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Abstract—We introduce the concept of edge-native applications
that fully exploit the potential of edge computing and have a deeply
symbiotic relationship with it. Such an application is custom-
designed to take advantage of one or more of the unique attributes
of edge computing such as (a) bandwidth scalability, (b) low-
latency offload, (c) privacy-preserving denaturing, and (d) WAN-
failure resiliency. The application may also contribute to scalability
through adaptation to reduce offered load. We contrast edge-
native applications with shallower uses of edge computing in a
taxonomy that spans edge-enhanced, device-native applications,
edge-accelerated, cloud-native applications, and device-only appli-
cations. We close with a case study that illustrates these concepts
in the context of cognitive assistance for automotive safety.

I. INTRODUCTION

The roots of Edge Computing reach back over a decade.

This new tier of computing has arisen from the observation

that consolidation, which is the central premise of cloud

computing, has negative consequences. It tends to lengthen

network round-trip times (RTT) from mobile users, and to

increase cumulative ingress bandwidth demand from Inter-

net of Things (IoT) devices. These negative consequences

stifle the emergence of new classes of real-time, sensor-rich

applications such as assistive augmented reality (AR) and

streaming IoT video analytics.
Since we first articulated this insight in 2009 [1], ex-

perimental studies by us and others have validated and

quantified the many benefits of edge computing. First, we

have shown [2], [3], [4], [5] that edge computing can help

to achieve considerable improvement in response times and

battery life by offloading computation from a mobile device

to a nearby cloudlet rather than to the distant cloud. Second,

we have demonstrated [6], [7], [8], [9], [10] that enormous

reduction in ingress bandwidth demand is achievable by

processing high data rate sensor streams (such as video

streams) on cloudlets rather than the cloud. Third, we have

shown [10], [11] that cloudlets can serve as privacy firewalls

that enable users to dynamically and selectively control the

release of sensitive information from sensors to the cloud.

Fourth, we have shown [12] that cloudlets can offer fallback

services that mask the unavailability of cloud services due to

network or server failures, or cyber attacks. A decade after

its original conception, the importance of edge computing is

no longer in doubt. The focus of effort is now on accelerating

the adoption of edge computing.

This paper focuses on the transformative aspects of edge

computing. We begin in Section II by positioning edge

computing relative to other elements of today’s computing

landscape. Then, in Section III, we identify a broad class of

new applications called edge-native applications that fully

exploit the potential of edge computing and have a deeply

symbiotic relationship with it. In Section IV, we develop a

taxonomy that contrasts edge-native applications with other

applications that make shallower use of edge computing. To

illustrate the abstract concepts in our discussion, Section V

describes a specific use case and discusses how alternative

implementations map to our taxonomy. We close in Sec-

tion VI by reiterating the central message of this paper: it

is edge-native applications that will deliver transformative

value to society, and investing in them is critical to business

success in edge computing.

II. A THREE-TIER MODEL OF COMPUTING

The cumulative body of evidence cited in Section I on

the merits of edge computing has led to the three-tier model

shown in Figure 1. Each tier represents a distinct and stable

set of design constraints that dominate attention at that

tier [13]. There are typically many alternative implemen-

tations of hardware and software at each tier, but all of

them are subject to the same set of design constraints. There

is no expectation of full interoperability across tiers —

randomly choosing one component from each tier is unlikely

to result in a functional system. Rather, there are many sets

of compatible choices across tiers. For example, a single

company will ensure that its products at each tier work well

with its own products in other tiers, but not necessarily with

products of other companies. The tiered model of Figure 1

is thus quite different from the well-known “hourglass”

model of interoperability. Rather than defining functional

boundaries or APIs, this model segments the end-to-end

computing path and highlights design commonalities.

Tier-1 represents “the cloud” in today’s parlance. Two

dominant themes of Tier-1 are compute elasticity and storage

permanence. Cloud computing has almost unlimited elastic-

ity, as a Tier-1 data center can easily spin up servers to

rapidly meet peak demand. Relative to Tier-1, all other tiers

have very limited elasticity. In terms of archival preservation,

the cloud is the safest place to store data with confidence
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Figure 1. Three-tier Model of Computing

that it can be retrieved far into the future. A combination of

storage redundancy (e.g., RAID), infrastructure stability (i.e.,

data center engineering), and management practices (e.g.,

data backup and disaster recovery) together ensure the long-

term integrity and accessibility of data entrusted to the cloud.

Relative to the data permanence of Tier-1, all other tiers

offer more tenuous safety. Getting important data captured

at those tiers to the cloud is often an imperative. Tier-1

exploits economies of scale to offer very low total costs of

computing. As hardware costs shrink relative to personnel

costs, it becomes valuable to amortize IT personnel costs

over many machines in a large data center. Consolidation is

thus a third dominant theme of Tier-1. For many large tasks,

Tier-1 is typically the optimal place to perform them. This

remains true even after the emergence of edge computing.

Mobility and sensing are the defining attributes of Tier-

3. Mobility places stringent constraints on weight, size, and

heat dissipation of devices that a user carries or wears [14].

Such a device cannot be too large, too heavy or run

too hot. Battery life is another crucial design constraint.

Together, these constraints severely limit designs. Techno-

logical breakthroughs (e.g., a new battery technology) may

expand the envelope of feasible designs, but the underlying

constraints always remain.

Today’s mobile devices are rich in sensors such as GPS,

microphones, accelerometers, gyroscopes, and video cam-

eras. Unfortunately, a mobile device may not be powerful

enough to perform real-time analysis of data captured by

its on-board sensors (e.g., video analytics). While mobile

hardware continues to improve, there is always a large gap

between what is feasible on a mobile device and what is

feasible on a server of the same technological era. Figure 2

shows this large performance gap persisting over a 20-year

period from 1997 to 2017. One can view this stubborn

gap as a “mobility penalty” — i.e., the price one pays in

performance foregone due to mobility constraints.

To overcome this penalty, a mobile device can offload

Typical Tier-1 Server Typical Tier-3 Device

Year Processor Speed Device Speed

1997 Pentium II 266 MHz Palm Pilot 16 MHz
2002 Itanium 1 GHz Blackberry 5810 133 MHz
2007 Intel Core 2 9.6 GHz Apple iPhone 412 MHz

(4 cores)
2011 Intel Xeon 32 GHz Samsung Galaxy S2 2.4 GHz

X5 (2x6 cores) (2 cores)
2013 Intel Xeon 64 GHz Samsung Galaxy S4 6.4 GHz

E5-2697v2 (2x12 cores) (4 cores)
Google Glass 2.4 GHz

(2 cores)
2016 Intel Xeon 88.0 GHz Samsung Galaxy S7 7.5 GHz

E5-2698v4 (2x20 cores) (4 cores)
HoloLens 4.16 GHz

(4 cores)
2017 Intel Xeon 96.0 GHz Pixel 2 9.4 GHz

Gold 6148 (2x20 cores) (4 cores)

Source: Adapted from Chen [15] and Flinn [16]
“Speed” metric = number of cores times per-core clock speed.

Figure 2. The Mobility Penalty: Impact of Tier-3 Constraints

computation over a wireless network to Tier-1. This was first

described by Noble et al [17] in 1997, and has since been

extensively explored by many others [16], [18]. For example,

speech recognition and natural language processing in iOS

and Android nowadays work by offloading their compute-

intensive aspects to the cloud.

IoT devices can be viewed as Tier-3 devices. Although

they may not be mobile, there is a strong incentive for

them to be inexpensive. Since this typically implies meager

processing capability, offloading computation to Tier-1 is

again attractive.

The introduction of Tier-2 is the essence of edge comput-

ing [19], and creates the illusion of bringing Tier 1 “closer.”

This achieves two things. First, it enables Tier 3 devices

to offload compute-intensive operations at very low latency.

This helps to overcome stringent Tier 3 design constraints

(e.g., weight, size, battery life, heat dissipation) without
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compromising the tight response time bounds needed for

immersive user experience and by cyber-physical systems.

Proximity also results in a much smaller fan-in between

Tiers 3 and 2 than was the case when Tier 3 devices

connected directly to Tier 1. Consequently, Tier 2 processing

of large volumes of live data captured at Tier 3 avoids

excessive bandwidth demand anywhere in the system.

Note that “proximity” here refers to network proximity

rather than physical proximity. It is crucial that RTT be low

and end-to-end bandwidth be high. This is achievable by

using a fiber link between a wireless access point and a

cloudlet that is many tens or even hundreds of kilometers

away. Conversely, physical proximity does not guarantee

network proximity. A highly congested WiFi network may

have poor RTT, even if Tier-2 is physically near Tier-3.

III. EDGE-NATIVE APPLICATIONS

Edge computing offers at least four valuable attributes, as

mentioned in Section I: (a) bandwidth scalability, (b) low-

latency offload, (c) privacy-preserving denaturing, and (d)

WAN-failure resiliency. An edge-native application is one

that is custom-designed to take advantage of one or more

of these attributes. Such an application does not function

satisfactorily without a cloudlet. It is from this class of

applications, uniquely enabled by the attributes above, that

the “killer apps” of edge computing are going to emerge.

Even an imperfect initial implementation of a future

killer app can provide such high value to end users that

it creates new demand for edge computing. In the absence

of viable competing alternatives, such an application can

coevolve with supporting infrastructure over an extended

period of time. For example, there is strong evidence that the

development of the spreadsheet circa 1982-1983 (VisiCalc,

Lotus-123 and, eventually, Microsoft Excel) was a major

catalyst in the adoption of personal computers (PCs) by

small businesses. It was the low and stable latency of

human interaction (relative to timesharing) that made PCs

indispensable infrastructure for spreadsheets.

The four attributes listed above have the potential to play

an analogous role for edge computing. The creation of new

edge-native applications that leverage one or more of these

attributes will be the true drivers of edge computing. The

history of science and technology is full of examples of

rudimentary implementations of “killer apps” (e.g., auto-

mobiles, aircraft, television, the microprocessor, the World

Wide Web) driving the evolution of the surrounding ecosys-

tem. This rapidly establishes a virtuous cycle that leads to

continuous long-term improvements and business value in

both the core technology and the sustaining ecosystem.

Edge-native applications that augment human cogni-

tion [2], [3], [20], [21] are potential killer apps for edge

computing. These applications improve some aspect of hu-

man cognition (e.g., task performance, long-term memory,

face recognition, etc.) in real time. By leveraging edge

computing, the computing resources that can be brought to

bear in this task can be far larger, heavier, more energy-

hungry and more heat-dissipative than could ever be carried

or worn by a human user. Distributed sensing can also

offer real-time sensory inputs (e.g., from video cameras)

obtained from vantage points other than the first-person

viewpoint of a human. By seamlessly integrating these

resources with human perception and cognition, such an

assistive application could achieve a whole that is much

greater than the sum of parts.

The potential business value of cognitive augmentation

is huge. Consider, for example, just one small segment of

this market: cognitive assistance for the elderly in the US.

Today, over 20 million Americans are affected by some

form of cognitive decline that significantly affects their

ability to function as independent members of society. This

includes people with neurodegenerative conditions such as

Alzheimer’s disease (˜4.5M) and mild cognitive impairment

(>6M), survivors of stroke (˜2.5M) and people with trau-

matic brain injury (˜5.3M). These numbers are expected

to grow significantly due to an aging population and an

increase in long-term post-traumatic stress disorders arising

from occupational and social causes. Cognitive impairment

can manifest itself in many ways, including the inability

to recognize people, locations and objects, loss of short-

and long-term memory, and changes in behavior and ap-

pearance such as decreased attention to personal hygene.

Among the many challenges faced by older Americans,

cognitive decline often has the largest negative impact on

them and their family members. The potential cost savings

from even modest steps towards addressing this challenge

are enormous. In the US alone, it is estimated that just a

one-month delay in nursing home admissions nationwide

could save over $1 billion annually [22]! At global scale,

with rapidly aging populations in the richest countries of

the world, the potential business value is many times larger.

Of course, cognitive augmentation is not the only source

of edge-native applications. Real-time video analytics from a

large array of cameras is another example, with many uses in

domains such as law enforcement, surveillance, and military

intelligence. Combining live video analytics with real-time

denaturing for privacy is an even more demanding source of

edge-native applications [10]. 360-degree video/VR distribu-

tion, as reported by Mangiante et al [23] is another example

of an edge-native application. Over time, we are confident

that the many valuable attributes of edge computing will

lead to many different types of edge-native applications. We

emphasize cognitive augmentation in this paper because it

has been a major source of first-hand experience for us, and

because we believe that such applications will ultimately

have the potential for major societal benefit.

Our characterization of edge-native applications until this

point has focused solely on their deep dependence on edge-

specific attributes that cannot be offered by cloud computing.
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However, a complete definition of edge-native applications

would also have to recognize the fact that they need to

be written to function effectively in spite of limitations of

the edge. In particular, scalability is an area where edge

computing suffers relative to cloud computing. As its name

implies, a cloudlet is designed for much smaller physical

space and electrical power than a cloud data center. Hence,

the sudden arrival of an unexpected flash crowd of users

can overwhelm a cloudlet and its wireless network. There

are only two solutions to this problem. The first is to

relocate one or more application back-ends to a less-loaded

cloudlet using a mechanism such as VM Handoff [24].

Unfortunately, this is likely to be suboptimal if the original

cloudlet was optimally chosen. The other solution is for

applications associated with that cloudlet to lower their

resource demands. In other words, scalability requires the

average burden placed by each user on the cloudlet and the

wireless channel to fall as these resources saturate.

These considerations suggest that adaptive application

behavior based on guidance received from the cloudlet,

the network, or inferred by the user’s mobile device needs

to be an integral part of what it means to be an edge-

native application. This important area of future research in

edge computing can build upon earlier work. Specifically,

the approach to trading off quality of user experience or

battery life for reduced resource demand that was introduced

by Odyssey [17], [25], and the concept of multi-fidelity

applications [26], are both valuable foundations to build

upon. Scalability at the edge is thus only achievable for

applications that have been designed with this goal in mind.

This is another important aspect of edge-native applications.

IV. A TAXONOMY OF EDGE COMPUTING APPLICATIONS

There is intense industry interest in edge computing, and

it is believed that we are on the cusp of major industry in-

vestments [27]. Coming at the same time as the rollout of 5G

wireless systems, the total demand for capital investments

is substantial even for large telecommunications companies.

A question that is frequently asked is whether 5G should

be a precursor to edge computing. For a number of use

cases, deploying 5G without also deploying edge computing

is unlikely to be satisfactory. In such a deployment, 5G only

improves last-mile connectivity. The rest of the path to the

distant cloud remains what it is today. Average RTTs on the

order of a hundred milliseconds, with a tail of one second

or more, can be expected [28]. This is a lower bound on the

achievable end-to-end application response time. In contrast,

deploying edge computing in today’s 4G LTE environment

can yield end-to-end application response times (both mean

and tail) of just a few tens of milliseconds [4], [5]. Edge

computing cuts RTT for both 4G LTE and 5G, and makes

innovative applications already viable on 4G networks today.

In spite of enormous industry interest in edge computing,

actual deployments of edge computing are minimal today

(May 2019) and the path forward is shrouded in uncertainty.

The source of this uncertainty is a “chicken or egg” problem

involving customer demand for edge computing. Before

making large investments, companies expect to see clear

evidence of customer demand for edge computing. This

demand will only arise when there are a large number of

edge-native applications that deliver high value to end users.

Before investing resources to create such applications, their

authors need confidence that the critical resource (i.e., edge

computing) is widely deployed. This is the deadlock we face.

There are two paths to breaking this deadlock, and we

assert that both paths are important. First, the industry

segments that stand to benefit from edge computing over

the long term should play an active role in nurturing the

creation of edge-native applications. This could be through

support of non-commercial open source efforts, as well as

direct investments in startup companies. In making these

investments, the potential beneficiaries of a vibrant edge

computing ecosystem should recognize that “return on in-

vestment (ROI)” should be interpreted more broadly than

classic investment metrics would suggest. They should take

the long view, and recognize that ROI includes their own

long-term survival. This requires an active role in application

development, and lies well outside the traditional comfort

zone of many companies. Especially for telecommunications

companies, edge computing represents an opportunity to

create long term business value for their unique assets.

The second path is to recognize that edge-native applica-

tions are not the only class of applications to benefit from

edge computing. There are applications that can leverage

edge computing when available, but deliver acceptable user

experience when run in the cloud. We refer to this class of

applications as edge-accelerated, cloud-native applications.

For brevity, we just use the qualifier “edge-accelerated” to

refer to this class. The 20-year history of content distribu-

tion networks (CDNs) for web access is a good example

of edge acceleration. Today, venture capital is focused

on identifying new edge-accelerated use cases rather than

edge-native use cases, because they involve less investment

risk. Edge-accelerated use cases involve much less soft-

ware development, and their markets are much larger since

they can function acceptably even in the absence of edge

computing. To the extent that they stimulate investment,

these applications can offer modest help in catalyzing the

rollout of edge infrastructure. However, unlike edge-native

applications, they will not deliver transformative value and

will therefore generate only modest premium for the edge.

Between edge-native and edge-accelerated applications

are a third class of applications that leverage edge comput-

ing. These typically run on-device, rather than in the cloud.

When edge computing is available, they are able to make

optional use of it to improve functionality or performance.

For example, an application may have certain features that

only work when the device is associated with a cloudlet.
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This table only refers to the main code paths. Not shown are incidental
uses of Tier-1 for purposes such as authentication, error reports, and
software upgrades.

Figure 3. Taxonomy of Application Types

Otherwise, only a subset of the full functionality may be

available on the device. Another approach is to reduce the

fidelity of the underlying algorithms when edge computing is

not available. This approach is consistent with the approach

of multi-fidelity computation, introduced nearly 20 years

ago [26]. In a computer vision application, for example,

the algorithm used for object detection may be much more

accurate on the cloudlet. The version of the application on

the mobile device may use a simpler algorithm that has

smaller memory footprint and lower processing demand, but

comes at the cost of lower accuracy. We refer to this class

of applications as edge-enhanced, device-native applications.

For brevity, we just use the qualifier “edge-enhanced” to

refer to this class.

Finally, there are many applications that run entirely on

a Tier-3 device, without any use of Tier-2. We refer to

these as device-only applications. The opportunity here is

to evangelize edge computing, and to help developers to

refine and extend these applications into edge-native or edge-

enhanced, device-native applications that offer improved

functionality, user-experience or both.

Figure 3 visually illustrates these four classes of appli-

cations. Edge computing is more deeply used as we go

from top to bottom. At the very bottom (edge-native), one

or more attributes of edge computing is so deeply woven

into the fabric of the application that it cannot function

effectively without edge computing. As we move up through

the edge-enhanced and edge-accelerated levels of this table,

the dependence on edge computing decreases. It is deep

dependence on edge computing that will ultimately drive its

widespread deployment and success. Relative to scalability,

only edge-native applications contribute to reducing offered

load through adaptation. They can thus be viewed as the

true first-class citizens of the edge, both contributing to and

benefiting from its unique attributes.

V. CASE STUDY

A. Concept

To illustrate the concepts discussed in Sections III and

IV, we present a real-world use case. This is in the domain

of automotive safety. Specifically, it is a cognitive assistance

application for drivers (and future autonomous vehicles) that

alerts them to a pedestrian who unexpectedly appears in front

of a moving vehicle. In theory, a driver should always be

on the alert for such a possibility. In practice, many factors

such as fatigue, poor lighting, and distracted driving (e.g.,

talking or texting on a cell phone) together conspire to make

drivers less than perfect in their ability to avoid accidents

in this setting. The goal is to create a cognitive assistant

that uses computer vision and edge computing to detect the

pedestrian and immediately alert the driver. The input for

sensing comes from a video camera mounted on the vehicle.

Such a system would, in effect, augment the driver’s vision

system with an extra pair of eyes that never gets fatigued or

distracted. Figure 4 illustrates this concept.

Our use of edge computing has at least two benefits. First,

it avoids the need for expensive in-vehicle compute infras-

tructure to process frames from the video camera in real

time. For a low-end vehicle costing $20,000, even a $1,000

computer is a significant price increase. The drawback in

having no in-vehicle cloudlet is the significant continuous

use of wireless bandwidth to stream video to an off-vehicle

cloudlet. In recent work [29], we have shown how prelimi-

nary on-board processing of the video by a relatively small

and cheap cloudlet can suppress transmission of many video

frames without loss of accuracy in detection. Such a hybrid

approach may strike the right cost balance.

Second, looking to the future, it may be possible to

combine video and GPS data from a vehicle with additional

video streams from static cameras nearby to improve the

predictive ability of the system. For example, a camera

pointed at the sidewalk may detect a soccer ball kicked

towards the road. AI software can reasonably infer that the

child who kicked the ball may run onto the street to retrieve

it. It can therefore proactively raise an alert before the child

actually runs onto to the road. The window of advance notice

may only be a few hundred milliseconds, but that may save

the child’s life. A cloudlet that is processing all these video

streams views a vehicle’s video stream as just one more input

in its sensor fusion. It will be difficult in a purely vehicle-

centric system to leverage these multiple sensor viewpoints

in the surrounding infrastructure.

Others have also recognized the value of edge computing

for real-time video analytics in traffic safety. For example,

Ananthanarayanan et al [30] have described a video analytics

software stack for edge computing that has been deployed in

the city of Bellevue, WA and aims to provide high accuracy

while minimizing the cost of execution. In our taxonomy,

their system would be viewed as an edge-native application.
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Figure 4. Predictive Automotive Safety through AI at the Edge

Figure 5. Aldenhoven Testing Center, Germany

Figure 6. One of the Cloudlets Used in the Prototype System

B. Proof of Concept Implementation

In partnership, Vodafone (a leading telecommunications

company) and Continental (a leading technology company)

have created a proof of concept implementation of this sys-

tem. The implementation is located at the outdoor automo-

tive test track of the Aldenhoven Testing Center in Germany

(Figure 5), the home of Vodafone’s 5G Mobility lab. Conti-

nental developed the application software; Vodafone and its

vendors created the edge computing infrastructure (Figure 5,

6). This infrastructure features a MEC (“multi-access edge

computing”) software platform, Software Defined Network-

ing Control, virtualised IPSec gateways, virtualized active

measurement software and probes, and a Vodafone-specific

cloudlet environment supporting cloud native development

and hardware acceleration through GPUs. A series of drive

tests were conducted to analyse robustness of the application

in the face of varying radio conditions, radio cell traffic load

and vehicle speeds. These tests confirmed the viability of this

system with 4G LTE. Upgrading to 5G will boost available

bandwidth per vehicle, while also reducing radio latency.

C. Mapping to Taxonomy

As implemented in February 2019, this system is very

much dependent on the cloudlet — only a little pre-

processing is done in the vehicle. The low end-to-end latency

offered by edge computing is crucial in this application. At

typical vehicular speeds, even a few hundred milliseconds

can mean the difference between an accident and a near

miss: for example, at 30 mph, a vehicle covers 4.4 feet in

100 milliseconds.

Edge computing is also crucial for bandwidth scalability

in this implementation. Hulu estimates that its video streams

require 13 Mbps for 4K resolution and 6 Mbps for HD

resolution using highly optimized offline encoding [31]. Live

streaming is less bandwidth-efficient: 10 Mbps for HD video

at 25 FPS is reported by Wang et al [32]. Without edge

computing, the total bandwidth demand to the cloud from

10,000 vehicles in a city would exceed 100 Gbps. This

would place severe stress on its metropolitan area network.

In the taxonomy of Section IV, this version of the

application qualifies as an edge-native application since it

is critically dependent on one or more attributes of edge

computing. However, it lacks any support for scalability at

the edge. If a large number of proximate vehicles overwhelm

the processing capacity of the single cloudlet that they

are associated with, there is currently no mechanism to
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reduce offered load. This would require one of three possible

solutions to be added. First, some vehicles could be denied

cognitive assistance (load shedding). Second, the prediction

algorithm used in the cloudlet could be temporarily switched

to a less accurate (and presumably less compute intensive)

algorithm. Third, an in-vehicle cloudlet could process many

of the frames with some loss of accuracy and only transmit

a much lower frame rate to the cloudlet. The first and third

approaches could also be used to reduce wireless bandwidth

demand, if that proves to be the bottleneck.

How would alternative implementations of this application

map to the taxonomy of Figure 3? Based on the latency and

bandwidth scalability reasoning above, it is clear that this

application simply cannot be run in the cloud. There is there-

fore no flavor of implementation that could be considered

as an edge-accelerated, cloud-native implementation.

A device-only implementation is conceivable. A large in-

vehicle cloudlet with a high-end GPU could provide the

computing cycles necessary to perform video processing at

full frame rate. This would offer the lowest possible latency,

since no wireless communication to the cloudlet would be

required. Such a design would also be highly bandwidth

scalable. The biggest drawback of a device-only implemen-

tation is the significant cost of an in-vehicle cloudlet that

is powerful enough for continuous video analytics at high

frame rate. A secondary drawback is the inability to leverage

video streams from static cameras in the surroundings, and

to thus benefit from sensor fusion.

A slight modification of the device-only implementation,

to allow use of a cloudlet when available, could eliminate

this drawback. Such an implementation would rely solely

on the in-vehicle camera and cloudlet in the worst case, but

leverage cloudlet-based sensor fusion when possible. This

would be viewed as an edge-enhanced implementation in

our taxonomy. However, if this implementation were to also

be adaptive and to reduce offered load when the wireless

network is congested or the cloudlet is heavily loaded, it

would be more appropriate to view it as a full-fledged edge-

native application.

VI. CONCLUSION

A decade ago, the emergence of cloud computing led

to the concept of cloud-native applications. These were

applications that were designed and implemented from the

ground up to take full advantage of a unique attribute of the

cloud, namely its extreme elasticity. A cloud data center has

almost unlimited capacity to spin up more servers to meet

peak demand. However, to take advantage of this capability,

applications have to be written in a particular style which is

the essence of a cloud-native application.

By analogy, edge-native applications are written to con-

form to the unique strengths and weaknesses of edge com-

puting. The strengths include low latency, bandwidth scal-

ability, enhanced privacy, and improved resiliency to WAN

network failures. The main weakness of edge computing

is the limited elasticity of even large cloudlets relative

to hyperscale cloud data centers. A secondary weakness

is the increased cost of managing dispersed rather than

centralized infrastructure. This secondary weakness is not

directly visible to applications, but manifests itself in the

high marginal cost of edge computing relative to cloud

computing. This leads to the need for an “edge premium.”

The central message of this paper is that edge-native

applications and edge computing need each other. Deploying

edge computing without a substantial body of edge-native

applications is unlikely to result in a sustainable business.

The capital cost of deploying edge infrastructure, and the

higher marginal operating cost of that infrastructure rela-

tive to a cloud data center, can only be recouped with a

substantial premium for edge computing. Such a premium

is unlikely to be sustainable unless end-users receive new

value that delights them. Only edge-native applications can

provide that value. The taxonomy that we have introduced

includes other types of applications that can benefit from the

edge, without being deeply dependent upon it. While those

may be useful fellow travellers in the journey to deployment

of edge computing everywhere, we posit that only edge-

native applications can help us complete that journey.
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