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Abstract—Edge computing has much lower elasticity than
cloud computing because cloudlets have much smaller physical
and electrical footprints than a data center. This hurts the
scalability of applications that involve low-latency edge offload.
We show how this problem can be addressed by leveraging the
growing sophistication and compute capability of recent wearable
devices. We investigate four Wearable Cognitive Assistance appli-
cations on three wearable devices, and show that the technique of
offload shaping can significantly reduce network utilization and
cloudlet load without compromising accuracy or performance.

Index Terms—Computer Vision, Machine Learning, Offload-
ing, Wearable Computing, Mobile Computing, Edge Computing,
IoT, Cloudlet, Augmented Reality, 5G, Wi-Fi

I. INTRODUCTION

Offloading compute-intensive operations at low latency
from underpowered wearable devices over a wireless network
to a nearby cloudlet was one of the original motivations for
edge computing [1]. Today, it continues to be an important
driver of edge computing, but faces the challenge of limited
elasticity. A cloudlet is designed for a much smaller physical
and electrical footprint than a cloud data center. Hence, modest
load spikes can overwhelm a cloudlet and its wireless network.
Since low end-to-end latency is non-negotiable for many
edge-native applications [2], shifting load to the cloud is not
feasible. Techniques that reduce the average utilization of
shared resources for edge offload are therefore valuable.

Such a technique is offload shaping, originally described
in 2015 by Hu et al [3]. That work presented empirical
evidence that many instances of offloading are wasted work
because of imperfect real-time sensing (e.g., blurry image
capture or near-duplicate frames). Offload shaping eliminates
the resource demand of this useless work via early discard in
the processing pipeline that starts at the wearable device. Hu
et al showed that offload shaping was possible even with the
limited capability of wearable devices. They also demonstrated
significant reduction in the utilization of shared resources.

In this paper, we extend the concept of offload shaping
by leveraging the growing sophistication and compute ca-
pability of recent wearable devices. We observe that on-
device hardware accelerators for tasks such as deep learning
inference [4], super-resolution [5] and scene analysis [6] have
emerged. At the same time, we observe that the complexity
and resource demand of the end-to-end processing pipelines
have also grown (e.g., because of larger deep neural networks
(DNN5)). Consequently, edge offload is still necessary in the
worst case. However, we show that the average-case burden
of edge offload can be reduced by offload shaping. We further
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show that this savings can be achieved on diverse wearable
devices, without compromising the accuracy or the end-to-end
latency of typical processing pipelines.

We explore offload shaping in the context of wearable
cognitive assistance (WCA) applications for assembly tasks.
Originally described in 2014 [7], this genre of applications has
emerged as a “killer app” for edge computing because (a) they
transmit large volumes of video data from device to cloudlet;
(b) they have stringent end-to-end latency requirements; and
(c) they make substantial compute demands of the cloudlet,
often requiring a GPU. A WCA application runs on a wearable
device such as Google Glass® or Microsoft® Hololens®,
leaving the user’s hands free for task performance. It provides
visual and verbal guidance and error detection for a user
who is performing an unfamiliar task. We investigate four
WCA applications on three wearable devices: Google Glass®
Enterprise Edition 2, Vuzix Blade® 2, and Magic Leap 2.

The main contribution of this work is to show that offload
shaping can significantly reduce the network utilization and
cloudlet load of WCA applications on diverse wearable de-
vices, without compromising accuracy or performance. Our
results show that the savings achievable varies across devices,
but the concept is robust. Offload shaping is thus a valuable
technique for reconciling the conflicting demands of scalability
and end-to-end performance for WCA tasks.

The rest of the paper is organized as follows. Section II
describes the four WCA applications studied in this work,
and the computer vision pipelines associated with them. Sec-
tions Il and IV describe the two forms of offload shaping
we examined, and they present the main experimental results
of this paper. Section V concludes the paper.

II. IMAGE PROCESSING IN WCA

Table I lists the four WCA applications studied in this paper.
Progress on an assembly task is determined via computer
vision using DNN models, that were fine-tuned on data for
each specific task. For each application, we collect training
images depicting each step of the assembly task. We label
each image to indicate the step of the task that is displayed,
and draw a bounding box around the section of the image that
contains the object being assembled. We also collect and label
separate sets of test data to evaluate the accuracy of the DNN
models.

DNNs with low accuracy will result in a poor user experi-
ence. When a frame is misclassified, an application either fails
to recognize that the user has successfully completed a step,
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TABLE 1
THE FOUR WCA APPLICATIONS WE DEVELOPED.

TABLE III
TOP-1 CLASSIFICATION ACCURACY FOR PIPELINES. THE HIGHEST
ACCURACY FOR EACH APPLICATION IS IN BOLD.

Name Description
Stirling Assemble a heat engine from metal parts \ [[ Meccano | Stirling [ Sanitizer | Toyplane |
Meccano  Build a model bike from metal parts EfficientDet-Lite0 75.0% 85.1% | 87.9% 69.8%
Toyplane  Build a model helicopter from 3D printed plastic parts and Resnet 50
Sanitizer ~ Assemble a sanitizer for a smartphone from metal and plastic EfficientDet-Lite0 82.0% 78.4% 79.3% 77.2%
parts and Fast MPN-COV
TABLE 1I Efgclizen‘tD:tTSI(‘)itel 74.6% 70.3% 87.7% 70.9%
TOP-1 CLASSIFICATION ACCURACY FOR STANDALONE DNN MODELS. anc Iesnet SU
THIS IS THE PERCENTAGE OF IMAGES THAT THE MODEL CLASSIFIED S;gig:?&;;‘fglov 81.7% 66.6% | 79.3% 71.7%
CORRECTLY. THE HIGHEST ACC;J(I){SDCY FOR EACH APPLICATION IS IN EfficientDet-Lite2 75.0% 91.0% | %9.1% 70.1%
: and Resnet 50
‘ [[ Meccano [ Stirling [ Sanitizer | Toyplane | EfficientDet-Lite2 81.5% 86.0% 80.6% 76.6%
Resnet 50 608% | 263% | 683% | 36.4% and Fast MPN-COV
esnet _ 8% 3% 5% 4% Faster R-CNN and || 84.5% 80.9% | 929% | 81.9%
EfficientDet-LiteO 75.2% 53.7% 79.3% 51.1% Fast MPN-COV
EfficientDet-Lite 1 71.1% 53.8% 84.1% 63.5% -
EfficientDet-Lite2 75.2% 57.8% 84.9% 59.8% R
Fast MPN-COV 73.5% 52.0% | 84.0% 78.0% B. Pipeline
Faster R-CNN 72.3% 50.7% 91.0% 67.5%

or it detects that a step has been completed when it hasn’t and
gives the user a new instruction prematurely.

A. Standalone DNN

We train and test standalone DNNs on the data that we
collected for each application. These include both image
classifiers and object detectors. Image classifiers are given an
image, and assign a label indicating the type of object that is
shown in the whole image. When training our image classi-
fiers, we ignore bounding box labels and just train the models
using class labels. The image classifiers we tried were Resnet
50 [8] and Fast MPN-COV [9]. Object detectors can find
multiple objects present in an image, as opposed to just one.
They return bounding box coordinates and class labels for each
object present in an image. We evaluate the Faster R-CNN [10]
and EfficientDet [11] object detectors. Our evaluation looks at
three different versions of EfficientDet. EfficientDet-LiteO has
the smallest number of learned parameters, and EfficientDet-
Lite2 has the largest number of learned parameters.

For each application and object detector or image classifier
combination, we train a DNN on the training data and test it
on the test data. Each training and test image contain exactly
one instance of the object being assembled. We compute Top-
1 accuracy for the image classifiers by comparing the highest
confidence label from the model with the ground truth label
we assigned, for each image. Top-1 accuracy is computed for
the object detector by comparing the class label of the object
that the model detected with the highest confidence score, and
the ground truth class label. The bounding box coordinates
returned by the object detector are ignored for this evaluation,
because the applications do not need to know the location of
the object being assembled. They just need to know the step
of the assembly task that is shown in an image. As the results
in Table II show, the low accuracy of this approach suggests
that a standalone DNN is insufficient.
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In an attempt to increase accuracy, we use a two stage
process inspired by [12]. An object detector first finds the
region of an image that contains the section of the object that
the user is currently assembling. The application then crops
the image around this region, and then determines the step
of the task that is shown, using an image classifier. As with
the standalone DNN implementations of our applications, the
image classifier has one class for each step of the task.

We train Faster R-CNN [10] and EfficientDet [11] object
detectors with modified versions of our training data for each
application. Images were labeled with bounding boxes, but all
objects were assigned a single class label.

Our Resnet 50 [8] and Fast MPN-COV [9] image classifiers
are trained on images that were cropped to only include the
regions inside of our bounding box labels. This allows these
models to classify cropped images, rather than the original full
images that also contained part of the empty table around the
object that was being assembled.

We test the pipelines of models trained for each application
on the test set for that application. These results are listed in
Table III. The pipeline consisting of Faster R-CNN and Fast
MPN-COV achieves the highest accuracy for all applications
except Stirling. The best pipeline outperforms the best stan-
dalone DNN for all four applications.

III. MAPPING PROCESSING TO COMPUTING TIERS

All of the models and pipelines described in Section II can
be run on a cloudlet, with the applications implemented as thin
clients. However, cloudlets are a limited resource [13]. Heavy
cloudlet load limits the number of other users that can share the
cloudlet. We thus examined how wearable devices can reduce
the amount of processing on cloudlets. Network bandwidth
is also a shared limited resource. Our experiments examine
how running some computations locally, instead of offloading
them to a cloudlet, can reduce the amount of bandwidth used
by WCA applications. Figure 1 shows the three partitioning
strategies we explore.
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Fig. 1. Fully local, split computing, and thin client implementations of WCA

A. Fully Local Computation

Carrying out all computations locally avoids consuming any
cloudlet resources or network bandwidth. Unfortunately, fully
local computation limits an application’s image processing
capabilities to the what the wearable devices are capable of
running. In addition, the battery in the devices must power
all of these computations. We run experiments to find the
accuracy, inference time, and power consumption for models
running directly on wearable devices. This indicates whether
or not it is practical to run all computations for WCA appli-
cations locally on the wearable device.

EfficientDet and Resnet 50 can be run on Android devices
using PyTorch Mobile and TensorFlow Lite. However, Fast
MPN-COV and Faster R-CNN cannot currently run on mobile
devices [14], [15]. All of our pipelines that run locally on the
wearable devices were thus limited to using EfficientDet and
Resnet 50.

B. Thin Client

Offloading all computations to a cloudlet allows us to
process images using Faster R-CNN and Fast MPN-COV. This
enables us to use the most accurate pipelines listed in Table III.
We measured the inference time and power consumption of a
thin client that offloads all computations to a cloudlet. We
implemented a flow control mechanism in the thin client that
only allows the client to send one image to the cloudlet at a
time. After the client sends an image to the cloudlet, it waits
for the cloudlet to transmit the result from processing that
image before sending the next image. This prevents a buffer
of stale frames from building up on the cloudlet, while the
cloudlet is busy processing a frame.

All of the systems were Internet-connected: the wearable
devices via Wi-Fi, and the cloudlet via 1 Gbps Ethernet. The
ping time between the wearable device and the cloudlet was
under 5 ms. The cloudlet had two Intel® Xeon® E5-2699v3
processors and an Nvidia® GeForce® GTX 1080 Ti GPU.

The thin client experiments represent the best case scenario:
a user with a high bandwidth and low latency connection to
a server with a GPU. The wearable device can offload all
expensive computations to this server. This saves power on
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the wearable device, and supports compute-intensive DNNs.
Our thin client experiments achieve the highest accuracy, and
lowest possible execution time and device power consumption.

C. Split Computing

Split computing is a form of offload shaping to reduce
network bandwidth and/or cloudlet resource usage. Prepro-
cessing on the wearable device can reduce the amount of data
that must be sent to the cloudlet, and/or replace some of the
computations that would have been run on the cloudlet.

As we showed in Section II, a standalone object detector
or image classifier is not sufficient for our applications. In
addition, implementing the pipeline described in Section II-B
using an object detector that is split across a client and a
cloudlet is impractical. A split object detector has a head DNN
which outputs an embedding, that gets sent to the cloudlet. The
cloudlet feeds this embedding to the split object detector’s tail,
and the tail’s output just contains the bounding box coordinates
and class labels for the detected objects. There is no way
for the cloudlet to obtain a cropped image from the original
embedding that was sent to the cloudlet. Our application would
either have to send the entire image to the cloudlet along
with the embedding, or it would have to send the bounding
box coordinates back to the wearable device, and have the
wearable device send the cropped image in some form to run
the classifier on the cloudlet. The former approach eliminates
all of the bandwidth savings that split computing offers; while
the latter approach requires a second round trip to the wearable
device, which increases latency.

One possibility is running an object detector on the wearable
device, cropping the image there, and then feeding the cropped
image to a split image classifier. However, this requires run-
ning both the object detector and the head of the split image
classifier on the wearable device. We instead opt to run just the
object detector on the wearable device, transmit the cropped
image to the cloudlet, and run the full image classifier there.
This allows us to use the Fast MPN-COV image classifier,
which cannot be run on a wearable device. In addition, it
saves the wearable device from having to run the head of a split
image classifier. This relatively simple implementation of split
computing does not require ML expertise in DNN splitting.
Can such a simple implementation still offer a significant
bandwidth savings without unreasonably harming battery life
or classification accuracy?

D. Results

Classification accuracy, inference time, and power consump-
tion all impact a user’s experience with a WCA application. A
model with low accuracy might result in the application failing
to recognize a completed step, or prematurely giving the
user a new instruction. High inference time results in a large
delay between a user completing a step, and the application
providing the next instruction. High power consumption will
drain the wearable device’s battery quickly. The experiments in
this section measure these quantities for fully local execution,
thin clients, and split computing.
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TABLE IV
CLASSIFICATION ACCURACY FOR THE BEST PERFORMING PIPELINE IN
EACH SETTING

‘ [[ Meccano | Stirling | Sanitizer [ Toyplane |

Fully Local 75.0% 91.0% 89.1% 70.9%

Split Computing 82.0% 91.0% 89.1% 77.7%

Thin client 84.5% 91.0% 92.9% 81.9%
TABLE V

THE BANDWIDTH SAVED BY TRANSMITTING CROPPED IMAGES. IMAGES
WERE CROPPED AROUND THE BOUNDING BOXES RETURNED BY
EFFICIENTDET-LITEO.

[ Stirling | Meccano [ Toyplane [ Sanitizer |
[792% | 523% [ 868% | 942% |

1) Classification Accuracy: Table IV lists the highest ac-
curacy possible for each implementation type, based on the
data from Sections II and III-D3. The best performance for
three out of our four applications requires offloading all
computations to a cloudlet.

2) Bandwidth Savings: As Table V shows, split computing
offers significant bandwidth savings. This is expressed as:
(Bytesfull images Bytescropped images)/Bytesfull images

The bandwidth savings achieved is content-dependant. The
distance between the camera and the object being assembled
will change how large a subassembly appears in the image,
and this will directly impact the number of bytes required
to transmit the cropped image. The bandwidth savings of
techniques such as image compression or DNN-based split
computing vary less based on the specific content in an image.

Transmitting cropped images requires less than 50% of the
bandwidth that the uncropped images require, for all of our
datasets. The savings is over 90% for the Sanitizer dataset. In
many cases, this significant bandwidth savings will be worth
the reduction in accuracy that comes along with using split
computing instead of offloading all computations.

3) Inference Time: We measured image processing times
for pipelines running directly on the wearable devices. We did
this by storing our test set on the devices, and running code
that looped through each image. Inside the loop, our code ran
the pipeline of models that was being timed. The code logged
the elapsed time every 20 frames, based on Android’s uptime
counter. The elapsed times were divided by 20, to get the per-
frame inference time. Each pipeline was run for five minutes.
Table VI shows our results.

Table VII lists the largest pipeline that meets the latency
bounds from [16], on each device. The accuracies of each

TABLE VI
INFERENCE TIME FOR ONE FRAME, IN MILLISECONDS, FOR FULLY LOCAL
COMPUTATION. FOR EACH CELL, THE AVERAGE COMES BEFORE THE +
SIGN AND THE STANDARD DEVIATION COMES AFTER.

[ [[ Google Glass | Magic Leap | Vuzix Blade |

EfficientDet-LiteOQ 480 + 14 161 + 3 2031 4+ 27
and Resnet 50

EfficientDet-Lite 1 661 + 46 183 £ 7 2423 + 155
and Resnet 50

EfficientDet-Lite2 958 + 9 222 + 3 3072 £ 73
and Resnet 50

TABLE VII
THE LARGEST PIPELINE THAT MEETS TIGHT AND LOOSE LATENCY
BOUNDS. “LARGEST” REFERS TO THE NUMBER OF PARAMETERS USED

FOR THE PIPELINE’S VERSION OF EFFICIENTDET.

Tight Bound

Loose Bound

Google Glass®
Magic Leap

Vuzix Blade®

EfficientDet-LiteO
and Resnet 50
EfficientDet-Lite2
and Resnet 50

None

EfficientDet-Lite2
and Resnet 50
EfficientDet-Lite2
and Resnet 50

EfficientDet-Litel

and Resnet 50

TABLE VIII
SINGLE-FRAME INFERENCE TIME FOR THE THIN CLIENT, IN
MILLISECONDS

[ Google Glass | Magic Leap | Vuzix Blade |
[166£8 [150+£8 [203+9 |

pipeline, for all applications are listed in Table III. There is
a large gap between the accuracy of the pipeline that can
meet the latency bounds and the accuracy of the most accurate
pipeline, for most device and application combinations. This
indicates that fully local computation is not an acceptable
strategy in most of our cases.

Inference time measurements for thin clients are listed in
Table VIII. These measurements include the time to transmit
images to the cloudlet, process them there, and then transmit
results back to the wearable device. As with our other time
measurements, the applications were run for five minutes, and
elapsed time was recorded every 20 frames. These values were
well below the tight latency bounds on all three devices. The
thin client offers the highest possible accuracy and the lowest
inference time. However, it consumes the largest amount of
bandwidth and cloudlet resources.

Table IX lists the per-frame inference times of our split
computing pipelines, across all three devices. As with accu-
racy, the inference time for split computing is in between fully
local computations and the thin clients. The pipeline that uses
EfficientDet-LiteO runs on the Google Glass within the tight
latency bound from [16]. The pipeline that uses EfficientDet-
Litel is almost under the tight latency bound when run on
Google Glass. All three pipelines run within the tight latency
bound on Magic Leap. However, none of the pipelines run
within the latency bound on Vuzix Blade.

4) Power Consumption: We measure the amount of power
that each of these devices use while running the pipelines
fully locally, in a loop. As with our previous experiments,
we run each pipeline for five minutes. None of these devices
have user serviceable batteries, so we cannot measure power

TABLE IX
SINGLE-FRAME INFERENCE TIME OF SPLIT COMPUTING PIPELINES, IN
MILLISECONDS

\ [[ Google Glass | Magic Leap [ Vuzix Blade |

EfficientDet-Lite0 308 4+ 22 106 + 7 1120 4+ 47
and Fast MPN-COV

EfficientDet-Lite1 622 £+ 186 133 £ 6 1778 £+ 210
and Fast MPN-COV

EfficientDet-Lite2 779 + 38 154 +£ 4 2156 + 65
and Fast MPN-COV
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TABLE X
AVERAGE POWER CONSUMPTION, IN WATTS, FOR FULLY LOCAL
EXECUTION. THESE MEASUREMENTS ARE RECORDED WHILE THE
WEARABLE DEVICE IS RUNNING THE FULL PIPELINE. THE BASELINE
APPLICATION DOES NOT CARRY OUT ANY COMPUTATION.

\ [ Google Glass | Magic Leap [ Vuzix Blade |
Baseline 0.61 £ 0.13 15.1 + 0.46 0.84 £ 0.15
EfficientDet-LiteOQ 1.43 + 0.35 18.54 + 0.37 1.18 + 0.10
and Resnet 50
EfficientDet-Lite1 1.26 + 0.29 18.41 £0.22 | 1.24 £ 0.16
and Resnet 50
EfficientDet-Lite2 1.26 £+ 0.27 1855 £ 0.16 | 1.22 £ 0.13
and Resnet 50

TABLE XI

AVERAGE POWER CONSUMPTION FOR THIN CLIENTS, IN WATTS

Baseline
Thin client

Google Glass | Magic Lea
g g p
0.61 + 0.13
1.30 4+ 0.41

| Vuzix Blade |

15.1 £ 0.46 0.84 £+ 0.15
14.26 £ 0.33 | 1.17 £ 0.09

consumption based on the current and voltage that is being
supplied to the device by its charger. Instead, we run our code
with the devices unplugged, and query for current and voltage
readings from Android, using the BatteryManager class. We
multiply the voltage and current to compute power. Our code
contains a background thread which logs the current and
voltage every 100 ms.

Table X lists the power values for each pipeline, running on
all three devices. The baseline measurements were recorded
for an application that shows an empty Android activity, but
does not do anything aside from recording current and voltage
values in a background thread.

The Magic Leap 2 consumes over 15 watts running the base-
line application. The device’s depth sensors might consume
some of this power, or it could have been spatial mapping code
running in the background. None of the pipelines increase the
Magic Leap 2’s power usage by more than 25% of the power
consumed by the baseline. The most dramatic increase over
baseline power usage is for EfficientDet-LiteO and Resnet 50
on Google Glass, with an average power usage of 1.43 Watts.
However, this still implies a reasonable battery life. A 3.2 Wh
battery can supply 1.43 Watts for over two hours.

The power consumption experiments for thin clients mea-
sure the power consumed on the wearable device, but they
do not measure the power consumed on the cloudlet. These
results are presented in Table XI. Running the thin client on
the Vuzix Blade 2 consumes more power than running the
baseline application, but less power than running any of the
on-device pipelines. The Google Glass consumes slightly more
power running the thin client as it does when running the on-
device pipelines. However, all three of these clients consume
significantly more power than the baseline. The thin client on
the Magic Leap consumes slightly less power than the baseline
application. There isn’t a clear explanation for this, but the
difference is fairly small.

Split computing power consumption measurements are
listed in Table XII. As with our other power measurements,
these measurements were made on the wearable devices,
and do not include the power consumed by the cloudlet.
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TABLE XII
AVERAGE POWER CONSUMPTION OF WEARABLE DEVICES RUNNING DNN
PIPELINES, IN WATTS

‘ [[ Google Glass | Magic Leap [ Vuzix Blade

Baseline 0.61 £+ 0.13 15.1 £ 0.46 0.84 £ 0.15
EfficientDet-LiteO 1.37 £ 0.11 18.03 £ 0.32 | 1.27 £ 0.10
and Fast MPN-COV
EfficientDet-Lite 1 1.23 + 0.15 18.31 £ 0.21 | 1.22 £ 0.10
and Fast MPN-COV
EfficientDet-Lite2 1.21 £+ 0.16 18.76 +£ 0.25 | 1.24 £+ 0.12
and Fast MPN-COV

These power measurements are similar to our measurements
for fully local execution in Table X. The increase in power
consumption, above the baseline, is reasonable for all of three
devices running all of the pipelines we tested.

IV. GATING

Most of a user’s time running a WCA application is spent
completing assembly steps. Applications only need to check
if a step has been completed after a user thinks the step is
done. A step cannot possibly be complete while a user is in
the middle of working on it. This section considers modifying
applications, so that users have a way to indicate when they
have completed a step. This prevents the applications from
having to process any images in between when an instruction
is given, and when the user indicates that a step is completed.
We will henceforth refer to this strategy as gating. During the
periods that the applications do not have to process frames,
they do not use cloudlet resources or network bandwidth.
Gating is thus a form of offload shaping.

When a user indicates that they think a step has been com-
pleted, the application will begin processing camera images
to verify if this is true. If the application determines that
the step has in fact been completed, it will give the user the
next instruction and then stop processing frames until the user
indicates that this next step has also been completed. If the
application determines that a user was mistaken, and a step has
not actually been completed, it continues processing camera
images until the step is actually completed.

The simplest form of gating requires the user to press a
button on the wearable device to indicate that they think a step
has been completed. This is trivial to implement. However, it
requires the user to move one hand all the way from the object
they are assembling to the side of their wearable device. An
alternative form of gating we implement uses MediaPipe [17]
to determine when a user shows a thumbs up gesture to the
camera. The thumbs up gesture is the user’s way of indicating
that they think a step has been completed. Our last form of
gating uses automated speech recognition. The user speaks
the words “ready for detection,” when they believe that a
step is complete. This does not require the user to move their
hands away from the object that they are assembling. But it
is unlikely to work well in a noisy environment.

A. Experiments

A practical gating method will not significantly increase
the amount of time it takes for a user to complete a task
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TABLE XIII
AVERAGE POWER CONSUMPTION (IN WATTS) OF DEVICES USING
DIFFERENT GATING OPTIONS

TABLE XIV
AVERAGE TASK COMPLETION TIME (IN MILLISECONDS) FOR EACH
GATING STRATEGY

‘ [[ Google Glass | Magic Leap [ Vuzix Blade

[ Baseline | Button [ Thumbs Up | Speech |

Baseline 1.63 £ 0.23 22.08 £ 0.80 | 1.98 £ 0.25
Button 1.32 £ 0.16 21.87 £0.70 | 1.80 £ 0.16
Thumbs Up 1.54 + 0.29 22.13 £ 0.60 | 2.29 + 0.34
Speech 1.40 + 0.18 23.18 + 0.58 | 1.80 + 0.15

or the amount of power that a wearable device consumes. In
addition, a good gating method will reduce network bandwidth
substantially. We therefore measure the power consumption,
task completion time, and bandwidth usage.

We implement four versions of our Toyplane application.
The baseline version does not use gating. The button version
has the user press a button to suggest step completion. The
thumbs up version has the user make a thumbs up gesture.
The speech version has the user say “ready for detection.”

We implement speech gating using the PocketSphinx contin-
uous speech recognition engine [18]. As the Sphinx developers
note, their engine does not use state of the art methods
for speech recognition. However, Android does not natively
include a continuous speech recognition engine that third party
developers can access. The Azure Cognitive Services Speech
container has to be run on a server [19]. We note that there
may exist a better continuous speech recognition engine that
can be run entirely on an Android-based wearable device.

Three users assemble the toy plane using all four implemen-
tations of the Toyplane application. All implementations are
run using a Vuzix Blade 2 headset. The headset records traces
of the user completing the task with each of the applications.
We then play back these traces on all three headsets to measure
power consumption, task completion time, and bandwidth
usage. Our playback application processes frames at the rate
they were recorded at. For example, if another wearable device
can process a frame with MediaPipe faster than the Vuzix
Blade did when the trace was recorded, the playback app will
pause until it reaches the timestamp when the frame had been
processed in the original trace. This allows us to play back
traces in a reproducible way on the Vuzix Blade itself, as well
as other headsets that have faster hardware. Computations for
gating (such as detecting a thumbs up gesture or recognizing
speech) were run on the wearable device. Determining the task
step shown in an image was done on the cloudlet.

B. Results

Table XIII lists average power consumption. None of the
gating strategies result in significantly more power being
consumed. The button gating consumed less power than the
baseline on all devices. This was likely a result of the large
amount of data that was sent between the cloudlet and the
wearable device while the baseline application was running.
The button-based gating application does not require any
expensive computations to be run on the wearable device.

Table XIV lists average task completion time for each
gating strategy. The button gating adds almost no time to
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TABLE XV
AVERAGE BANDWIDTH SAVINGS OVER THE BASELINE FOR EACH GATING
STRATEGY
[ Button | Thumbs Up [ Speech |

[93.5% £ 12% [ 88.1% £+ 6% [ 93.4% + 1.2% |

the task. The thumbs up and speech gating do lead to a
noticeable increases in average completion time. Thumbs up
gating increased average completion time by over 40%.

Table XV lists average bandwidth across our three traces for
each gating strategy. All three gating strategies significantly
reduce the bandwidth usage.

V. CONCLUSION

In this paper, we have explored the concept of offload
shaping for WCA. Our results show that a two stage pipeline
consisting of an object detector and an image classifier is
effective in four WCA applications. A thin client strategy
offers the highest accuracy and lowest latency. However, split
computing offers significant bandwidth savings. Gating also
offers sizable bandwidth savings.

In terms of mobile hardware, our results show that the
Vuzix Blade 2 is too slow to run anything other than a thin
client. However the Google Glass Enterprise Edition 2 and
the Magic Leap 2 are capable of running some version of
each technique discussed in this paper. None of our techniques
increase power consumption by a significant percentage on any
of the wearable devices.

Looking to the future, mobile device hardware is likely to
improve. More compute-intensive DNNs for object detection
and image classification may also emerge. The accuracy of
DNNs that can be run on future mobile devices within the tight
latency bound may also improve. While it is hard to predict the
net effect of all these changes, it is clear that offload shaping
will continue to be valuable. Quantitative comparisons of fully
local, split, and thin client approaches should therefore inform
the optimal partitioning strategy at each point in time.
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