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Abstract—Edge computing has much lower elasticity than
cloud computing because cloudlets have much smaller physical
and electrical footprints than a data center. This hurts the
scalability of applications that involve low-latency edge offload.
We show how this problem can be addressed by leveraging the
growing sophistication and compute capability of recent wearable
devices. We investigate four Wearable Cognitive Assistance appli-
cations on three wearable devices, and show that the technique of
offload shaping can significantly reduce network utilization and
cloudlet load without compromising accuracy or performance.

Index Terms—Computer Vision, Machine Learning, Offload-
ing, Wearable Computing, Mobile Computing, Edge Computing,
IoT, Cloudlet, Augmented Reality, 5G, Wi-Fi

I. INTRODUCTION

Offloading compute-intensive operations at low latency

from underpowered wearable devices over a wireless network

to a nearby cloudlet was one of the original motivations for

edge computing [1]. Today, it continues to be an important

driver of edge computing, but faces the challenge of limited
elasticity. A cloudlet is designed for a much smaller physical
and electrical footprint than a cloud data center. Hence, modest

load spikes can overwhelm a cloudlet and its wireless network.

Since low end-to-end latency is non-negotiable for many

edge-native applications [2], shifting load to the cloud is not

feasible. Techniques that reduce the average utilization of

shared resources for edge offload are therefore valuable.

Such a technique is offload shaping, originally described
in 2015 by Hu et al [3]. That work presented empirical

evidence that many instances of offloading are wasted work

because of imperfect real-time sensing (e.g., blurry image

capture or near-duplicate frames). Offload shaping eliminates

the resource demand of this useless work via early discard in
the processing pipeline that starts at the wearable device. Hu

et al showed that offload shaping was possible even with the

limited capability of wearable devices. They also demonstrated

significant reduction in the utilization of shared resources.

In this paper, we extend the concept of offload shaping

by leveraging the growing sophistication and compute ca-

pability of recent wearable devices. We observe that on-

device hardware accelerators for tasks such as deep learning

inference [4], super-resolution [5] and scene analysis [6] have

emerged. At the same time, we observe that the complexity

and resource demand of the end-to-end processing pipelines

have also grown (e.g., because of larger deep neural networks

(DNNs)). Consequently, edge offload is still necessary in the

worst case. However, we show that the average-case burden

of edge offload can be reduced by offload shaping. We further

show that this savings can be achieved on diverse wearable

devices, without compromising the accuracy or the end-to-end

latency of typical processing pipelines.

We explore offload shaping in the context of wearable
cognitive assistance (WCA) applications for assembly tasks.
Originally described in 2014 [7], this genre of applications has

emerged as a “killer app” for edge computing because (a) they

transmit large volumes of video data from device to cloudlet;

(b) they have stringent end-to-end latency requirements; and

(c) they make substantial compute demands of the cloudlet,

often requiring a GPU. A WCA application runs on a wearable

device such as Google Glass® or Microsoft® Hololens®,

leaving the user’s hands free for task performance. It provides

visual and verbal guidance and error detection for a user

who is performing an unfamiliar task. We investigate four

WCA applications on three wearable devices: Google Glass®

Enterprise Edition 2, Vuzix Blade® 2, and Magic Leap 2.

The main contribution of this work is to show that offload

shaping can significantly reduce the network utilization and

cloudlet load of WCA applications on diverse wearable de-

vices, without compromising accuracy or performance. Our

results show that the savings achievable varies across devices,

but the concept is robust. Offload shaping is thus a valuable

technique for reconciling the conflicting demands of scalability

and end-to-end performance for WCA tasks.

The rest of the paper is organized as follows. Section II

describes the four WCA applications studied in this work,

and the computer vision pipelines associated with them. Sec-

tions III and IV describe the two forms of offload shaping

we examined, and they present the main experimental results

of this paper. Section V concludes the paper.

II. IMAGE PROCESSING IN WCA

Table I lists the four WCA applications studied in this paper.

Progress on an assembly task is determined via computer

vision using DNN models, that were fine-tuned on data for

each specific task. For each application, we collect training

images depicting each step of the assembly task. We label

each image to indicate the step of the task that is displayed,

and draw a bounding box around the section of the image that

contains the object being assembled. We also collect and label

separate sets of test data to evaluate the accuracy of the DNN

models.

DNNs with low accuracy will result in a poor user experi-

ence. When a frame is misclassified, an application either fails

to recognize that the user has successfully completed a step,
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TABLE I
THE FOUR WCA APPLICATIONS WE DEVELOPED.

Name Description
Stirling Assemble a heat engine from metal parts
Meccano Build a model bike from metal parts
Toyplane Build a model helicopter from 3D printed plastic parts
Sanitizer Assemble a sanitizer for a smartphone from metal and plastic

parts

TABLE II
TOP-1 CLASSIFICATION ACCURACY FOR STANDALONE DNN MODELS.
THIS IS THE PERCENTAGE OF IMAGES THAT THE MODEL CLASSIFIED
CORRECTLY. THE HIGHEST ACCURACY FOR EACH APPLICATION IS IN

BOLD.

Meccano Stirling Sanitizer Toyplane

Resnet 50 69.8% 26.3% 68.3% 56.4%
EfficientDet-Lite0 75.2% 53.7% 79.3% 51.1%
EfficientDet-Lite1 71.1% 53.8% 84.1% 63.5%
EfficientDet-Lite2 75.2% 57.8% 84.9% 59.8%
Fast MPN-COV 73.5% 52.0% 84.0% 78.0%
Faster R-CNN 72.3% 50.7% 91.0% 67.5%

or it detects that a step has been completed when it hasn’t and

gives the user a new instruction prematurely.

A. Standalone DNN

We train and test standalone DNNs on the data that we

collected for each application. These include both image

classifiers and object detectors. Image classifiers are given an

image, and assign a label indicating the type of object that is

shown in the whole image. When training our image classi-

fiers, we ignore bounding box labels and just train the models

using class labels. The image classifiers we tried were Resnet

50 [8] and Fast MPN-COV [9]. Object detectors can find

multiple objects present in an image, as opposed to just one.

They return bounding box coordinates and class labels for each

object present in an image. We evaluate the Faster R-CNN [10]

and EfficientDet [11] object detectors. Our evaluation looks at

three different versions of EfficientDet. EfficientDet-Lite0 has

the smallest number of learned parameters, and EfficientDet-

Lite2 has the largest number of learned parameters.

For each application and object detector or image classifier

combination, we train a DNN on the training data and test it

on the test data. Each training and test image contain exactly

one instance of the object being assembled. We compute Top-

1 accuracy for the image classifiers by comparing the highest

confidence label from the model with the ground truth label

we assigned, for each image. Top-1 accuracy is computed for

the object detector by comparing the class label of the object

that the model detected with the highest confidence score, and

the ground truth class label. The bounding box coordinates

returned by the object detector are ignored for this evaluation,

because the applications do not need to know the location of

the object being assembled. They just need to know the step

of the assembly task that is shown in an image. As the results

in Table II show, the low accuracy of this approach suggests

that a standalone DNN is insufficient.

TABLE III
TOP-1 CLASSIFICATION ACCURACY FOR PIPELINES. THE HIGHEST

ACCURACY FOR EACH APPLICATION IS IN BOLD.

Meccano Stirling Sanitizer Toyplane

EfficientDet-Lite0
and Resnet 50

75.0% 85.1% 87.9% 69.8%

EfficientDet-Lite0
and Fast MPN-COV

82.0% 78.4% 79.3% 77.2%

EfficientDet-Lite1
and Resnet 50

74.6% 70.3% 87.7% 70.9%

EfficientDet-Lite1
and Fast MPN-COV

81.7% 66.6% 79.3% 77.7%

EfficientDet-Lite2
and Resnet 50

75.0% 91.0% 89.1% 70.1%

EfficientDet-Lite2
and Fast MPN-COV

81.5% 86.0% 80.6% 76.6%

Faster R-CNN and
Fast MPN-COV

84.5% 80.9% 92.9% 81.9%

B. Pipeline

In an attempt to increase accuracy, we use a two stage

process inspired by [12]. An object detector first finds the

region of an image that contains the section of the object that

the user is currently assembling. The application then crops

the image around this region, and then determines the step

of the task that is shown, using an image classifier. As with

the standalone DNN implementations of our applications, the

image classifier has one class for each step of the task.

We train Faster R-CNN [10] and EfficientDet [11] object

detectors with modified versions of our training data for each

application. Images were labeled with bounding boxes, but all

objects were assigned a single class label.

Our Resnet 50 [8] and Fast MPN-COV [9] image classifiers

are trained on images that were cropped to only include the

regions inside of our bounding box labels. This allows these

models to classify cropped images, rather than the original full

images that also contained part of the empty table around the

object that was being assembled.

We test the pipelines of models trained for each application

on the test set for that application. These results are listed in

Table III. The pipeline consisting of Faster R-CNN and Fast

MPN-COV achieves the highest accuracy for all applications

except Stirling. The best pipeline outperforms the best stan-

dalone DNN for all four applications.

III. MAPPING PROCESSING TO COMPUTING TIERS

All of the models and pipelines described in Section II can

be run on a cloudlet, with the applications implemented as thin

clients. However, cloudlets are a limited resource [13]. Heavy

cloudlet load limits the number of other users that can share the

cloudlet. We thus examined how wearable devices can reduce

the amount of processing on cloudlets. Network bandwidth

is also a shared limited resource. Our experiments examine

how running some computations locally, instead of offloading

them to a cloudlet, can reduce the amount of bandwidth used

by WCA applications. Figure 1 shows the three partitioning

strategies we explore.
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Fig. 1. Fully local, split computing, and thin client implementations of WCA

A. Fully Local Computation

Carrying out all computations locally avoids consuming any

cloudlet resources or network bandwidth. Unfortunately, fully

local computation limits an application’s image processing

capabilities to the what the wearable devices are capable of

running. In addition, the battery in the devices must power

all of these computations. We run experiments to find the

accuracy, inference time, and power consumption for models

running directly on wearable devices. This indicates whether

or not it is practical to run all computations for WCA appli-

cations locally on the wearable device.

EfficientDet and Resnet 50 can be run on Android devices

using PyTorch Mobile and TensorFlow Lite. However, Fast

MPN-COV and Faster R-CNN cannot currently run on mobile

devices [14], [15]. All of our pipelines that run locally on the

wearable devices were thus limited to using EfficientDet and

Resnet 50.

B. Thin Client

Offloading all computations to a cloudlet allows us to

process images using Faster R-CNN and Fast MPN-COV. This

enables us to use the most accurate pipelines listed in Table III.

We measured the inference time and power consumption of a

thin client that offloads all computations to a cloudlet. We

implemented a flow control mechanism in the thin client that

only allows the client to send one image to the cloudlet at a

time. After the client sends an image to the cloudlet, it waits

for the cloudlet to transmit the result from processing that

image before sending the next image. This prevents a buffer

of stale frames from building up on the cloudlet, while the

cloudlet is busy processing a frame.

All of the systems were Internet-connected: the wearable

devices via Wi-Fi, and the cloudlet via 1 Gbps Ethernet. The

ping time between the wearable device and the cloudlet was

under 5 ms. The cloudlet had two Intel® Xeon® E5-2699v3

processors and an Nvidia® GeForce® GTX 1080 Ti GPU.

The thin client experiments represent the best case scenario:

a user with a high bandwidth and low latency connection to

a server with a GPU. The wearable device can offload all

expensive computations to this server. This saves power on

the wearable device, and supports compute-intensive DNNs.

Our thin client experiments achieve the highest accuracy, and

lowest possible execution time and device power consumption.

C. Split Computing

Split computing is a form of offload shaping to reduce

network bandwidth and/or cloudlet resource usage. Prepro-

cessing on the wearable device can reduce the amount of data

that must be sent to the cloudlet, and/or replace some of the

computations that would have been run on the cloudlet.

As we showed in Section II, a standalone object detector

or image classifier is not sufficient for our applications. In

addition, implementing the pipeline described in Section II-B

using an object detector that is split across a client and a

cloudlet is impractical. A split object detector has a head DNN

which outputs an embedding, that gets sent to the cloudlet. The

cloudlet feeds this embedding to the split object detector’s tail,

and the tail’s output just contains the bounding box coordinates

and class labels for the detected objects. There is no way

for the cloudlet to obtain a cropped image from the original

embedding that was sent to the cloudlet. Our application would

either have to send the entire image to the cloudlet along

with the embedding, or it would have to send the bounding

box coordinates back to the wearable device, and have the

wearable device send the cropped image in some form to run

the classifier on the cloudlet. The former approach eliminates

all of the bandwidth savings that split computing offers; while

the latter approach requires a second round trip to the wearable

device, which increases latency.

One possibility is running an object detector on the wearable

device, cropping the image there, and then feeding the cropped

image to a split image classifier. However, this requires run-

ning both the object detector and the head of the split image

classifier on the wearable device. We instead opt to run just the

object detector on the wearable device, transmit the cropped

image to the cloudlet, and run the full image classifier there.

This allows us to use the Fast MPN-COV image classifier,

which cannot be run on a wearable device. In addition, it

saves the wearable device from having to run the head of a split

image classifier. This relatively simple implementation of split

computing does not require ML expertise in DNN splitting.

Can such a simple implementation still offer a significant

bandwidth savings without unreasonably harming battery life

or classification accuracy?

D. Results

Classification accuracy, inference time, and power consump-

tion all impact a user’s experience with a WCA application. A

model with low accuracy might result in the application failing

to recognize a completed step, or prematurely giving the

user a new instruction. High inference time results in a large

delay between a user completing a step, and the application

providing the next instruction. High power consumption will

drain the wearable device’s battery quickly. The experiments in

this section measure these quantities for fully local execution,

thin clients, and split computing.
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TABLE IV
CLASSIFICATION ACCURACY FOR THE BEST PERFORMING PIPELINE IN

EACH SETTING

Meccano Stirling Sanitizer Toyplane

Fully Local 75.0% 91.0% 89.1% 70.9%
Split Computing 82.0% 91.0% 89.1% 77.7%
Thin client 84.5% 91.0% 92.9% 81.9%

TABLE V
THE BANDWIDTH SAVED BY TRANSMITTING CROPPED IMAGES. IMAGES

WERE CROPPED AROUND THE BOUNDING BOXES RETURNED BY

EFFICIENTDET-LITE0.

Stirling Meccano Toyplane Sanitizer

79.2% 52.3% 86.8% 94.2%

1) Classification Accuracy: Table IV lists the highest ac-
curacy possible for each implementation type, based on the

data from Sections II and III-D3. The best performance for

three out of our four applications requires offloading all

computations to a cloudlet.

2) Bandwidth Savings: As Table V shows, split computing
offers significant bandwidth savings. This is expressed as:

(Bytesfull images − Bytescropped images)/Bytesfull images
The bandwidth savings achieved is content-dependant. The

distance between the camera and the object being assembled

will change how large a subassembly appears in the image,

and this will directly impact the number of bytes required

to transmit the cropped image. The bandwidth savings of

techniques such as image compression or DNN-based split

computing vary less based on the specific content in an image.

Transmitting cropped images requires less than 50% of the

bandwidth that the uncropped images require, for all of our

datasets. The savings is over 90% for the Sanitizer dataset. In

many cases, this significant bandwidth savings will be worth

the reduction in accuracy that comes along with using split

computing instead of offloading all computations.

3) Inference Time: We measured image processing times
for pipelines running directly on the wearable devices. We did

this by storing our test set on the devices, and running code

that looped through each image. Inside the loop, our code ran

the pipeline of models that was being timed. The code logged

the elapsed time every 20 frames, based on Android’s uptime

counter. The elapsed times were divided by 20, to get the per-

frame inference time. Each pipeline was run for five minutes.

Table VI shows our results.

Table VII lists the largest pipeline that meets the latency

bounds from [16], on each device. The accuracies of each

TABLE VI
INFERENCE TIME FOR ONE FRAME, IN MILLISECONDS, FOR FULLY LOCAL
COMPUTATION. FOR EACH CELL, THE AVERAGE COMES BEFORE THE ±

SIGN AND THE STANDARD DEVIATION COMES AFTER.

Google Glass Magic Leap Vuzix Blade

EfficientDet-Lite0
and Resnet 50

480 ± 14 161 ± 3 2031 ± 27

EfficientDet-Lite1
and Resnet 50

661 ± 46 183 ± 7 2423 ± 155

EfficientDet-Lite2
and Resnet 50

958 ± 9 222 ± 3 3072 ± 73

TABLE VII
THE LARGEST PIPELINE THAT MEETS TIGHT AND LOOSE LATENCY

BOUNDS. “LARGEST” REFERS TO THE NUMBER OF PARAMETERS USED
FOR THE PIPELINE’S VERSION OF EFFICIENTDET.

Tight Bound Loose Bound

Google Glass® EfficientDet-Lite0
and Resnet 50

EfficientDet-Lite2
and Resnet 50

Magic Leap EfficientDet-Lite2
and Resnet 50

EfficientDet-Lite2
and Resnet 50

Vuzix Blade® None EfficientDet-Lite1
and Resnet 50

TABLE VIII
SINGLE-FRAME INFERENCE TIME FOR THE THIN CLIENT, IN

MILLISECONDS

Google Glass Magic Leap Vuzix Blade

166 ± 8 150 ± 8 203 ± 9

pipeline, for all applications are listed in Table III. There is

a large gap between the accuracy of the pipeline that can

meet the latency bounds and the accuracy of the most accurate

pipeline, for most device and application combinations. This

indicates that fully local computation is not an acceptable

strategy in most of our cases.

Inference time measurements for thin clients are listed in

Table VIII. These measurements include the time to transmit

images to the cloudlet, process them there, and then transmit

results back to the wearable device. As with our other time

measurements, the applications were run for five minutes, and

elapsed time was recorded every 20 frames. These values were

well below the tight latency bounds on all three devices. The

thin client offers the highest possible accuracy and the lowest

inference time. However, it consumes the largest amount of

bandwidth and cloudlet resources.

Table IX lists the per-frame inference times of our split

computing pipelines, across all three devices. As with accu-

racy, the inference time for split computing is in between fully

local computations and the thin clients. The pipeline that uses

EfficientDet-Lite0 runs on the Google Glass within the tight

latency bound from [16]. The pipeline that uses EfficientDet-

Lite1 is almost under the tight latency bound when run on

Google Glass. All three pipelines run within the tight latency

bound on Magic Leap. However, none of the pipelines run

within the latency bound on Vuzix Blade.

4) Power Consumption: We measure the amount of power
that each of these devices use while running the pipelines

fully locally, in a loop. As with our previous experiments,

we run each pipeline for five minutes. None of these devices

have user serviceable batteries, so we cannot measure power

TABLE IX
SINGLE-FRAME INFERENCE TIME OF SPLIT COMPUTING PIPELINES, IN

MILLISECONDS

Google Glass Magic Leap Vuzix Blade

EfficientDet-Lite0
and Fast MPN-COV

308 ± 22 106 ± 7 1120 ± 47

EfficientDet-Lite1
and Fast MPN-COV

622 ± 186 133 ± 6 1778 ± 210

EfficientDet-Lite2
and Fast MPN-COV

779 ± 38 154 ± 4 2156 ± 65
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TABLE X
AVERAGE POWER CONSUMPTION, IN WATTS, FOR FULLY LOCAL
EXECUTION. THESE MEASUREMENTS ARE RECORDED WHILE THE
WEARABLE DEVICE IS RUNNING THE FULL PIPELINE. THE BASELINE

APPLICATION DOES NOT CARRY OUT ANY COMPUTATION.

Google Glass Magic Leap Vuzix Blade

Baseline 0.61 ± 0.13 15.1 ± 0.46 0.84 ± 0.15
EfficientDet-Lite0
and Resnet 50

1.43 ± 0.35 18.54 ± 0.37 1.18 ± 0.10

EfficientDet-Lite1
and Resnet 50

1.26 ± 0.29 18.41 ± 0.22 1.24 ± 0.16

EfficientDet-Lite2
and Resnet 50

1.26 ± 0.27 18.55 ± 0.16 1.22 ± 0.13

TABLE XI
AVERAGE POWER CONSUMPTION FOR THIN CLIENTS, IN WATTS

Google Glass Magic Leap Vuzix Blade

Baseline 0.61 ± 0.13 15.1 ± 0.46 0.84 ± 0.15
Thin client 1.30 ± 0.41 14.26 ± 0.33 1.17 ± 0.09

consumption based on the current and voltage that is being

supplied to the device by its charger. Instead, we run our code

with the devices unplugged, and query for current and voltage

readings from Android, using the BatteryManager class. We

multiply the voltage and current to compute power. Our code

contains a background thread which logs the current and

voltage every 100 ms.

Table X lists the power values for each pipeline, running on

all three devices. The baseline measurements were recorded
for an application that shows an empty Android activity, but

does not do anything aside from recording current and voltage

values in a background thread.

The Magic Leap 2 consumes over 15 watts running the base-

line application. The device’s depth sensors might consume

some of this power, or it could have been spatial mapping code

running in the background. None of the pipelines increase the

Magic Leap 2’s power usage by more than 25% of the power

consumed by the baseline. The most dramatic increase over

baseline power usage is for EfficientDet-Lite0 and Resnet 50

on Google Glass, with an average power usage of 1.43 Watts.

However, this still implies a reasonable battery life. A 3.2 Wh

battery can supply 1.43 Watts for over two hours.

The power consumption experiments for thin clients mea-

sure the power consumed on the wearable device, but they

do not measure the power consumed on the cloudlet. These

results are presented in Table XI. Running the thin client on

the Vuzix Blade 2 consumes more power than running the

baseline application, but less power than running any of the

on-device pipelines. The Google Glass consumes slightly more

power running the thin client as it does when running the on-

device pipelines. However, all three of these clients consume

significantly more power than the baseline. The thin client on

the Magic Leap consumes slightly less power than the baseline

application. There isn’t a clear explanation for this, but the

difference is fairly small.

Split computing power consumption measurements are

listed in Table XII. As with our other power measurements,

these measurements were made on the wearable devices,

and do not include the power consumed by the cloudlet.

TABLE XII
AVERAGE POWER CONSUMPTION OF WEARABLE DEVICES RUNNING DNN

PIPELINES, IN WATTS

Google Glass Magic Leap Vuzix Blade

Baseline 0.61 ± 0.13 15.1 ± 0.46 0.84 ± 0.15
EfficientDet-Lite0
and Fast MPN-COV

1.37 ± 0.11 18.03 ± 0.32 1.27 ± 0.10

EfficientDet-Lite1
and Fast MPN-COV

1.23 ± 0.15 18.31 ± 0.21 1.22 ± 0.10

EfficientDet-Lite2
and Fast MPN-COV

1.21 ± 0.16 18.76 ± 0.25 1.24 ± 0.12

These power measurements are similar to our measurements

for fully local execution in Table X. The increase in power

consumption, above the baseline, is reasonable for all of three

devices running all of the pipelines we tested.

IV. GATING

Most of a user’s time running a WCA application is spent

completing assembly steps. Applications only need to check

if a step has been completed after a user thinks the step is

done. A step cannot possibly be complete while a user is in

the middle of working on it. This section considers modifying

applications, so that users have a way to indicate when they

have completed a step. This prevents the applications from

having to process any images in between when an instruction

is given, and when the user indicates that a step is completed.

We will henceforth refer to this strategy as gating. During the
periods that the applications do not have to process frames,

they do not use cloudlet resources or network bandwidth.

Gating is thus a form of offload shaping.

When a user indicates that they think a step has been com-

pleted, the application will begin processing camera images

to verify if this is true. If the application determines that

the step has in fact been completed, it will give the user the

next instruction and then stop processing frames until the user

indicates that this next step has also been completed. If the

application determines that a user was mistaken, and a step has

not actually been completed, it continues processing camera

images until the step is actually completed.

The simplest form of gating requires the user to press a

button on the wearable device to indicate that they think a step

has been completed. This is trivial to implement. However, it

requires the user to move one hand all the way from the object

they are assembling to the side of their wearable device. An

alternative form of gating we implement uses MediaPipe [17]

to determine when a user shows a thumbs up gesture to the

camera. The thumbs up gesture is the user’s way of indicating

that they think a step has been completed. Our last form of

gating uses automated speech recognition. The user speaks

the words “ready for detection,” when they believe that a

step is complete. This does not require the user to move their

hands away from the object that they are assembling. But it

is unlikely to work well in a noisy environment.

A. Experiments

A practical gating method will not significantly increase

the amount of time it takes for a user to complete a task
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TABLE XIII
AVERAGE POWER CONSUMPTION (IN WATTS) OF DEVICES USING

DIFFERENT GATING OPTIONS

Google Glass Magic Leap Vuzix Blade

Baseline 1.63 ± 0.23 22.08 ± 0.80 1.98 ± 0.25
Button 1.32 ± 0.16 21.87 ± 0.70 1.80 ± 0.16
Thumbs Up 1.54 ± 0.29 22.13 ± 0.60 2.29 ± 0.34
Speech 1.40 ± 0.18 23.18 ± 0.58 1.80 ± 0.15

or the amount of power that a wearable device consumes. In

addition, a good gating method will reduce network bandwidth

substantially. We therefore measure the power consumption,

task completion time, and bandwidth usage.

We implement four versions of our Toyplane application.

The baseline version does not use gating. The button version
has the user press a button to suggest step completion. The

thumbs up version has the user make a thumbs up gesture.
The speech version has the user say “ready for detection.”
We implement speech gating using the PocketSphinx contin-

uous speech recognition engine [18]. As the Sphinx developers

note, their engine does not use state of the art methods

for speech recognition. However, Android does not natively

include a continuous speech recognition engine that third party

developers can access. The Azure Cognitive Services Speech

container has to be run on a server [19]. We note that there

may exist a better continuous speech recognition engine that

can be run entirely on an Android-based wearable device.

Three users assemble the toy plane using all four implemen-

tations of the Toyplane application. All implementations are

run using a Vuzix Blade 2 headset. The headset records traces

of the user completing the task with each of the applications.

We then play back these traces on all three headsets to measure

power consumption, task completion time, and bandwidth

usage. Our playback application processes frames at the rate

they were recorded at. For example, if another wearable device

can process a frame with MediaPipe faster than the Vuzix

Blade did when the trace was recorded, the playback app will

pause until it reaches the timestamp when the frame had been

processed in the original trace. This allows us to play back

traces in a reproducible way on the Vuzix Blade itself, as well

as other headsets that have faster hardware. Computations for

gating (such as detecting a thumbs up gesture or recognizing

speech) were run on the wearable device. Determining the task

step shown in an image was done on the cloudlet.

B. Results

Table XIII lists average power consumption. None of the

gating strategies result in significantly more power being

consumed. The button gating consumed less power than the

baseline on all devices. This was likely a result of the large

amount of data that was sent between the cloudlet and the

wearable device while the baseline application was running.

The button-based gating application does not require any

expensive computations to be run on the wearable device.

Table XIV lists average task completion time for each

gating strategy. The button gating adds almost no time to

TABLE XIV
AVERAGE TASK COMPLETION TIME (IN MILLISECONDS) FOR EACH

GATING STRATEGY

Baseline Button Thumbs Up Speech

55.70 ± 1.88 58.32 ± 10.32 78.37 ± 11.61 67.86 ± 8.92

TABLE XV
AVERAGE BANDWIDTH SAVINGS OVER THE BASELINE FOR EACH GATING

STRATEGY

Button Thumbs Up Speech

93.5% ± 1.2% 88.1% ± 6% 93.4% ± 1.2%

the task. The thumbs up and speech gating do lead to a

noticeable increases in average completion time. Thumbs up

gating increased average completion time by over 40%.

Table XV lists average bandwidth across our three traces for

each gating strategy. All three gating strategies significantly

reduce the bandwidth usage.

V. CONCLUSION

In this paper, we have explored the concept of offload

shaping for WCA. Our results show that a two stage pipeline

consisting of an object detector and an image classifier is

effective in four WCA applications. A thin client strategy

offers the highest accuracy and lowest latency. However, split

computing offers significant bandwidth savings. Gating also

offers sizable bandwidth savings.

In terms of mobile hardware, our results show that the

Vuzix Blade 2 is too slow to run anything other than a thin

client. However the Google Glass Enterprise Edition 2 and

the Magic Leap 2 are capable of running some version of

each technique discussed in this paper. None of our techniques

increase power consumption by a significant percentage on any

of the wearable devices.

Looking to the future, mobile device hardware is likely to

improve. More compute-intensive DNNs for object detection

and image classification may also emerge. The accuracy of

DNNs that can be run on future mobile devices within the tight

latency bound may also improve. While it is hard to predict the

net effect of all these changes, it is clear that offload shaping

will continue to be valuable. Quantitative comparisons of fully

local, split, and thin client approaches should therefore inform

the optimal partitioning strategy at each point in time.
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