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Modern networks are extremely complex, varying both statically and dynamicaly. This complexity and dynamism are greatly
increased when the network contains mobile elements. A number of researchers have proposed solutions to these problems based on
dynamic adaptation to changing network conditions and application requirements. This paper summarizes the results of several such
projects and extracts several important general lessons learned about adapting data flows over difficult network conditions. These lessons
are then formulated into a conceptua framework that demonstrates how a few simple and powerful ideas can describe a wide variety of
different software adaptation systems. This paper describes an Adaptation Framework in the context of the several successful adaptation
systems and suggests how the framework can help researchers think about the problems of adaptivity in networks.

1. Introduction

Computer networks are becoming increasingly complex
and variable, with mobility exacerbating the problem dra-
matically. Severa researchers in the field of networking
and distributed systems recognized this problem in the
recent past, and started designing solutions to the prob-
lems of complex variability. Many of these researchers ad-
dressed the problem through different forms of software-
supported adaptivity. Recently, systems embodying their
ideas have been built, tested, validated, and, in some cases,
deployed for production use, demonstrating the real power
of software-supported adaptivity.

The authors examined the characteristics of the adaptive
software systems they built and discovered that although
the systems were independently designed and built, they
shared three kinds of commonality:

1. The systems shared certain fundamental characteristics
that could be described in fairly simple architectural
terms.

2. The designers made similar design choices across the
different systems.

3. Similar lessons were learned in the design and imple-
mentation of the different systems.

The framework presented in this paper captures these
commonalities, clarifies severa issues surrounding the
structure and design of software that adapts to difficult net-
work conditions, and suggests key issues that require fur-
ther investigation in thisfield. The framework can also help
other researchers characterize their own adaptive software
and understand how it relates to other systems.

In section 2, we discuss in more detail the characteristics
of modern networks that motivate the need for adaptivity,
especialy in the mobile computing arena. Section 3 briefly
describes some of the systems that provided inspiration for
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the framework. Section 4 describes the framework. Sec-
tion 5 presents how each of the sample systems from sec-
tion 3 fits into the framework. Section 6 suggests ways
in which the framework may help other researchers think
about the structure of their own adaptive systems. Section 7
concludes with open issues that the framework exposes and
suggests areas of future work.

2. The need for network adaptation

Many of the characteristics of modern networks vary
dramatically. Bandwidths currently provided by network-
ing hardware in daily use range from a few tens of kilo-
bits per second up to thousands of megabits per second.
Similarly, bit error rates of commonly used network de-
vices span orders of magnitude. Latencies can range from
nanoseconds to large fractions of a second. Networks that
contain mobile elements tend to experience a wide range
of these characteristics, often with rapid changes.

The scale of today’s and tomorrow’s networks adds great
complexity. High growth rates are expected for the future,
even leaving aside the additional scaling potential of “smart
spaces’, where many billions of tiny embedded devices
worldwide will have some networking capabilities. Such
scale makes any form of static planning or optimization of
network operations impossible.

We also demand far more of our networks than ever be-
fore. Not only is the total volume of traffic increasing at
an alarming rate, but also new applications put new kinds
of demands on the network. Web browsing, video confer-
encing, and Internet telephony have very different network
requirements than such old Internet staple applications like
electronic mail and file transfer.

Mobility greatly exacerbates the problem. Many of the
computers being sold today are either portables or handheld
devices. In the smart spaces world of the future envisioned
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by some, extremely small embedded devices will travel
everywhere, be embedded in everything from walls to auto-
mobiles to shoes, al the while communicating, processing,
controlling, actuating, capturing data, etc. A bewildering
array of wireless networks is being deployed to serve such
mobile devices.

The mabile environment also introduces another compli-
cation: heterogeneity in the communicating devices. Cell
phones, personal digital assistants, palmtop computers, dig-
ital pagers, digital cameras and portable computers all have
different capabilities and different requirements. Part of the
difficulty of adaptation in the mobile environment is not just
to deliver data over challenging network conditions, but to
deliver it in formats suitable for the devices that need it.

Other issues, such as security and economic questions,
also complicate the problem. Generally, adding the need
for security to any computing question complicates it. The
existing networking infrastructure that we have inherited
was not designed with commercial use in mind; as a result,
performing efficient, safe business transactions over that
network infrastructure is challenging.

Moreover, the existing network protocols that have en-
abled the Internet revolution are not perfectly suited to the
environment they themselves have created. TCP, for exam-
ple, does not work well on noisy links (e.g., many wireless
links), and often behaves poorly over satellite links due
to long latencies. Researchers have changed some pro-
tocols to handle such problems, but our understanding of
networks is insufficient to allow us to design protocols that
behave well in the face of all probable network conditions.
Even if we could develop such protocols, we would face
the challenge of converting the enormous installed base of
today’s network infrastructure. The Internet is distributed,
decentralized and vast, and the simple solution of complete
replacement of that existing infrastructure is daunting.

But it is important to realize that even if we could suc-
cessfully deploy new protocols quickly, problems would
still remain. The real goa of adaptive networking is to
provide good end-to-endservice, where the end points are
located in applications. Without considering the needs of
applications and their users, no adaptive solution at the net-
work level alone can solve the entire problem.

These trends suggest that we must deal with larger,
more variable, more complex, rapidly growing networks
that must meet ever increasing demands, yet rely largely
on existing networks and protocols. One general class of
solutions to solving this problem is to allow various forms
of adaptation of network traffic. Such solutions allow hard-
ware or software to alter the protocols or the data content
being transmitted to provide a better quality of service to
users.

Data flows over networks can be usefully adapted in
many ways:

e Theunderlying protocol can be altered to handle difficult
conditions. The Berkeley snoop protocol improves TCP
over high error rate links [2]; an adaptation mechanism
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can dip the snoop protocal into place when such links
are established [1].

e The data can be altered in a lossess way. Various sys-
tems allow data compression or encryption across links
with poor connectivity, without any application involve-
ment.

e Lossy adaptations can be used to obtain better compres-
sion of data over limited links by dropping inessential
portions of the information, or sending a lower-fidelity
version. TranSend improved performance by an order
of magnitude or better using lossy compression [7].

e Data can be automatically converted to formats better
suited to the end systems or the intermediate networks.
The Top Gun Wingman browser [5] converts Web im-
ages into 2-bit grayscale bitmap displays before sending
them to Palm Pilots. Mowgli [13] converts GIF images
to more compact JPEG before sending them over wire-
less links. Although adaptation to client heterogeneity
is an important area in which extensive work has been
done (see [7] for an overview and pointers to related
work), in this paper we focus on adapting to network
variability, remarking that the architecture we describe
has been successfully used to address client adaptation
as well.

Adaptive solutions to network problems embrace many
interesting variations: the various proxies built at Berke-
ley [7], the Odyssey system [16], transformer tunnels [21],
active networks [22], and intelligent agents [23]. While
these systems have some very significant differences, all
offer methods of changing the contents of the transmitted
data or the methods used to send that data. All adapt to
changing conditions specific to the data transmission re-
guested, or to prevailing network conditions, or to needs
of the users. This body of research has many successes,
but none claim to solve the complete problem or even to
suggest a framework for thinking about the problem and its
solution. This paper’s goal is to propose such a framework.

3. Some characteristic adaptive systems

Although at first glance there may appear to be little
commonality across the wide variety of approaches to net-
work adaptation, significant commonality is revealed by
closer examination of the decisions made by independent
researchers taking different approaches to the problem. We
present below several independently designed, operational
systems developed by one or more of the authors. While
the chosen systems certainly do not cover al work done in
the field (or even all work in the field by the authors), they
illustrate the wide variety of possibilities in adaptive net-
work software solutions. Each system’s designers started
from the assumption that adaptivity was required to solve
some set of problems, but otherwise the design assump-
tions varied radically. Examples of differences include the
following:
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e Application-transparent vs. application-aware adapta-
tion: is the application informed that adaptation is oc-
curring and perhaps expected to provide an application-
level response (as in Odyssey), or does the system at-
tempt to completely shield the application from this fact
(as in Conductor)?

e Genera vs. application-specific adaptation: does the
system provide general machinery to support a collec-
tion of unrelated applications (as in disconnected file
systems such as Coda), or does it support a specific ap-
plication or narrowly-defined class of applications (asis
the case for TranSend)?

e Does the adaptation machinery reside in the client, in
the server, in one or more intermediate proxies, or al
of these?

Despite such differing goals and assumptions, some key
common ideas and themes emerged. We now examine these
example systems, which on the surface appear extremely
different. Closer examination of their conceptual architec-
tures, however, reveals strong similarities, which we tie
together with the framework we describe in section 4.

3.1. UC Berkeley TranSend

UC Berkeley's TranSend Web accelerator proxy [6] was
one of the earliest projects to explore adaptation proxies
aggressively. TranSend intercepts HTTP requests from
standard Web clients and applies datatype-specific lossy
compression when possible; for example, images can be
scaled down or downsampled in the frequency domain,
long HTML pages can be broken up into a series of short
pages, etc. TranSend's primary goal was to provide net-
work adaptation for users of slow links, such as UC Berke-
ley’s modems or the Metricom Ricochet service[18], which
is popular in the Bay Area.

TranSend supports a wireless vertical handoff mecha-
nism [20]. When a client equipped with multiple wireless
interfaces switches between wireless networks, the client-
side vertical handoff software (which is completely inde-
pendent of TranSend) generates a notification packet con-
taining some essential characteristics (e.g., estimated ex-
pected throughput) of the new network. This packet would
be sent to a special UDP port on TranSend where the noti-
fication would be processed and stored in a per-client pro-
file. TranSend would then process future requests from
that client in accordance with the new network type; for
example, very aggressive image downsampling was per-
formed for clients connecting over Ricochet with an ex-
pected throughput of 15-25 Kb/s, whereas compression
was much less aggressive (and in some cases disabled) for
WaveL AN clients connecting at about 1 Mb/s.

Because HTTP is a “stackable” protocal (i.e., it is pos-
sible to have severa HTTP “hops’ in a request chain),
TranSend-based adaptations are naturally composable, al-
lowing a multilevel system with some “baseline” compres-
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sion performed far upstream, and additional compression
performed near the clients.

TranSend evolved into a general system for deploying
scalable, fault-tolerant adaptive applications [7]. Top Gun
Wingman [5], for example, allows users of thin clients such
as the USR PalmPilot handheld device to browse the Web.
Although similar in spirit to TranSend, Wingman provides
an additional service, a network adapter. TranSend uses
HTTP to communicate with clients and servers, but the
PalmPilot’s modest capabilities suggested a simpler pro-
tocol. A simple datagram-based client-to-adapter protocol
that also encapsulates security and encryption was crafted
for Wingman. Wingman's proxy-side adapter trandates be-
tween this protocol and HTTP, giving Wingman the abil-
ity to access existing Web servers. When Wingman was
evolved into a PamPilot implementation of the shared
whiteboard [4], the network adapter was augmented to tun-
nel multicast to the PalmPilot over a unicast TCP connec-
tion, to compensate for the PalmPilot’s inability to handle
multicast directly; thisis another example of network adap-
tation.

3.2. CMU Odyssey

Odyssey is a system built at Carnegie Mellon Univer-
sity to support challenging network applications on portable
computers [16]. Odyssey particularly focuses on resource
management for multiple applications running on the same
machine. Odyssey was designed primarily to run in wire-
less environments characterized by changing and frequently
limited bandwidth, but the model is sufficiently general to
handle many other kinds of challenging resource manage-
ment issues, such as battery power or cache space. The goal
of the system is to provide all applications on the portable
machine with the best quality of service consistent with
available resources and the needs of other applications.

Odyssey is an application-aware approach to adaptation
intended primarily to assist client/server interactions. The
Odyssey system consists of a viceroy, an operating system
entity in charge of managing the limited resources for multi-
ple processes; a set of data type-specific wardens that han-
die the intercommunications between clients and servers;
and applications that negotiate with Odyssey to receive the
best level of service available. Applications request the
resources they need from Odyssey, specifying a window
of tolerance required to operate in a desired manner. If
resources within that window are currently available, the
request is granted and the client application is connected to
its server through the appropriate warden for the data type to
be transmitted. Wardens can handle issues like caching or
pre-fetching in manners specific to their data type to make
best use of the available resource. If resources within the
requested window are not available, then the application is
notified and can request a lower window of tolerance and
corresponding level of service. As conditions change and
previously satisfied requests can no longer be met (or, more
happily, conditions improve dramatically), the viceroy uses
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upcalls registered by the applications to notify them that
they must operate in a different window of tolerance, pos-
sibly causing them to alter their behavior.

3.3. UCLA Conductor

The UCLA Conductor system alows deployment of
cooperating adaptive agents at specialy enabled nodes
throughout a network [25]. Conductor is an application-
transparent adaptation mechanism. Applications can ben-
efit from Conductor without being recoded or explicitly
requesting its services. Instead, the underlying system is
configured to indicate what kinds of data flows Conductor
is capable of assisting and the Conductor system automat-
ically traps and adapts those data flows.

Conductor also handles issues of composing adaptations
in support of asingle flow at multiple nodes. Conductor de-
termines the characteristics of the data path from source to
destination and determines if the path will meet the needs
of the applications using it. If not, Conductor will auto-
matically deploy adapters at one or several of the available
nodes along the path to adapt the data flow to network con-
ditions, alowing better application-visible network behav-
ior. Conductor plans the cooperative behavior of the agents
and handles problems of transient or long-term failure of
particular adapter nodes.

Conductor is designed to handle general-purpose adapta-
tions, including both lossy and lossless adaptations. Com-
bining lossy adaptations and reliability is especially chal-
lenging, since a lossy adapter may drop part of the data
or may transform several data packets into fewer packets.
If an adapter or its node fails, some of the adapted pack-
ets could be delivered while others were not. Without the
lossy adapter’s state to determine which origina packets
were dropped or coalesced, the system may find it difficult
to resume transmission without either duplicating already
received information or failing to deliver required informa-
tion. Unaware applications are generally unprepared for ei-
ther problem, so Conductor must hide these problems from
such applications. Conductor attaches numbers to pieces of
semantic content that do not vary when adapted. For exam-
ple, if every other packet is dropped, the undropped packets
are renumbered to include the dropped packets. The system
is thus able to determine which information has and has not
been delivered despite failures.

3.4. UCLA Sniley

Smiley is an intelligent agent real-time program devel-
oped at UCLA to augment Web browsers [9]. It has two
components:

(i) adynamic Graphical User Interface (GUI) that informs
users of the nature of the links on a Web page, and

(ii) a transparent agent that prefetches carefully selected
links.
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The GUI provides users a measure of the quality of con-
nectivity available between themselves and the servers they
contact to obtain Web pages [9], and of the nature of the
data residing behind that link. It was designed to handle
both the kinds of limited links common in mobile com-
puting and general connectivity and bandwidth problemsin
the overall network. Smiley’s GUI provides user feedback,
in the form of augmentations to the links shown on a Web
page, alowing the user to predict the likely effect of click-
ing on a particular link. This feature allows a user to avoid
requesting a page that is unavailable or will take a long
time to retrieve. Smiley prefetches web pages intelligently
to allow users to browse more effectively over limited and
variable links. A prefetch threshold algorithm is used to
decide when to prefetch a web page the user has not yet
asked for. Smiley includes models that consider different
users associated with different time and bandwidth costs,
trying to minimize the average cost for each request in the
entire system.

3.5. CMU Coda

Coda is an optimistic file replication system devel-
oped for the mobile computing environment that uses
client/server optimistic replication to maintain replicas
of files required by disconnected or poorly connected
clients [10]. Optimistic replication permits any replica of a
file to be updated freely (as allowed by normal file system
access permissions), without regard to the status of other
replicas. Optimistic replication provides great performance
and availability advantages over other replication alterna-
tives, at the cost of occasionally permitting concurrent up-
dates. Experience with and measurements of Coda [10] and
other optimistic replication systems [17] shows that concur-
rent updates are uncommon in practice, and many of them
can be resolved without human intervention.

Coda's server copy is kept on a well-connected machine
that the portable computers contact when possible. Updates
performed by the portable computer during disconnection
are saved in a log, which is replayed to the server when
possible. The server detects any concurrent updates and
rejects them, requiring the client to use automated conflict
resolution mechanisms to resolve any problems resulting
from such concurrency [11,12]. The client portable also
requests new updates from the server.

Adapting to network conditionswas not the primary goal
of Coda, but experience with its operation in the mobile
environment caused the Coda designers to extend it to do
so [15]. Coda performs trickle reintegration when only
limited bandwidth is available for communicating updates
to the server. This method of reintegrating updates from the
mobile computer to the server allows effective, adaptive use
of the available bandwidth between the two machines.

3.6. Rutgers environment-aware AP

Application adaptivity implies that applications must
be structured to receive notifications about any important
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changes in the environmental state and to react appropri-
ately. Since the network state is complex, the applications
must interact with many environmental conditions, sources,
and possible reactions. The Rutgers environment-aware
API addresses this problem. This APl isbased on aflexible
mechanism for asynchronous event delivery. Environmen-
tal changes are modeled as asynchronous events that are
delivered to mobile computing applications over an entity
called an event channel [21]. This entity implements the
event delivery mechanism. The events are organized as an
extensible type hierarchy, and the architecture itself can be
configured and extended. This extensibility enables sup-
port for a new condition to be easily incorporated into an
existing system. A novel feature of the API is the ability to
utilize event type information not only to filter out uninter-
esting events, but also to handle an event at an appropriate
level of abstraction. An application that chooses to be en-
vironmentally aware creates a handler for that event type.
The application specific response to the new situation is en-
coded in this handler and is invoked when the appropriate
event is delivered.

4. A conceptual framework for network adaptation:
the adaptation framework

Careful thought about these and other network adap-
tive systems reveals important common themes. We now
present a conceptual framework that encapsulates those
themes. Each of the systems presented above maps well
into this framework, despite their many different details.

The framework had to display certain characteristics:

e it should encompass al reasonable alternatives to major
design questions,

e it should be as simple as possible (but, to quote Einstein,
no simpler),

e it should consider issues of incremental deployment of
different technologies, interoperation with legacy sys-
tems, and other practical issues,

e it should make interoperation between different adapta-
tion technologies easier,

e it should distill the extensive knowledge, experience,
and real systems produced for adaptation,

e it should provide a starting point and common vocabu-
lary for describing future work in the important area of
adaptive architectures,

e it should not preclude future innovations that provide
alternative approaches to adaptive networks.

Data flowing across an arbitrarily large and complex net-
work of varying characteristics should be delivered to its
destination in the best manner possible, given a variety of
constraints. Some of these constraints relate to physical
and technological limitations, such as the speed of light or
the capacity of alink on the path. Others relate to systems
concerns, such as the need to share a link or the costs of
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Figure 1. A data flow in a variable network.
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Figure 2. Adapters assist the data flow.

providing reliable delivery. Given the wide variety of pos-
sible conditions that could be present in the network, many
different adaptationsto the data flow could prove beneficial.

The essence of the problem is illustrated in figure 1.
A process on a source node sends data to a process on
a destination node. The data flows across various links
and nodes in the network. The thickness of the connecting
lines is meant to suggest relative capabilities of the links
involved in the data flow.

To some extent, this figure is a simplification of the
general problem. It shows a simple data flow with a single
source (S) and destination (D), and it does not illustrate
problems such as delivery deadlines or security concerns,
nor does it suggest the level of complexity possible in even
a single network data flow. But the figure captures the
heart of the problem. A stream of data flows from a source
to a destination across a network, using links of varying
capabilities. At some or al points in the network, altering
the data flow in various ways could lead to better overall
results, from the point of view of the sender, the receiver,
the administrator of the network, or the complete population
of network users. Without some mechanism to apply such
adaptations, however, no improvements can be made.

Figure 2 shows how the introduction of adapters alters
the situation. Now, the data can be altered in various ways,
allowing for better results. Adaptation Agencies (labeled
AA in the figure) represent many different kinds of adapta-
tion mechanisms, from adaptive protocols to heavyweight
code executed on behalf of the dataflow. Notethat all adap-
tive components in this diagram are optional, and that any
single AA can be replaced with multiple AAs arranged in
complex ways. The degenerate case where all are omitted
is a simple client-server or peer system with no adaptivity
support.

Figure 3 shows how the Adaptation Framework fills in
the details of Adaptation Agencies. An AA consists of
several parts:

e The Event Manager (EM) monitors the AA’'s environ-
ment. The components of that environment are defined
broadly, for generality, but are likely to include things
like traffic and error conditions on network links, avail-
able CPU cycles on alocal processor, or security threats
that have been detected. The event manager can receive
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Figure 4. Data flow through an AA.

control messages that will alter the behavior of the AA.
These messages can originate from other AAs, from lo-
cal operating system services, or from applications.

e The Resource Management and Monitor (RM) compo-
nent handles resources under direct control of the AA.
If the AA has been allocated a certain percentage of a
data link’s bandwidth, the RM determines how to best
use that bandwidth to meet the needs of all data flows
under its control.

e Each AA may contain zero or more Application Spe-
cific Adapters (ASAs). These modules are capable of
performing some particular adaptation on a data stream.
Each ASA requires certain resourcesto perform its adap-
tation properly.

An Adaptation Agency accepts data from some source
and delivers possibly adapted data to some other destina-
tion. The source may be one network link and the destina-
tion another network link, but source and destination might
also be other AAs. If a particular AA is working directly
with a network, however, it will have some knowledge of
the specifics of that network, such as whether the network
supports broadcast or not. The AA can use this knowledge
when performing adaptations.

The connection and interaction of AA components is
also important. (See figure 4.) Generally, data comes into
an AA and is delivered to one of its ASAs (1), which
decides whether to adapt the data. If resources are re-
quired for an adaptation, the ASA requests them from the
RM (2). The RM can accept or reject such a request, based
on what resources are available and its resource allocation
algorithms. The RM obtains the availability information
from the EM (3), which sends the RM updates whenever
significant events occur. When the RM has decided on
how to handle a request from an ASA, it informs the EM
of the new resources that have been made available to the
ASA (4). The EM can then alter its view of local condi-
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Figure 5. Adaptation agencies using a shared resource.

tions, and can also deliver the response to the ASA (5).
The EM will aso signal the ASA when other situations
lead to changes in conditions relevant to ASA operations.
After adaptation, the ASA passes the adapted data into the
network for delivery to the destination or the next ASA (6).

AAs can be organized hierarchically, with one AA con-
trolling a group of other AAs, alowing the framework to
specify that one entity control a shared resource for several
other entities. Figure 5 demonstrates this concept. Two dis-
joint data flows pass through a single physical entity, which
could be a gateway machine, a network link, or an entire
local area network. The data flows must in some way share
the physical entity’s resources. The adaptation framework
handles this issue by permitting a higher level AA to as-
sume control of al of the physical entity’s shared resource.
It then communicates with the Event Managers of the AAs
actually supporting the two data flows to tell them how
much of the shared resource is available to them. These
lower level AAs, in turn, communicate internally with the
ASA modules chosen to use for adaptation of each data
flow. The hierarchy can continue to higher levels, if nec-
essary, alowing one set of AAs to handle data flows, a
higher level set to mediate shared use of a switch or gate-
way, and an even higher level AA to coordinate overall
network activity through its instructions to the middie level
AAs.

5. Mapping real systems into the Adaptation
Framework

The Adaptation Framework is intended to encompass a
wide variety of adaptation mechanisms. Here we describe
how the systems described in section 3 can be fit into this
framework. For each system, the accompanying diagram
shows as shaded the sections of a single ASA (or, in some
cases, multiple ASAs) that are provided by that system.

5.1. TranSend

TranSend can be thought of as a complete Adaptation
Agency (AA) that initialy ran on a single workstation but
was later extended to run on a cluster. The entire clus-
ter can be regarded as a single AA that serves extremely
large communities of users [8]. Within the AA, TranSend
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AA boundary ~

Figure 6. Mapping TranSend to the Adaptation Framework.

contains a separate ASA for each MIME type (GIF, JPEG,
HTML, etc.). Incoming data is either passed to the appro-
priate ASA by type, or passed directly through the AA to
the client if no appropriate ASA exists. The ASA then per-
forms datatype-specific lossy compression before forward-
ing the data.

TranSend’s vertical handoff mechanism worked with a
simple Event Manager (EM) to determine when handoff
was necessary. Because TranSend was designed under the
assumption that it would have use of al the workstation's
resources, no RM was designed into it. However, external
RM schemes such as SRI’s Resource Management frame-
work should be able to interoperate with TranSend.

5.2. Odyssey

Odyssey fits well into the adaptation framework. Odys-
sey on a portable node is a single AA. The viceroy is a
combination of resource manager and event manager. The
wardens are ASAs specific to individual data types. One
Odyssey AA can host several warden ASAs.

One interesting aspect of Odyssey with regard to the
adaptation framework is that much of the adaptation in this
model is actually done by the applications, which interact
with Odyssey. For example, Odyssey itself does not decide
that color video frames should be converted to black-and-
white, but rather instructs the application that some action
is required. The application itself decides how adaptation
should occur, and typically instructs its server to make the
adjustment. Alternately, the application can request even
higher-level control, such as requesting user advice on the
kinds of adaptations that should be applied when conditions
change. This aspect highlights the architecture's inclusion
of the possibility of control traffic between applications and
AAs.

5.3. Conductor

Conductor can be regarded as a set of complete AAs that
cooperate to plan and regulate the overall behavior of acon-
nection. Each Conductor node hosts an AA that will allow
adaptation of multiple flows through that node. The Con-
ductor AA contains a RM that allocates the resources the
node makes available to Conductor between the different
flows the local Conductor AA controls. It has an EM that
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Figure 9. Mapping Smiley to the Adaptation Framework.

captures new data transmissions coming in or originating at
the node, monitors the progress of data flows, and watches
for control information sent by other Conductor AAs. Mul-
tiple ASAs can be run at a given Conductor node, either
composed for the benefit of a single data flow, or separate
for the benefit of multiple independent data flows. The
Conductor architecture also permits independent data flows
to share an ASA, such as a caching or prefetching adapter.

Conductor sends information between its AAs to assist
in planning the deployment of agents and to watch for fail-
ures. Thisinformation is processed in a distributed fashion.
Essentially, the AAs cooperate to create a plan at the start
of a data flow. This plan indicates which ASAs should be
located at given nodes, and may suggest how each ASA
should behave. If connections fail, the nodes involved in
a flow on either side of the failure can replan to handle
the failure. They can choose to shut down the flow, re-
route the flow (requiring, in general, a new plan and new
ASASs), or perform some local actions in anticipation that
the failure will be fixed shortly. An example of the latter
would be prefetching data from the source while waiting
for a transient connection to reappear.

5.4. Smiley

Smiley can be regarded as a special purpose AA that
resides on a mobile node, supporting a single adaptation. It
contains an RM that worries about the available link band-
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Figure 10. Mapping Coda to the Adaptation Framework.
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Figure 11. Mapping the Rutgers environment-aware API to the Adaptation
Framework.

width, an EM that sends out probes to the network to deter-
mine connectivity and latency information, and prefetching
and page rewriting ASAs. Smiley is an example of an AA
that maps tightly to a particular application.

5.5. Coda

Coda shows how the framework can incorporate applica-
tion and system software with adaptive components. Coda’'s
trickle reintegration suggests an AA at the client side that
uses an event manager to monitor the available bandwidth.
The Coda cache manager, Venus, combines the ASA, EM,
and RM functions. Venusactslike an ASA to select updates
to reintegrate with the server replica and feed them across
the limited bandwidth link. Venus also performs EM func-
tions to watch the link and RM functions to handle usage
of the link.

5.6. The Rutgers environment-aware API

The monitoring and delivery of events over the event
channel in the Rutgers approach is an example of the EM
in the architecture. The EM monitors the environment
and also delivers events of interest according to a system-
defined policy. The event handler also provides a frame-
work for implementing an ASA. The application can install
separate ASAs for each interesting event type. When the
EM delivers a notification, the appropriate ASA is invoked.
The ASA responds to the new situation appropriately for its
application. For example, when a new network is detected,
the characteristics of the network such as expected band-
width are encapsulated in the event. The ASA can use this
information in its response by changing the transmission
from rich data to summary data and vice versa.

5.7. Commercial systems

The research projects discussed in this article have a-
ready influenced commercia efforts. The network adap-
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tation ideas pioneered in TranSend have appeared in var-
ious commercia products including Intel QuickWeb. The
more aggressive adaptation pioneered in the Top Gun
Wingman handheld Web browser has been commercial-
ized by ProxiNet, Inc. (now a division of Puma Technol-
ogy). Emerging mobile-computing standards from the W3C
(World Wide Web consortium), including XML (Extensible
Markup Language) and XHTML (Extensible HTML), in-
corporate mechanisms for “hinting” to intermediate Adap-
tation Agentsto help them adapt content delivery to arange
of networks and devices.

The WAP (Wireless Application Protocol) suite is a
stack of protocols designed specifically for delivering data
and interactive services to the “smart cellular phone” class
of mobile devices [24]. Although the application-level
markup and scripting languages (WML and WML script)
include features motivated by the limited capabilities of
the intended client devices, the languages do not appear
to provide any functionality that directly facilitates the
application-level adaptation we motivate in this retrospec-
tive. It will be interesting to see whether the evolution of
the WAP protocolswill follow the pattern of HTML, where
application-level adaptation machinery has to be retrofitted
after the protocols have become entrenched.

5.8. Summary

Table 1 summarizes how each of the example systems
fits the Adaptation Framework.

6. The Adaptation Framework and the structure of
adaptive applications

Our framework distinguishes the functionalityof specific
components of an adaptive application, and we have argued
that this decomposition captures a broad class of adaptive
applications. This decomposition also provides the ability
to decouplethe various adaptation-related entities from each
other. Certainly in some cases tight coupling between enti-
ties can lead to a more efficient implementation; for exam-
ple, responding to an event by invoking a registered upcall
is fast and efficient and may not even cross an address-
space protection boundary. However, in cases where loose
coupling provides acceptable performance and sufficiently
small overhead, it offers some important benefits:

1. It allows applicationsto be designed to function in either
adaptive or non-adaptive environments, depending on
whether environmental monitoring information is avail-
able. This simplifies application development by avoid-
ing the need for “hardwiring” the monitoring machinery
directly into the application.

2. It alows the components to be designed as separate au-
tonomous subsystems that are loosely coupled and oper-
ate essentially independently. For example, using multi-
cast, an environment-monitoring subsystem can be in a
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Table 1
System Description ASA EM RM Network
TranSend Web acceleration MIME-type- Wireless vertical N/A Composable/
through datatype- specific handoff notification stackable
specific lossy COMpressors affects compression using HTTP
compression aggressiveness
Odyssey Application-aware Wardens (de- Log of passive Viceroy Runs on arbitrary
adaptation by vice driver-like bandwidth networks. API
multiple applications OS extensions) observations expressive enough
using diverse to handle resources
data types such as power
and cache space
Conductor Combines adap- Supports arhi- Monitors net- Handles Uses TCP from
tations across a trary adapta- work conditions planning point-to-point,
network for a tions and notifies RM and replanning provides end-to-
data flow of changes of adapter end reliability
deployment itself
Smiley Web prefetching Prefetching Probes remote Web Handles Runs on arbitrary
matched to net- and web page servers to determine local link networks
work conditions rewriting current network conditions and cache
Coda Trickle reintegration Decides what and Observes avail- N/A Specifics other
matches log re- how much to send able link band- than bandwidth
play to channel and keeps track width to server and latency are
characteristics of incomplete transparent to
transmissions Coda
Environment- Management of Event handler Framework for moni- N/A Not specific to
aware API environmental which encodes toring the status if the network attributes
change and ap- the response of environment Supports other
plication level the application and delivering considerations
reaction the induced changes such as power

to applications

continuous-monitoring mode in which interested parties
subscribe to specific types of environment-change events
and react to them, rather than using a tighter coupling
(such as the registering of upcalls) to support dynamic
adaptation.

3. The third advantage derives directly from the first
two: systems composed of autonomous, loosely-coupled
modules are more robust, generally less susceptible to
cascading failure (because of the inherent fault isola-
tion afforded by module autonomy), easier to maintain,
and often easier to deploy incrementally than their more
tightly coupled counterparts.

For example, some applications in our framework do
not require the presence or functionality of the EM; they
function correctly without it, but display better adaptive
behavior when it is functioning. The TranSend applica-
tion goes a step further by decoupling the mechanisms
used for communication between the EM and the ASAs:
in TranSend, the EM is a separate process that multicasts
network-change events on a well-known multicast channel.
The EM can function without TranSend (it does not mat-
ter that no one is listening to a multicast transmission) and
vice versa (if no events are received, TranSend continues
to function with its current settings). Such techniques con-
tributed to the “infrastructure-level” degree of robustness
achieved in the scalable cluster-based server that hosted the

second-generation TranSend prototype [8]. The decoupling
made possible by a careful implementation of our frame-
work may be a worthwhile starting point for the design of
future adaptive applications. We consider it a strength of
our framework that it accommodates both |oosely-coupled
and tightly-coupled implementations, as circumstances and
needs may require.

7. Open issues and conclusions

This framework is merely a starting point for thinking
about the general characteristics of software that supports
network adaptivity. Many important issues are clarified, but
not solved, by this framework.

7.1. The Adaptation Framework and active networks

Active Networks (ANs) [22] defines a very genera
model for programming the network. In its full general-
ity, potentially every network packet can carry code, and
every network entity (including routers and general compu-
tation nodes) can execute that code and maintain state. In
addition to network adaptation such as we have described,
ANs attempt to address a wide range of other tasks involv-
ing computation in the network, such as packet filtering,
encryption, and incremental protocol deployment.
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Currently, the exact definition and architecture of active
networks are topics of research. In many cases, however,
ongoing active network projects are producing software that
is likely to fit well into the framework. As the research
community defines the architectural components of an ac-
tive network more precisely, we anticipate that architecture
will map comfortably into the framework outlined here.

7.2. Interactions between adaptations at different levels

Adaptation can occur at multiple levels, asit doesin the
sample systems discussed. Some adaptations relate to alter-
ing the behavior of an underlying protocol, someto altering
the behavior of an operating system, some to altering the
behavior of an application. In some cases, different adap-
tations might be applied at different levels of the overall
system. How such adaptations would interact is far from
clear.

Similarly, the framework points out the possibilities of
composing adaptations, even those at the same level. Some
systems, such as TranSend and Conductor, already support
some forms of composition, but the framework points out
many possible methods of composing adaptations. How-
ever, the methods used to determine that composed adapta-
tions produce the desired behavior, particularly, when they
are being deployed and composed automatically, are un-
known.

7.3. Breadth of applicability

While this framework more than adequately describes
the systems developed by the authors, and other systems
with which they are familiar, the model is new, and has
followed the development of these adaptive systems rather
than preceded them. Whether the framework contains suffi-
cient generality and features to properly describe all worth-
while adaptive software systems remains to be seen. Fur-
ther examination of the alternative methods being used
throughout the research community and deeper thought may
further refine the framework.

The framework, as it stands, is not an architecture. No
APIs have been defined that describe how data and control
information flows into and out of AAs and their compo-
nents. While the individual systems discussed above all
map neatly into the framework, none of them could be
seamlessly and effortlessly connected, as presumably they
could be if they conformed to a single architecture. Con-
version of the framework into a true architecture would
require tight specification of the APIs between its compo-
nents and validation by re-writing several adaptive systems
to conform to these specifications.

The OS| seven-layer reference model provides a useful
analogy to our framework. Like our model, the OSl ref-
erence model is not an architecture but a framework. The
OSl model proposed a tremendously useful way to think
about networking protocols. It allowed the community to
discuss key issues and to define specific architectures. It
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provided a decomposition and layered structure that accel-
erated implementation considerably. Many systems violate
the OSI model, but those very violations are all the more
understandable and valuable precisely because we can place
them in the context of a framework. We believe that the
adaptation framework outlined here can serve a similar role
in the increasingly important field of network adaptation.

The framework outlined in this paper is primarily in-
tended to distill the common lessons learned from several
successful network adaptation systems. The authors hope
it will lead to more general discussion and study of the
properties of network adaptation systems and the important
features of such systems.
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