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How significant is the recent explosion of activity in 
mobile computing? Hardly a day passes without some new 
evidence of the proliferation of portable computers in the 
marketplace, or of the growing demand tbr wireless 
communication. Support for mobility has been the fbcus of a 
number of experimental systems and a f?w commercial 
products. The growing number of conferences, workshops, 
and specialized publications shows the intensity of 
interest in this field. Clearly, a lot of  very smart and 
capable people in academia and industry are 
investing their time, energy and money in mobile 
computing. 

But frenzied activity is hardly proof of lasting 
value. Nagging doubts about mobile computing 
persist in the minds of thoughtful individuals. Are 
we .just riding the hardware technology curve? Are 
there any real intellectual challenges? Are there deep 
issues to be investigated, or are we just pandering to 
the latest fad? Do we have any insights to offer to the 
rest of Computer Science, or are we merely a parasitic field? 

This paper is my attempt to answer these questions. As 
detailed below, I believe that mobile computing represents a 
true inflection point in Computer Science. It forces us to 
race new constraints and address new challenges. The 
problems it generates are deep, and elude easy solution. 
What we learn in trying to solve these problems can be of 
considerable value in a much broader context. 

Mobile computing is characterized by four constraints: 

Mobile elements are resource-poor relative to static" 
elements. 
For a given cost and level of technology, considerations 
of weight, power, size and ergonomics will exact a 
penalty in computational resources such as processor 
speed, memory size, and disk capacity. While mobile 
elements will improve in absolute ability, they will 
always be resource-poor relative to static elements. 

Mobility is inherently hazardous. 
A Wall Street stockbroker is more likely to be mugged 
on the streets of Manhattan and have his laptop stolen 
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than to have his workstation in a locked office be 
physically subverted. In addition to security concerns, 
portable computers are more vulnerable to loss or 
damage. 
Mobile connectivity is highly variable in per¢brmance 
and reliability. 
Some buildings may offer reliable, high-bandwidth 
wireless connectivity while others may only offer low- 
bandwidth connectivity. Outdoors, a mobile client may 

have to rely on a low-bandwidth wireless 
network with gaps in coverage. 

Mobile elements rely' on a finite energy 
SO~lrce. 

While battery technology will undoubtedly 
improve over time, the need to be sensitive 
to power consumption will not diminish. 
Concern for power consumption must span 
many levels of hardware and software to be 
fully effective. 

These constraints are not artifacts of  current 
technology, but are intrinsic to mobility. Together, they 
complicate the design of mobile information systems and 
require us to rethink traditional approaches to information 
access. 

Mobility exacerbates the tension between autonomy and 
interdependence that is characteristic of all distributed 
systems. The relative resource poverty of mobile elements 
as well as their lower trust and robustness argues for reliance 
on static servers. But the need to cope with unreliable and 
low-performance networks, as well as the need to be 
sensitive to power consumption argues for self-reliance. 

Any viable approach to mobile computing must strike a 
balance between these competing concerns. This balance 
cannot be a static one; as the circumstances of a mobile client 
change, it must react and dynamically reassign the 
responsibilities of client and server. In other words, mobile 
clients must be adaptive. 

Taxonomy of Adaptation Strategies 

The range of  strategies for adaptation is delimited by two 
extremes, as shown in Figure 1 [7]. At one extreme, 
adaptation is entirely the responsibility of individual 
applications. While this laissez-faire approach avoids the 
need for system support, it lacks a central arbitrator to 
resolve incompatible resource demands of different 
applications and to enforce fimits on resource usage. It also 
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makes applications more difficult to write, and fails to 
amortize the development cost of support Ibr adaptation. 

Application-aware 
(collaboration) 

f 
Laissez-faire Application-transparent 

(no system support) (no changes to applications) 

Figure 1: Range of Adaptation Strategies 

The other extreme of application-transparent adaptation, 
exemplified by the Coda File System[4], places entire 
responsibility for adaptation on the system. This approach is 
attractive because it is backward compatible with existing 
applications: they continue to work when mobile without any 
modifications. The system provides the focal point for 
resource arbitration and control. The drawback of this 
approach is that there may be situations where the adaptation 
perlormed by the system is inadequate or even 
counterproductive. 

Between these two extremes lies a spectrum of 
possibilities that we collectively refer to as application- 
aware adaptation, exemplified by the Odyssey platform for 
mobile computing[5]. By supporting a collaborative 
partnership between applications and the system, this 
approach permits applications to determine how best to 
adapt, but preserves the ability of the system to monitor 
resources and enforce allocation decisions. 

The Extended Client-Server Model 

Another way to characterize the impact of mobile 
computing constraints is to examine their effect on the classic 
client-server model. In this model, a small number of trusted 
server sites constitute the true home of data. Efficient and 
safe access to this data is possible from a much larger 
number of untrusted client sites. Techniques such as caching 
and read-ahead can be used to provide good performance, 
while end-to-end authentication and encrypted transmission 
can be used to preserve security. 

This model has proved to be especially valuable for 
scalability[6]. In effect, the client-server model decomposes 
a large distributed system into a small nucleus that changes 
relatively slowly, and a nmch larger and less static periphery 
of clients. From the perspectives of security and system 
administration, the scale of the system appears to be that of 
the nucleus. But from the perspectives of performance and 
availability, a user at the periphery receives almost 
standalone service. 

Coping with the constraints of mobility requires us to 
rethink this model. The distinction between clients and 
servers may have to be temporarily blurred, resulting in the 
extended client-server model shown in Figure 2. The 
resource limitations of clients may require certain operations 
normally perfolrned on clients to sometimes be performed on 
resource-rich servers. Conversely, the need to cope with 
uncertain connectivity requires clients to sometimes emulate 
the functions of a server. These are, of course, short-term 
deviations from the classic client-server model for purposes 
of performance and availability. From the longer-term 

perspective of system administration and security, the roles 
of servers and clients remain unchanged. 

Local R em o te  

Figure 2: Temporary Blurring of Roles 

We now examine some of the deep challenges of mobile 
computing. Our focus is on conceptual rather than 
technological problems. By its very nature, this discussion is 
highly speculative and will raise far more questions than it 
answers. Further, this is a selective list: it is certainly not 
intended to be complete. Rather, my goal is to give the 
reader a tantalizing glimpse of the rich problem space 
defined by mobile computing. 

Each topic below is presented in two parts: a brief 
discussion that lays out the problem space of the topic, 
followed by a sample of open questions pertaining to it. 
Again, my aim in posing these questions is not to be 
exhaustive but to offer food for thought. 

Caching Metrics 

Caching plays a key role in mobile computing because of 
its ability to alleviate the performance and availability 
limitations of weakly-connected and disconnected operation. 
But evaluating alternative caching strategies for mobile 
computing is problematic. 
Today, the only metric of cache quality is the miss ratio. The 
underlying assumption of this metric is that all cache misses 
are equivalent (that is, all cache misses exact roughly the 
same penalty from the user). This assumption is valid when 
the cache and primary copies are strongly connected, 
because the performance penalty resulting from a cache miss 
is small and, to a first approximation, independent of file 
length. But the assumption is unlikely to be valid during 
disconnected or weakly-connected operation. 

The miss ratio also thils to take into account the timing of 
misses. For example, a user may react differently to a cache 
miss occurring within the first few minutes of disconnection 
than to one occutring near the end of the disconnection. As 
another example, the periodic spin-down of disks to save 
power in mobile computers makes it cheaper to service a 
certain number of page faults if they are clustered together 
than if they are widely spaced. 

To be useful, new caching metrics must satisfy two 
important criteria. First, they should be consistent with 
qualitative perceptions of performance and availability 
experienced by users in mobile computing. Second, they 
should be cheap and easy to monitor. The challenge is to 
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develop such metrics and demonstrate their applicability to 
mobile computing. Initial work toward this end is being 
done by Ebling[ 1 ]. 

Some OpeTl Questions 

o What is an appropriate set of caching metrics for mobile 
computing? 

Under what circumstances does one use each metric? 

How does one efficiently monitor these metrics? 

® What are the implications of these alternative metrics 
for caching algorithms? 

Semant ic  Cal lbacks and Val idators 

Preserving cache coherence under conditions of weak 
connectivity can be expensive. Large communication 
latency increases the cost of caching metrics tbr mobile 
computing? Under what circumstances does validation of 
cached objects, Intermittent failures increase the frequency 
of validation, since it nmst be performed each time 
communication is restored. A lazy approach that only 
validates on demand could reduce validation frequency; but 
this approach would worsen consistency because it increases 
the likelihood of stale objects being accessed while 
disconnected. The cost of cache coherence is exacerbated in 
systems like Coda that use anticipatory caching for 
availability, because the number of objects cached (resident 
set size) is much larger than the number of objects in current 
use (working set size). 

The Coda solution is to maintain cache coherence at 
multiple levels of granularity and to use callbacks. Clients 
and servers maintain version information on individual 
objects as well as entire subtrees of them. Rapid cache 
validation is possible by comparing version stamps on the 
subtrees. Once established, validity can be maintained 
through callbacks. This approach to cache coherence trades 
precision of invalidation tbr speed of validation. It preserves 
correctness while dramatically reducing the cost of cache 
coherence under conditions of  weak connectivity. Usage 
measurements from Coda confirm that these potential gains 
are indeed achievable in practice. 

The idea of maintaining coherence at multiple 
granularities can be generalized to a variety of data types and 
applications in the following way: 

® a client caches data satisfying some predicate P from a 
server. 

the server remembers a predicate Q that is much 
cheaper to compute, and possesses the property Q 
implies P. In other words, as long as Q is true, the 
cached data it corresponds to is guaranteed to be valid. 
But if Q is false, nothing can be inferred about that data. 

On each update, the server re-evaluates Q. If  Q becomes 
false, the server notifies the client that its cached data 
might be stale. 

• Prior to its next access, the client nmst contact the server 
and obtain fl'esh data satisfking P. 

We refer to Q as a semantic czdlback for P, because the 
interpretation of P and Q depends on the specifics of the data 
and application. For example, P would be an SQL s e l e c t  
statement if one is caching data from a relational database. 
Or it could be a piece of code that perlbrms a pattern match 
fbr a pmticular individual's face from a database of images. 
Q must confbrm to P: a simpler select statement in the 
first case, and a piece of code that performs a much less 
accurate pattern match in the second case. In Coda, P 
corresponds to the version number of an object being equal 
to a specific value (x), while Q corresponds to the version 
number of the encapsulating volume being unchanged since 
the last time the version number of the object was confirmed 
to bex. 

Semantic validation can be extended to domains beyond 
mobile computing. It will be especially valuable in 
geographically widespread distributed systems, where the 
timing difference between local and remote actions is too 
large to ignore even when communication occurs at the 
speed of light. The predicate Q in such cases serves as an 
inexpensive wdidator for cached data satisf~dng some 
complex criteria. 

Consider the example of a transcontinental distributed 
system in the United States. Even at the speed of light, 
communication fYom one coast to the other takes about 16 
milliseconds. A round trip RPC will take over 30 
milliseconds. During this time, a client with a 100 MIP 
processor can execute over 3 million instructions! Since 
processor speed can be expected to increase over time, the 
lost computational opportunity represented by this scenario 
will only worsen. 

Over time, the synchronous model implicit in the use of 
RPC wilt become increasingly untenable. Eventually, very 
wide-area distributed systems will have to be structured 
around an asynchronous model. At what scale and 
timeframe this shift will occur depends on two factors: the 
substantially simpler design, implementation, and debugging 
inherent in the synchronous model, and the considerably 
higher performance (and hence usability) of the 
asynchronous model. 

One promising asynchronous model is obtained by 
combining the idea of cheap but conservative validation with 
the style of programming characterized by optimistic 
concurrency control [2]. The resulting approach bears some 
resemblance to the use of hints in distributed systems [8], 
and is best illustrated by an example. 

Consider remote control of a robot explorer on the 
surface of Mars. Since light takes many minutes to travel 
from earth to Mars, and emergencies of various kinds may 
arise on Mars, the robot must be capable of reacting on its 
own. At the same time, the exploration is to be directed live 
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by a human controller on earth --- a classic command and 
control problem. 

This example characterizes a distributed system in which 
communication latency is large enough that a synchronous 
design paradigm will not work. The knowledge of the 
robot's stares will always be obsolete on earth. But, since 
emergencies are rare, this knowledge will usually difter from 
current reality in one of  two benign ways. Either the 
differences are in attributes irrelevant to the task at hand, or 
the differences can be predicted with adequate accuracy by 
methods such as dead reckoning. Suppose the robot~ state is 
P, as characterized in a transmission to earth. Based on 
some properties, Q, of this state, a command is issued to the 
robot. For this command to be meaningful when it reaches 
the robot, Q must still be tree. This can be verified by 
transmitting Q along with the command, and having the 
robot validate Q upon receipt. For this approach to be 
feasible, both transmitting and evaluating Q must be cheap. 

There are, of course, numerous detailed questions to be 
answered regarding this approach. But it does offer an 
intriguing way to combine correctness with perfbrmance in 
very wide-area distributed systems. 

Some Open Questions 

* Under what circumstances are semantic callbacks most 
useful? When are they not useful? 

What forms can P and Q take for data types and 
applications in common use? How does one estimate 
their relative costs in those cases? 

• Can P and Q really be arbitrary code? Are there 
restrictions necessary for efficiency and practicality? 

• How does one derive Q from P quickly? Are there 
restrictions on P that make this simpler? 

How does one trade off the relative cost and benefit of P 
and Q? Is the tradeoff space discrete or continuous? 
Can this tradeoff be made adaptive? 

Analysis of Adaptation 

How does one compare the adaptive capabilities of  two 
mobile clients? The primary figure of merit is agility, or the 
ability of a client to promptly respond to perturbations. 
Since it is possible for a client to be more agile with respect 
to some variables (such as bandwidth) than others (such as 
battery power), agility should be viewed as a composite 
metric. 

A system that is highly agile may suffer from instability. 
Such a system consumes almost all its resources reacting to 
minor perturbations, hence performing little useful 
computation. The ideal mobile client is obviously one that is 
highly agile but very stable with respect to all variables of 
interest. 

Control theory is a domain that might have useful insights 
to offer in refining these ideas and quantifying them. 
Historically, control theory has focused on hardware 
systems. But there is no conceptual reason why it cannot be 

extended to software systems. Only carefut investigation can 
tell, of course, whether the relevance is direct and useful or 
merely superficial. 

Some open questions 

- What are the right metrics of agility? 

* Are there systematic techniques to improve the agility of 
a system? 

o How does one decide when a mobile system is "agile 
enough"? 

- What are the right metrics of system stability? 

* Can one develop design guidelines to ensure stability'? 

Can one analytically derive the agility and stability 
properties of an adaptive system without building it 
first? 

Global Estimation from Local Observat ions 

Adaptation requires a mobile client to sense changes in its 
environment, make inferences about the cause of  these 
changes, and then react appropriately. These imply the 
ability to make global estimates based on local observations. 

To detect changes, the client must rely on local 
observations. For example, it can measure quantities such as 
local signal strength, packet rate, average round-trip times, 
and dispersion in round-trip times. But interpreting these 
observations is nontfivial. A change in a given quantity can 
be due to a multiplicity of non-local phenomena. For 
example, packet rate will drop due to an overload on a 
distant server. But it will also drop when there is congestion 
on an intermediate network segment. If an incorrect cause is 
inferred from an observation, the adaptation performed by 
tile client may be ineffective or counterproductive. 

At present there is no systematic theory to guide global 
estimation from local observations. The problem is 
especially challenging in the absence of out-of-band 
communication, because the client cannot use an alternative 
channel to help narrow the diagnosis on the main 
communication channel. 

Some Open Questions 

• Are there systematic ways to do global estimation from 
local estimates? 

® Can one bound the error in global estimates? 

• What is the relationship of global estimation to agility of 
adaptation? Can one quantify this relationship? 

Can one provide system support to improve global 
estimation? For example, do closely-synchronized, 
low-drift clocks on clients and servers help? 
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Can one quantify the benefits of out-of-band channels? 
For example, how much does the presence of a low- 
latency, low-bandwidth channel help with estimates on a 
parallel high-latency, high-bandwidth channel? 

The tension between autonomy and interdependence is 
intrinsic to all distributed systems. Mobility exacerbates this 
tension, making it necessary for mobile clients to tolerate a 
fax- broader range of external conditions than has been 
necessary hitherto. 

Adaptation is the key to mobility. By using local 
resources to reduce communication and to cope with 
uncertainty, adaptation insulates users fi'om the vagaries of 
mobile environments. My research group is exploring two 
different approaches to adaptation: application-transparent 
and application-aware. Our experience with Coda confirms 
that application-transparent adaptation is indeed viable and 
efRctive for a broad range of important applications. In 
circumstances where it is inadequate, our initial experience 
with Odyssey suggests that application-aware adaptation is 
the appropriate strategy. 

In closing, it is worth speculating on the long-term impact 
of mobility on distributed systems. In his book Mind 
Children, my colleague Hans Moravec draws an analogy 
between the seminal role of mobility in the evolution of 
biological species, and its influence on the capabilities of 
computing systems[3]. Although Hans' comments are 
directed at robotic systems, I believe that his observaion 
applies equally well to a much broader class of distributed 
computing systems involving mobile elements. Mobility will 
influence the evolution of distributed systems in ways that we 
can only dimly perceive at the present time. In this sense, 
mobile computing is truly a seminal influence on Computer 
Science. 
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