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ABSTRACT

Mobile crowdsensing is becoming a vital technique for envi-
ronment monitoring, infrastructure management, and social
computing. However, deploying mobile crowdsensing appli-
cations in large-scale environments is not a trivial task. It
creates a tremendous burden on application developers as
well as mobile users. In this paper we try to reveal the
barriers hampering the scale-up of mobile crowdsensing ap-
plications, and to offer our initial thoughts on the potential
solutions to lowering the barriers.

1. INTRODUCTION

In recent years, there has been phenomenal growth in the
richness and diversity of sensors on smartphones. It is now
common to find two cameras, a GPS module, an accelerom-
eter, a digital compass, a gyroscope and a light sensor in a
single smartphone. And there is more to come! The rich
information about the smartphone user’s activity and envi-
ronment provided by these sensors inspired the first wave of
sensing applications that personalized user experience based
on the sensed context. Now, a second wave of mobile sensing
applications is gaining momentum. The focus has shifted
from individual sensing towards crowdsensing, defined as
“individuals with sensing and computing devices collectively
sharing information to measure and map phenoma of com-
mon interest” [8]. Initially, crowdsensed inputs were ana-
lyzed offline, for example in the analysis of transportation
activities in urban spaces [31], for the measurement of inter-
person similarity [12], or for mental and physical health as-
sessment of elder people [20]. In more recent crowdsensing
applications, the collected inputs are processed in real time.
Examples include traffic monitoring [32, 33], public safety
management [24], and collaborative searching [28].

A hypothetical use case serves to illustrate the potential
benefits of crowdsensing using information-rich multimedia
sensors and some potential pitfalls [22]. Imagine that a small
child gets lost while watching a parade in the middle of a
large city. The distraught parents, upon noticing their child
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is missing, immediately use their smartphone to initiate a
search, providing sample images with their child’s face. A
crowdsensing search application tries to match these with
the videos and images being captured by the many smart-
phone cameras in the crowd. Any potential matches are
forwarded to the parents’ phone, along with GPS location
information. With thousands of electronic eyes applied to
this problem, the child is quickly found, before she herself
is even aware of being lost. For this use case, the large
number of smartphone cameras in use makes it likely the
child appears in one or more captured images; however, the
crowdsensing search application itself can succeed only if a
sufficiently large number of smartphone users participate.

More generally, there is a growing realization that scale is
the key to the success of crowdsensing applications. Since in-
dividual users may go offline and individual sensor readings
may be inaccurate or corrupted, the reliability and trust-
worthiness of crowdsensing applications scales more than
proportionally with the number of users. Access to a vast
user base is thus crucial. However, our survey of the liter-
ature shows that today’s mobile crowdsensing applications
using physical sensors like GPS have rarely been scale up to
more than 1,000 participants.

Table 1 shows a representative sample of crowdsensing stud-
ies. Much to our surprise, the number of participants is of-
ten omitted in the papers reporting these studies. When
concrete numbers are provided, the crowd sizes are usually
small. It is only with data sources that are easy to collect
(e.g. from social networking applications such as Twitter)
that larger crowds have been studied. The one notable ex-
ception is the work of Balan et al [2], discussed in Section 2.

What limits the scaling of crowdsensing applications? In
this paper, we explore this issue and and propose an archi-
tectural solution. We then explore the merits of this archi-
tecture, and discuss potential implementation challenges.

2. OBSTACLES TO CROWD SCALING

Crowdsensing applications, including the ones that exist
today and the emerging class of applications making use
of richer multimedia sensors, face three major barriers to
achieving the large crowd sizes critical to their success.

The first obstacle is the heterogeneity of sensing hardware
and mobile platforms. In today’s mobile device market,
there are at least three popular software platforms, includ-



Reference Mobile Platform | Application Category | Crowd Size Input
Zhou et al. [32] (Mobisys 2012) Android Transportation unknown | cell tower ID, audio signal
accelerometer
Tiramisu [33] (CHI 2011) i0S Transportation 28 GPS
SignalGuru [10] (MobiSys 2011) iOS Transportation 13 video frames
Balan et al. [2](Mobisys 2011) Car GPS Transportation 15000 GPS
Mathur et al. [14] (Mobisys 2010) Car GPS Transportation 500 GPS
Niu et al. [17] (Com.geo 2011) Blackberry Transportation unknown GPS
Bao et al. [3] (Mobisys 2010) Symbian, iPod Social Application unknown video
Wirz et al. [27] (SCI 2011) Android Social Application unknown GPS
CrowdSearch [28] (Mobisys 2010) i0S Search unknown image
GeoLife [31] (WWW 2009) GPS phones User Behavior Study 107 GPS
SoundSense [13] (Mobisys 2009) i0S User Behavior Study | unknown audio stream
#EpicPlay [25] (CHI 2012) Twitter Social Application unknown tweets
Wakamiya et al. [26] (ICUIMC 2012) Twitter User Behavior Study 39898 tweets
Fujisaka et al. [7](ICUIMC 2012) Twitter User Behavior Study 8139 tweets
CrowdSearcher [4] (WWW 2012) Facebook Search 137 text

Table 1: Representative Sample of Crowd-sensing Applications

ing Android, iOS and Windows 8. Applications written for
any of these can not be run on the others. Even different
versions of a particular platform are sometimes incompati-
ble, due to changes in hardware or evolution of the software
APIs. Furthermore, the Apps model in vogue today, along
with the relatively low processing power of mobile devices,
has encouraged smaller, stand-alone applications, and dis-
couraged the development of external libraries, middleware,
and virtualization techniques to bridge the differences be-
tween platforms. There is no sign that a single platform will
dominate this fragmented market in near future. For true
ubiquity, application developers need to write, test, support,
and maintain versions of their applications for all of these
platforms. In a sense, the complexity of the crowdsensing
application space grows with cross product of the number
of platforms and the number of applications.

This issue of heterogeneity is underscored by the experience
of Balan et al. [2], who conducted one of the largest crowd-
sensing studies to date. It took them six months to deploy
one version of their GPS-based crowdsensing application on
15,000 taxis in Singapore, mainly due to the heterogeneity
of the on-car GPS devices provided by different vendors.
Web-based applications implemented in HTML5 are some-
times put forward as a “write once, run everywhere” alter-
native. Unfortunately, support is generally limited to the
lowest common denominator, and direct access of the un-
derlying sensing hardware is disallowed.

The second obstacle is the burden today’s crowdsensing ap-
plications place on users. Today, each user must install a
separate proprietary application for every crowdsensed ex-
periment in which s/he wishes to participate. As a result,
the deployment of a single crowdsensing application is lim-
ited by the rate at which users adopt and install it on their
devices. It can take weeks or months for a newly introduced
application to reach the critcial mass of participants needed
for it to be useful. Rapid, large-scale deployment, as in the
lost child usage scenario above, is impossible with an install-
based deployment model. Users also have to be tolerant
of the processing, memory, and battery life these applica-
tions consume. Because today’s mobile operating systems
are designed to shield applications from each other, each ap-

plication is meant to be self-contained and does not share
information with others. In addition, some sensors, such as
cameras, need to be exclusively locked before use. Partici-
pating in more than one crowdsensing application at a time
is therefore not easy, even if a user is positively inclined.

The third obstacle, which primarily affects future appli-
cations, is the increasing network bandwidth demands of
emerging crowdsensing applications. Table 1 shows that
the GPS data has been the most widely used sensing in-
formation in the existing crowdsensing applications. How-
ever, looking ahead, we envision growing use of data-rich,
multimedia sensing information like video [1] in emerging
applications such as augmented reality, or the video-based
lost child locator discussed above. These applications not
only demand far more computing power, but also far more
network bandwidths to send data to the cloud infrastruc-
ture. Based on data rate analysis of 80 videos on YouTube
captured from a first-person viewpoint, each participant in
a video-based crowdsensing application will upload between
0.6 Mbps (360p resolution) and 5.6 Mbps (1080p resolu-
tion). With many users, such an application can easily
overwhelm link capacity in regional networks and into dat-
acenters. For example, Verizon recently introduced state-
of-the-art 100 Gbps links in their metro networks [18], yet
these are only capable of supporting 1080p streams from
just 18000 users. A broadly-deployed application with 1
million users will require 1-2 Thps, 200x the total upload
bandwidth of all YouTube contributors [30] today. An ap-
plication model where each device sends data to centralized
servers (as is typical today) cannot scale to support data-
rich sensors. Ensuring the scalability of crowdsensing with
data-rich sensors requires rethinking application and cloud
architectures to acquire, process, and aggregate such data
efficiently.

Ultimately, all three of these obstacles are ramifications of
the deployment model in vogue today, where participation
in each crowdsensing activity requires a separate application
that must be installed and run on user devices, and directly
communicates to central servers. To overcome these obsta-
cles, we must rethink the structure and deployment model
used in crowdsensing applications.
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Figure 1: System Architecture.

3. PROPOSED SOLUTION

We propose a crowdsensing deployment model built around
3 core design principles:

e separation of data collection and sharing from application-

specific logic.

e removal of app installation on smartphones from the
critical path of application deployment.

e decentralization of processing, and data aggregation
near the source of data.

Each of these design principles addresses one of the obsta-
cles discussed above. By construction, our proposed solution
overcomes the key barriers to scaling up crowdsensing ap-
plications.

3.1 System Architecture

The 3-tier system architecture of our deployment model is il-
lustrated in Fig. 1. The first layer is composed of the mobile
devices, whose roles are essentially reduced to that of (multi-
input) sensors forwarding captured data to prozy VMs in
the second layer. The second layer comprises of distributed
cloud infrastructure deployed close to the users, typically
in the access or aggregation network of network providers.
The concept of distributed cloud infrastructure here is akin
to the concept of cloudlet presented in [23]. In practice, this
can be a private cloud owned by a business or community, or
a small data center such as Myoonet’s Micro data center [15]
that is deployed by a cloud operator. For the sake of sim-
plicity, we will refer to this distributed cloud infrastructure
as cloudlets in the remainder of this paper.

Each proxy VM is associated with a single smartphone, and
is kept physically close to the user through VM migration
to other cloudlets or public clouds. This ensures network
resources to transfer data from the mobile device is mini-
mized. The proxy VM handles all the requests for sensor
data on behalf of the mobile device. It is essentially an ex-
tention of the mobile device into the cloud, and can perform
custom data preprocessing, e.g., to enforce privacy settings
or handle quirks of the mobile platform, and enforce user
preferences on data sharing and crowd participation. From

here, data is forwarded to one or more application VMs also
running on the cloudlet infrastructure.

Application VMs perform data processing steps specific to
each crowdsensing application. Each application VM hosts a
single crowdsensing application, which is not customized to
any particular mobile platform. Generally, for each crowd-
sensing activity, one application VM is assigned to each par-
ticipant, making it easy to migrate a user’s proxy VM to-
gether with the associated application VMs, preserving any
hard state they may contain. If an application does not need
to maintain hard state for each user, then a single applica-
tion VM can be shared by all users on a particular cloudlet.

The application VMs for each sensing service are deployed
by a coordinating entity on the highest layer in our archi-
tecture, typically by the application server running on the
centralized cloud infrastructure. In practice, when many
application VMs are run on each cloudlet, the application
server can initiate a master application VM (MAVM) on
each cloudlet and delegate managment and data aggrega-
tion tasks. The MAVM will coordinate, clone, and config-
ure the application VMs on the cloudlet, and aggregate data
within the cloudlet before forwarding results. Depending on
the application, the MAVMs on multiple cloudlets may form
a peer-to-peer overlay network / tree to scalably aggregate
data to the central application server.

Our deployment model is predicated on two assumptions.
First, this architecture depends on distributed cloud infras-
tructure near the user. We are not the first to propose
this, and a consensus has grown in the research community
that offloading to nearby computing infrastructure (cyber
foraging) is needed for compute-intensive mobile applica-
tions. The vision of executing customized VMs on nearby
infrastructure has been articulated many times, e.g. in [6]
and [9]. Our concept of distributed cloud infrastructure to
host proxy and application VMs fits perfectly in this vision.

Second, our approach assumes a standard API exists for the
data transfer between the proxy VM and the associated ap-
plication VMs. However, we argue this is a much easier task
to accomplish than having to write an individual application
for each mobile platform (and possibly for each individual
version of the mobile platform). Indeed, the output of scalar
sensors can be represented as a few integers (e.g. GPS coor-
dinates, temperature value, ...), and standards for multime-
dia data (e.g., video formats) already exist. Combining such
data with standardized XML format descriptions, one can
establish a standard for communication between proxy VMs
and application VMs. In fact, several programming frame-
works for crowdsensing applications have proposed solutions
to abstract sensing information [29, 21] and task descrip-
tion [19]. These programming frameworks can be leveraged
in our model as well.

3.2 Crowd Bootstrap

Let’s revisit the lost child scenario from Section 1 to see how
a crowdsensing task can be rapidly bootstrapped using our
deployment model. As shown in Fig. 2, the process of crowd
bootstrap can be summarized in the following seven steps.
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Figure 2: Workflow of crowd bootstrap.

1. The task generator (here, it is the parents’ smart-
phone) constructs and sends a task description to the

application server, typically located in the public cloud.

The actual format of this can be application-specific,
but is shown as an XML snippet here. The critical
information includes type of search (face detection),
the sample images, and a location area to scope the
search. How this description is constructed and com-
municated is also left to the application, e.g., with a
front-end app on the phone, or through a web-form on
the application server.

2. The application server parses the task description, and
consults a global registry for a list of cloudlets that are
located in the target area.

3. The application server contacts the cloudlet daemon
on each target-area cloudlet, and requests a MAVM in-
stance be created. It forwards the VM disk image and
memory snapshot to launch the MAVM. In practice,
techniques employing demand paging or VM synthesis
can minimize overheads of launching the MAVM.

4. The MAVM on each target cloudlet uses a cloudlet-
local registry to discover proxy VMs connected to de-
vices that can provide the desired sensor data (here,
videos and images).

5. The MAVM requests participation from the mobile
users through the proxy VMs. Depending on user-
defined policies, the proxy may require explicit permis-
sion from the user, or the proxy VM can automatically
join crowds on behalf of the user when particular cri-
teria are met (e.g., share video when in a public space,
but not audio).

6. Once permission is granted, the MAVM will request
the cloudlet daemon to create application VMs. In
practice, these can simply be clones of the MAVM,
operating in a different mode.

7. The MAVM configures the networking setup of the
application VMs, while the the proxy VM will add the
new application VM to the subscriber list.

When the above steps are finished, the proxy VMs will start
forwarding images and videos to the application VMs, which

will apply face detection and forward potential matches through

the MAVM and application server to the parents’ smart-
phone. We believe our architecture has the potential to
bootstrap large crowds in just a matter of minutes, making
this on-demand crowdsensing use case possible.

3.3 Benefits of Our Design

Our deployment model is architected to support scalable, ef-
ficient data sharing between multiple applications and users,
while reducing the burden on application developers and end
users. It scales up crowdsensing tasks by making it easier to
access data from a larger pool of diverse smartphones, allow
users to simultaneously particpate in multiple applications,
and support rich, high-data-rate sensors at global scale.

Separating the process of data collection and sharing from
application-specific processing, our system lets developers
focus on the latter, rather than porting their application to
a myriad of mobile platforms and understanding the idiosyn-
chrasies of each. In fact, our deployment model increases the
choices in programming languages, as the application is self-
contained in its application VM and does not have to meet
specific compatibility constraints for mobile platforms. Sim-
ilarly, the developer is free to use a variety of programming
models to distribute computation and aggregate results, and
not forced to use a one-size-fits-all paradigm. Deploying
VMs to users boils down to rapid cloning of the applica-
tion VM on the cloudlet, regardless of the mobile hardware
of the users. Best practices for privacy preservation and
user-directed policies for participation can be implemented
in the proxy VMs, and be applied to all crowdsensing appli-
cations. Our framework also allows flexibility in partitioning
work between the proxy VM and mobile device. For exam-
ple, supporting multiple applications with differing fidelity
or resolution requirements simultaneously will entail some
amount of preprocessing; this can be done in the proxy VM,
mobile device, or a combination of both depending on hard-
ware capabilities, processing overheads, and energy avail-
ability.

Users no longer need to install individual apps on their de-
vices to participate in crowd sensing. Rather, they need
only grant permission, and if willing, can direct their proxies
to automatically participate in some forms of crowdsensing.
This allows for very rapid deployment of crowd applications.
Demands on the mobile device can also be reduced, as pro-
cessing is offloaded to the cloud, and only a single copy of the
sensor data is uploaded even when participating in multiple
applications. When a user leaves a crowd, the application
VM is simply destroyed, and does not require additional
attention from the user.

Lastly, our design performs processing and data aggregation
close to the data sources. This brings two benefits: 1) it
reduces traffic on wide-area networks; 2) it reduces network
latency by avoiding long-distance data transmission through
the backbone networks. This makes it possible to scale up
crowdsensing with high-data-rate sensors. VM migration
can ensure that processing remains close to data source even
as users move around.



4. CHALLENGES

There are several technical hurdles in the path of a real-
world deployment of our proposed architecture. We discuss
these below.

4.1 Virtualization Overhead

Leveraging virtualization allows us to create a flexible plat-
form in a multi-party setting where user privacy, scalability
and isolation between individual crowdsensing applications
are key requirements. These advantages come at the price of
both VM creation overhead and the need for more advanced
inter-VM communication management. In our design, a new
clone of the application VM is instantiated for each user join-
ing the crowd. Ideally, this new VM should start as fast as
possible with minimal cost on resources. In practice, when
a VM Monitor starts a new VM, it must first reserve all of
the memory resources needed for the VM. This constraint
prevents rapid creation of multiple VMs concurrently.

One way to solve this problem is to reduce the number
of running VMs by replacing the per-user application VMs
with one multiplexing application VM on each cloudlet. How-
ever, this will introduce the complexity of process migration
in mobile scenario when any hard state contained in the
application VMs must be preserved. An alternative way is
to reduce the overhead of VM creation through advanced
cloning mechanisms. There are several works that try to
reduce the memory copy overhead by cloning the memory
from running VMs. SnowFlock [11] proposes to fetch mem-
ory on demand while cloning VMs. It manages to clone 32
clones in 32 different hosts within one second by combin-
ing on-demand fetching with TCP multicasting for network
scalability. Kaleidoscope [5] takes this one step further by
discriminating VM memory state into semantically related
regions to achieve prefetching and efficient transmitting.

An additional challenge is configuration and performance
of inter-VM communication. The performance of inter-VM
communication is relatively low compared to inter-process
communication. When the system workload on the cloudlet
increases, this may result in delayed transmission of sensor
data between proxy and application VMs. Note that this
low performance is due to inefficient CPU scheduling of the
host, as the physical network interface is not touched by
inter-VM traffic.

4.2 Migration-induced Reconfiguration
Physical mobility of a device may trigger the migration of
the proxy VM and the associated application VMs that are
not stateless. Consequently, the IP address of the mobile de-
vice as well as those of the VMs may change. To maintain
established connections between mobile device and proxy
VM, as well as between proxy VMs and application VMs, au-
tomated advanced network reconfiguration is needed. This
potentially includes network addressing, NAT settings and
firewall setup in VMs. Due to this overhead, IP-based so-
lutions may not provide adequate performance in our en-
visaged scenarios. Non IP-based solutions such as the Host
Identify Protocol [16] have been designed from scratch with
these limitations in mind, but these protocols still need to
be evaluated in real networks. The deployment of these is
unlikely to be easy, given the fact that today’s Internet is
built almost exclusively on the TCP/IP stack.

4.3 Standardization of Sensing Interfaces

Sensor data is distributed from the proxy VMs to the appli-
cation VMs through a publish-subscribe mechanism. Stan-
dard sensor data descriptions are needed to realize commu-
nication between proxy VMs and application VMs of various
developers. As discussed in Section 3.3, some efforts [29, 21]
have been invested on developing such interfaces, however,
unfortunately so far no consensus has been made yet.

Another challenge lies in the fact that different crowdsens-
ing applications might be built on the same sensor data,
but require a different format or sample rate. However, the
sensor data collected from the devices provided by different
vendors may not be able to always provide the data in the
right format or at the right sample rate.

There is a trade-off to be studied on whether the conversion
from the original sensor data to the requested output for-
mat(s) must be done on the mobile device, the proxy VM
or inside the application VM itself. At first sight, running
inside the application VM is the most logical choice, as it
removes as much logic as possible from the mobile device
and the proxy VM. However, this results in a lack of syn-
crhonization and a potential waste of resources. For exam-
ple, what if all currently running application VMs only need
camera frames at 10 fps, while the mobile device emits at a
standard 30 fps? In this case, it would make sense to put
downsampling application logic on the mobile device, and to
put logic in the proxy VM that can configure the sensor cap-
turing on the mobile device. When a new application VM
is deployed needing 15 fps, the proxy VM may instruct the
mobile device to increase its frame rate accordingly. Sup-
port for device-level configuration may vary significantly by
platform and specific sensor hardware, so proxy VMs need
to be designed to abstract away such differences.

S. CONCLUSIONS

This paper has argued that the existing deployment model
for crowdsensing applications does not support either effi-
cient crowd scaling over heterogeneous mobile platforms or
the data sharing between crowdsensing applications. While
VM-based cloudlets have been widely studied and utilized
for computation offloading, we explore the potential uses of
VM-based cloudlets for lowering the barriers to scaling up
crowdsensing applications. Our solution leverages the exist-
ing programming frameworks for crowdsensing applications.
There are still several challenges that must be addressed be-
fore this kind of deployment model can be adopted, we are
currently implementing the deployment platform with spe-
cific focus on the research challenges discussed in this paper.
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