laptop stolen

This research was supported by the Air Force Materiel Command]
(AFMC) and Defense Advanced Research Projects Agency (DARPA) under]
contract number Fl9628-93-C-0193. Additional support was provided by]
the IBM Corp. and lntel Cop. The views and conclusions contained here]
are those of the authors and should not be interpreted as necessarily]
representing the official policies or endorsements, either express or implied,
of AFMC, DARPA, IBM, lntel, CMU, or the U.S. Government.

than to have his workstation in a locked office be
physically subverted. In addition to security concerns,
portable computers are more vulnerable to loss or
damage.
Mobile connectivity is highly variable in per¢brmance
and reliability.
Some buildings may offer reliable, high-bandwidth
wireless connectivity while others may only offer low-
bandwidth connectivity. Outdoors, a mobile client may

have to rely on a low-bandwidth wireless
network with gaps in coverage.

Mobile elements rely' on a finite energy
SO~lrce.

While battery technology will undoubtedly
improve over time, the need to be sensitive
to power consumption will not diminish.
Concern for power consumption must span
many levels of hardware and software to be
fully effective.

These constraints are not artifacts of current
technology, but are intrinsic to mobility. Together, they
complicate the design of mobile information systems and
require us to rethink traditional approaches to information
access.

Mobility exacerbates the tension between autonomy and
interdependence that is characteristic of all distributed
systems. The relative resource poverty of mobile elements
as well as their lower trust and robustness argues for reliance
on static servers. But the need to cope with unreliable and
low-performance networks, as well as the need to be
sensitive to power consumption argues for self-reliance.

Any viable approach to mobile computing must strike a
balance between these competing concerns. This balance
cannot be a static one; as the circumstances of a mobile client
change, it must react and dynamically reassign the
responsibilities of client and server. In other words, mobile
clients must be adaptive.

Taxonomy of Adaptation Strategies

The range of strategies for adaptation is delimited by two
extremes, as shown in Figure 1 [7]. At one extreme,
adaptation is entirely the responsibility of individual
applications. While this laissez-faire approach avoids the
need for system support, it lacks a central arbitrator to
resolve incompatible resource demands of different
applications and to enforce fimits on resource usage. It also

Mobik Computing and Communication Review, Volume 1, Number 1 17

makes applications more difficult to write, and fails to
amortize the development cost of support Ibr adaptation.

Application-aware
(collaboration)

f
Laissez-faire Application-transparent

(no system support) (no changes to applications)

Figure 1: Range of Adaptation Strategies

The other extreme of application-transparent adaptation,
exemplified by the Coda File System[4], places entire
responsibility for adaptation on the system. This approach is
attractive because it is backward compatible with existing
applications: they continue to work when mobile without any
modifications. The system provides the focal point for
resource arbitration and control. The drawback of this
approach is that there may be situations where the adaptation
perlormed by the system is inadequate or even
counterproductive.

Between these two extremes lies a spectrum of
possibilities that we collectively refer to as application-
aware adaptation, exemplified by the Odyssey platform for
mobile computing[5]. By supporting a collaborative
partnership between applications and the system, this
approach permits applications to determine how best to
adapt, but preserves the ability of the system to monitor
resources and enforce allocation decisions.

The Extended Client-Server Model

Another way to characterize the impact of mobile
computing constraints is to examine their effect on the classic
client-server model. In this model, a small number of trusted
server sites constitute the true home of data. Efficient and
safe access to this data is possible from a much larger
number of untrusted client sites. Techniques such as caching
and read-ahead can be used to provide good performance,
while end-to-end authentication and encrypted transmission
can be used to preserve security.

This model has proved to be especially valuable for
scalability[6]. In effect, the client-server model decomposes
a large distributed system into a small nucleus that changes
relatively slowly, and a nmch larger and less static periphery
of clients. From the perspectives of security and system
administration, the scale of the system appears to be that of
the nucleus. But from the perspectives of performance and
availability, a user at the periphery receives almost
standalone service.

Coping with the constraints of mobility requires us to
rethink this model. The distinction between clients and
servers may have to be temporarily blurred, resulting in the
extended client-server model shown in Figure 2. The
resource limitations of clients may require certain operations
normally perfolrned on clients to sometimes be performed on
resource-rich servers. Conversely, the need to cope with
uncertain connectivity requires clients to sometimes emulate
the functions of a server. These are, of course, short-term
deviations from the classic client-server model for purposes
of performance and availability. From the longer-term

perspective of system administration and security, the roles
of servers and clients remain unchanged.

Local R em o te

Figure 2: Temporary Blurring of Roles

We now examine some of the deep challenges of mobile
computing. Our focus is on conceptual rather than
technological problems. By its very nature, this discussion is
highly speculative and will raise far more questions than it
answers. Further, this is a selective list: it is certainly not
intended to be complete. Rather, my goal is to give the
reader a tantalizing glimpse of the rich problem space
defined by mobile computing.

Each topic below is presented in two parts: a brief
discussion that lays out the problem space of the topic,
followed by a sample of open questions pertaining to it.
Again, my aim in posing these questions is not to be
exhaustive but to offer food for thought.

Caching Metrics

Caching plays a key role in mobile computing because of
its ability to alleviate the performance and availability
limitations of weakly-connected and disconnected operation.
But evaluating alternative caching strategies for mobile
computing is problematic.
Today, the only metric of cache quality is the miss ratio. The
underlying assumption of this metric is that all cache misses
are equivalent (that is, all cache misses exact roughly the
same penalty from the user). This assumption is valid when
the cache and primary copies are strongly connected,
because the performance penalty resulting from a cache miss
is small and, to a first approximation, independent of file
length. But the assumption is unlikely to be valid during
disconnected or weakly-connected operation.

The miss ratio also thils to take into account the timing of
misses. For example, a user may react differently to a cache
miss occurring within the first few minutes of disconnection
than to one occutring near the end of the disconnection. As
another example, the periodic spin-down of disks to save
power in mobile computers makes it cheaper to service a
certain number of page faults if they are clustered together
than if they are widely spaced.

To be useful, new caching metrics must satisfy two
important criteria. First, they should be consistent with
qualitative perceptions of performance and availability
experienced by users in mobile computing. Second, they
should be cheap and easy to monitor. The challenge is to

18 Mobile Cbmputing and Communi~ution Review, Volume 1, Number 1

develop such metrics and demonstrate their applicability to
mobile computing. Initial work toward this end is being
done by Ebling[1].

Some OpeTl Questions

o What is an appropriate set of caching metrics for mobile
computing?

Under what circumstances does one use each metric?

How does one efficiently monitor these metrics?

® What are the implications of these alternative metrics
for caching algorithms?

Semant ic Cal lbacks and Val idators

Preserving cache coherence under conditions of weak
connectivity can be expensive. Large communication
latency increases the cost of caching metrics tbr mobile
computing? Under what circumstances does validation of
cached objects, Intermittent failures increase the frequency
of validation, since it nmst be performed each time
communication is restored. A lazy approach that only
validates on demand could reduce validation frequency; but
this approach would worsen consistency because it increases
the likelihood of stale objects being accessed while
disconnected. The cost of cache coherence is exacerbated in
systems like Coda that use anticipatory caching for
availability, because the number of objects cached (resident
set size) is much larger than the number of objects in current
use (working set size).

The Coda solution is to maintain cache coherence at
multiple levels of granularity and to use callbacks. Clients
and servers maintain version information on individual
objects as well as entire subtrees of them. Rapid cache
validation is possible by comparing version stamps on the
subtrees. Once established, validity can be maintained
through callbacks. This approach to cache coherence trades
precision of invalidation tbr speed of validation. It preserves
correctness while dramatically reducing the cost of cache
coherence under conditions of weak connectivity. Usage
measurements from Coda confirm that these potential gains
are indeed achievable in practice.

The idea of maintaining coherence at multiple
granularities can be generalized to a variety of data types and
applications in the following way:

® a client caches data satisfying some predicate P from a
server.

the server remembers a predicate Q that is much
cheaper to compute, and possesses the property Q
implies P. In other words, as long as Q is true, the
cached data it corresponds to is guaranteed to be valid.
But if Q is false, nothing can be inferred about that data.

On each update, the server re-evaluates Q. If Q becomes
false, the server notifies the client that its cached data
might be stale.

• Prior to its next access, the client nmst contact the server
and obtain fl'esh data satisfking P.

We refer to Q as a semantic czdlback for P, because the
interpretation of P and Q depends on the specifics of the data
and application. For example, P would be an SQL s e l e c t
statement if one is caching data from a relational database.
Or it could be a piece of code that perlbrms a pattern match
fbr a pmticular individual's face from a database of images.
Q must confbrm to P: a simpler select statement in the
first case, and a piece of code that performs a much less
accurate pattern match in the second case. In Coda, P
corresponds to the version number of an object being equal
to a specific value (x), while Q corresponds to the version
number of the encapsulating volume being unchanged since
the last time the version number of the object was confirmed
to bex.

Semantic validation can be extended to domains beyond
mobile computing. It will be especially valuable in
geographically widespread distributed systems, where the
timing difference between local and remote actions is too
large to ignore even when communication occurs at the
speed of light. The predicate Q in such cases serves as an
inexpensive wdidator for cached data satisf~dng some
complex criteria.

Consider the example of a transcontinental distributed
system in the United States. Even at the speed of light,
communication fYom one coast to the other takes about 16
milliseconds. A round trip RPC will take over 30
milliseconds. During this time, a client with a 100 MIP
processor can execute over 3 million instructions! Since
processor speed can be expected to increase over time, the
lost computational opportunity represented by this scenario
will only worsen.

Over time, the synchronous model implicit in the use of
RPC wilt become increasingly untenable. Eventually, very
wide-area distributed systems will have to be structured
around an asynchronous model. At what scale and
timeframe this shift will occur depends on two factors: the
substantially simpler design, implementation, and debugging
inherent in the synchronous model, and the considerably
higher performance (and hence usability) of the
asynchronous model.

One promising asynchronous model is obtained by
combining the idea of cheap but conservative validation with
the style of programming characterized by optimistic
concurrency control [2]. The resulting approach bears some
resemblance to the use of hints in distributed systems [8],
and is best illustrated by an example.

Consider remote control of a robot explorer on the
surface of Mars. Since light takes many minutes to travel
from earth to Mars, and emergencies of various kinds may
arise on Mars, the robot must be capable of reacting on its
own. At the same time, the exploration is to be directed live

19 Mobih Computing and Communicalion Redew, Vo/ume 1, Number 1

by a human controller on earth --- a classic command and
control problem.

This example characterizes a distributed system in which
communication latency is large enough that a synchronous
design paradigm will not work. The knowledge of the
robot's stares will always be obsolete on earth. But, since
emergencies are rare, this knowledge will usually difter from
current reality in one of two benign ways. Either the
differences are in attributes irrelevant to the task at hand, or
the differences can be predicted with adequate accuracy by
methods such as dead reckoning. Suppose the robot~ state is
P, as characterized in a transmission to earth. Based on
some properties, Q, of this state, a command is issued to the
robot. For this command to be meaningful when it reaches
the robot, Q must still be tree. This can be verified by
transmitting Q along with the command, and having the
robot validate Q upon receipt. For this approach to be
feasible, both transmitting and evaluating Q must be cheap.

There are, of course, numerous detailed questions to be
answered regarding this approach. But it does offer an
intriguing way to combine correctness with perfbrmance in
very wide-area distributed systems.

Some Open Questions

* Under what circumstances are semantic callbacks most
useful? When are they not useful?

What forms can P and Q take for data types and
applications in common use? How does one estimate
their relative costs in those cases?

• Can P and Q really be arbitrary code? Are there
restrictions necessary for efficiency and practicality?

• How does one derive Q from P quickly? Are there
restrictions on P that make this simpler?

How does one trade off the relative cost and benefit of P
and Q? Is the tradeoff space discrete or continuous?
Can this tradeoff be made adaptive?

Analysis of Adaptation

How does one compare the adaptive capabilities of two
mobile clients? The primary figure of merit is agility, or the
ability of a client to promptly respond to perturbations.
Since it is possible for a client to be more agile with respect
to some variables (such as bandwidth) than others (such as
battery power), agility should be viewed as a composite
metric.

A system that is highly agile may suffer from instability.
Such a system consumes almost all its resources reacting to
minor perturbations, hence performing little useful
computation. The ideal mobile client is obviously one that is
highly agile but very stable with respect to all variables of
interest.

Control theory is a domain that might have useful insights
to offer in refining these ideas and quantifying them.
Historically, control theory has focused on hardware
systems. But there is no conceptual reason why it cannot be

extended to software systems. Only carefut investigation can
tell, of course, whether the relevance is direct and useful or
merely superficial.

Some open questions

- What are the right metrics of agility?

* Are there systematic techniques to improve the agility of
a system?

o How does one decide when a mobile system is "agile
enough"?

- What are the right metrics of system stability?

* Can one develop design guidelines to ensure stability'?

Can one analytically derive the agility and stability
properties of an adaptive system without building it
first?

Global Estimation from Local Observat ions

Adaptation requires a mobile client to sense changes in its
environment, make inferences about the cause of these
changes, and then react appropriately. These imply the
ability to make global estimates based on local observations.

To detect changes, the client must rely on local
observations. For example, it can measure quantities such as
local signal strength, packet rate, average round-trip times,
and dispersion in round-trip times. But interpreting these
observations is nontfivial. A change in a given quantity can
be due to a multiplicity of non-local phenomena. For
example, packet rate will drop due to an overload on a
distant server. But it will also drop when there is congestion
on an intermediate network segment. If an incorrect cause is
inferred from an observation, the adaptation performed by
tile client may be ineffective or counterproductive.

At present there is no systematic theory to guide global
estimation from local observations. The problem is
especially challenging in the absence of out-of-band
communication, because the client cannot use an alternative
channel to help narrow the diagnosis on the main
communication channel.

Some Open Questions

• Are there systematic ways to do global estimation from
local estimates?

® Can one bound the error in global estimates?

• What is the relationship of global estimation to agility of
adaptation? Can one quantify this relationship?

Can one provide system support to improve global
estimation? For example, do closely-synchronized,
low-drift clocks on clients and servers help?

20 Mobile Computing and Communi~z~tion Review, Volume 1, ~)lmber 1

Can one quantify the benefits of out-of-band channels?
For example, how much does the presence of a low-
latency, low-bandwidth channel help with estimates on a
parallel high-latency, high-bandwidth channel?

The tension between autonomy and interdependence is
intrinsic to all distributed systems. Mobility exacerbates this
tension, making it necessary for mobile clients to tolerate a
fax- broader range of external conditions than has been
necessary hitherto.

Adaptation is the key to mobility. By using local
resources to reduce communication and to cope with
uncertainty, adaptation insulates users fi'om the vagaries of
mobile environments. My research group is exploring two
different approaches to adaptation: application-transparent
and application-aware. Our experience with Coda confirms
that application-transparent adaptation is indeed viable and
efRctive for a broad range of important applications. In
circumstances where it is inadequate, our initial experience
with Odyssey suggests that application-aware adaptation is
the appropriate strategy.

In closing, it is worth speculating on the long-term impact
of mobility on distributed systems. In his book Mind
Children, my colleague Hans Moravec draws an analogy
between the seminal role of mobility in the evolution of
biological species, and its influence on the capabilities of
computing systems[3]. Although Hans' comments are
directed at robotic systems, I believe that his observaion
applies equally well to a much broader class of distributed
computing systems involving mobile elements. Mobility will
influence the evolution of distributed systems in ways that we
can only dimly perceive at the present time. In this sense,
mobile computing is truly a seminal influence on Computer
Science.

i l l

[2]

[3 ̧]

[4]

[5]

[61

[71

[8]

Ebling, M.R Evaluating and Improving the
Effectiveness ~" Caching for Availability. PhD thesis,
Department of Computer Science, Cm'negie Mellon ,
1997 (in preparation).

Kung, H.T., Robinson, On Optimistic Methods lbr
Concurrency. ACM Transaction on Database &vstems
6(2), June, 1981.

Moravec, H, Mind ChiMren. Harvard University,
Cambridge, MA, 1988.

Mummert, L.B., Ebling, M.R., Satyanarayanan, M.
Exploiting Weak Connectivity, tbr Mobile File Access.
In Proceedings of the Fifteenth ACM Symposium on
Operating Systems Principles, Copper Mountain
Resort, CO, December, 1995.

Noble, B., Price, M., Satyanarayanan, M. A
Progrmnming Interface for Application-Aware
Adaptation in Mobile Computing. Computing Systems
8, Fall, 1995.

Satyanarayanan, M. The Influence of Scale on
Distributed File System Design. IEEE Transactions
on Software Engineering 18 (1), January, 1992.

Satyanarayanan, M., Mobile Infonnation Access.
IEEE Personal Communications 3 (1), February,
1996.

Terry, D.B. Caching Hints in Distributed Systems.
IEEE Transactions in Software Engineering 13(1),
January, 1992.

This paper is the result of many years of interaction and
brainstorming with members of the Coda and Odyssey
projects. These members include Jay Kistler, Puneet Kumar,
David Steere, Lily Mummert, Maria Ebling, Hank
Mashburn, Brian Noble, Masashi Kudo, Josh Raiff, Qi Lu,
Morgan Price, Hiroshi Inamura, Tetsuro Muranaga, Bob
Baron, Dushyanth Narayanan, Eric Tilton, Jason Flinn, Kip
Walker, Peter Braam, and Clement Lee.

A version of this material appeared as an invited paper in
the proceedings of the Fifteenth ACM Symposium on
Principles of Distributed Computing.

Mobih Computing and Communication Review, Volume 1, Number 1 21
, <

