A Tool for Automated
Inference of Executable Rule-
Based Biological Models

Chelsea Voss, Jean Yang, Walter Fontana

Static Analysis in Systems Biology, 2017

MEK1/258
N P @
\ 2

-~
ERK1/2

c:Fos Al)ror]jA

\ "HPVIEG)
Cyclin
Regulation

P
Tumor | AVHLS

Suppressor -
WNT, Pic, BMP.
Regulation

Gl

/N"CD.

-

Ty,
Ymo,
Yp

wlumor

@[~ Angiogenesis Tumor

MEK1'/2
MP1

ERK172

[Proliferation)
'DNA Repair

ik

Cell Cycle
“# Regulation and %
Oncogenesis
o s
' «* Cyclins, CDKs and
CKls Gene Expression

Cell g
Survival

'HPV,EZ
—— Supmg,

. or
CDK2» CenE Rb

CDCo)

ros,
$5or

G
89u/°’,.:: & p15(INK4B)

Tumor

Suppressor

PT4(ARE)
p16(INK4A) 4

05507, lel)
p'ﬂ\\u?
Suppressor \\,r“o(>

\/

240
v,M";‘E

Cell/Survival o

Energy;
Depletion

1k Q B Iranslation

NF-

).

DNA Breakage/
Ladder-likejJDNA

Caspase9

e

B Angiogenssis;

A
e
S
Hag
o
-

(Senie:

p21(CIRY)
>

S16(NKE)

Cyeli
cxi

S
G

d
B

S unKan)

A

o

Brackoge/
LadderIKe]ONA

f/

\\\\

& &)
CaR) ! s
e

RosGRE:
Q’

o5
o

Cycling, COKs and Survival
cKis G

WNT, e, BMP.
Regulation

N
ane Expression ey,

E25;

reckege,
213 Laddar-(KeJONA
0
&
G

5 Angiogenesis.
\f
CelllSurvival

SOxT
Nl
icp T,
PAEroI 0!)es;

ok

Foo) 65
TRAGD)\
(\

\\

\,
:“

Oncog! Cell ¢
eling, COKs and Survival
Gene Expression 1Hpy
P e,
DNA Breakage/
Laddar-(KeJONA

Coly o
G
CHD

P14 |
S P16(INKAA)

GV Angiogenesis
CelllSurvival
g sox

N
Bicoyy, "1

Structure

of the 30S
ribosomal
subhunit

North Pacific Océan
Clifyaté warming
Triple Alempodirectomy

WNT, e, BMP.
Regulation

o

MR

The need for biological models

B
Angiegeneiis

CelllSurvival

Sox

P16(INKAR)

CellSurvival
AA

Nierr™

R TR

-
Cend
G

Call Cyele

- Regulotion and <

Sn.

Cycling, COKs and
Gene Expression
A s

SoT

Cell -
Survival

<9
<
' 4

o) I P
i Caspase
& Co) (E

NFKS

DNA Breakage/
Laddar-(KeJONA
*

o

1
[4

Coris o

.0

510

N X

4
\ =
SMAD?,

560
W s

Structure
of the 30S
ribosomal
subhunit

e & e
Biochemical networks
Mapping theitetabolicsugethighways.

N
i

North Pacific Océan
Clifyaté warming

Triple Alempodirectomy

L]

executable models for
“in silico” experimentation

\DNA Repair

wmh A &
Tl
v W52

'y

7
y
)
N ottt

Elk

4
o -

% Cen

Cail e on
- Regulotion and &

Sncogens Coll ¢
Cyeling, COKsand Survival | NFIKE
CKis Gono Expression

A s

okage/
Laddar-(KeJONA
w

Structure
of the 30S
ribosomal
subhunit

: = /*Z g
Biochemical networks
Mapping thenietabolicsugiethighways
1 82,
e o

North Pacific Océan
Clifyate

Triple Alempodirectomy
ofern

" programming is hard

The need for computer-generated models

Structure
of the 30S
ribosomal
subhunit

Blochen‘uc;l/ge rorks

Mapping the muahnln mﬁeﬂfn hways.
. 2

- \ i LA ne therapy trial
Cend p A el) ; s e
Cyete on 2 . 1
- n.mm and <= North Pacific Ocean
s Colla M) 2 0 4 Clifnate warming
Cycling, COKs and Survival | NFRE :

- e Bipresslon
™ Ao | A 50 ~ Triple Alempodirectomy

L ¢ : : T

Cyein
Regulation

NT, Pic, BMP.
Regulation
PT4{aep)
g P16(INKAR)

IEVG S Angiogenesis|
Cellsunivel e
CellSurvival
AA
~ CaspBve:
) 2 Sl
R TR % v u\m A

Caspases, 10

Some NLP output requires logical inference

Some NLP output requires logical inference

Executable model needs:
Mechanistic rules

Some NLP output requires logical inference

NLP produces: Executable model needs:
Mechanistic rules Mechanistic rules

Non-mechanistic rules

Domain knowledge

Some NLP output requires logical inference

NLP produces: 27?7 Executable model needs:
—
Mechanistic rules Mechanistic rules

Non-mechanistic rules

Domain knowledge

Some NLP output requires logical inference

NLP produces: 27?7 Executable model needs:

—
Mechanistic rules Mechanistic rules

MEK phosphorylates ERK1

Non-mechanistic rules

Domain knowledge

Some NLP output requires logical inference

NLP produces: 27?7 Executable model needs:

—
Mechanistic rules Mechanistic rules

MEK phosphorylates ERK1
Non-mechanistic rules

MEK phosphorylates the ERK protein
family

Active ERK phosphorylates RSK

Domain knowledge

Some NLP output requires logical inference

NLP produces: 27?7 Executable model needs:

—
Mechanistic rules Mechanistic rules

MEK phosphorylates ERK1
Non-mechanistic rules

MEK phosphorylates the ERK protein
family

Active ERK phosphorylates RSK
Domain knowledge

When ERK1 is phosphorylated, it is
active

S151D-mutated ERK1 behaves as if
always phosphorylated

ERK1 and ERK2 are in the ERK protein
family

Some NLP output requires logical inference

NLP produces: 277 Executable model needs:
Mechanistic rules =" Mechanistic rules
MEK phosphorylates ERK1 * MEK phosphorylates ERK1
Non-mechanistic rules * MEK phosphorylates ERK2
MEK phosphorylates the ERK protein * Phosphorylated ERK1
family phosphorylates RSK
Active ERK phosphorylates RSK * Phosphorylated ERK2
Domain knowledge phosphorylates RSK
When ERK1 is phosphorylated, it is * S151D-mutated ERK1
active phosphorylates RSK

S151D-mutated ERK1 behaves as if
always phosphorylated

ERK1 and ERK2 are in the ERK protein
family

Mechanistic rules
Non-mechanistic rules
Domain knowledge

Mechanistic rules Models
Non-mechanistic rules
Domain knowledge

Mechanistic rules
Non-mechanistic rules
Domain knowledge

Space of possible
models

Our contribution

Mechanistic rules
Non-mechanistic rules
Domain knowledge

b

Ui
]

A\

N

i

o

i

v

A

L\

=

M

Space of possible
models

Our contribution: how it works

Mechanistic rules 1: Predicates Space of possible

Non-mechanistic rules m—————- —
Domain knowledge over models models

b

-5‘*»\‘
\\\\.

i
[N

l

- L& N
‘ 2%
L
v)3
a8
AR ”
N e

A

sl

\,—'I
&7

R/
N

M

Our contribution: how it works

2: Implement

Mechanistic rules 1: Predicates interpretation Space of possible

Non-mechanistic rules m—————- —
Domain knowledge over models models

Our contribution: how it works

3: Create 2: Implement

Mechanistic rules predicates 1: Predicates interpretation Space of possible

Non-mechanistic rules ——p —
Domain knowledge over models models

b

\"« A\

[3 \/
\‘\\.
4 \

/

- L& N
"\‘
L
=)3
a8
N
RN
3

/,i\._
N

l

sl

4
L\

M

3: Create 2: Implement

Mechanistic rules predicates 1: Predicates interpretation Space of possible

Non-mechanistic rules — —
Domain knowledge over models models

',‘l;\\‘

,\s

[)

W

1: Predicates over models, in a logic

First, choose a modeling language.

1: Predicates over models, in a logic

First, choose a modeling language: Kappa.
O\ 1O

1: Predicates over models, in a logic

First, choose a modeling language: Kappa.
ppa

Kappa rules Simulation of resulting system

O+ ->@ @(0.2) O ® O ® @

+ 2> = @(0.8)))

— —

» » @

~

1: Predicates over models, in a logic

First, choose a modeling language: Kappa. e -
mm ().,

Why Kappa?

1: Predicates over models, in a logic

First, choose a modeling language: Kappa.

E:=¢|a,E (expression) E ,A(o,s,8'0") ,E' =FE ,A(0,s',8,0") , E'
Wh K ?]3 i?q|N_fta) (agcnz) E,a,a',lgig,g’,a,E’
y a p pa ° o ; € |i,g Eiaftir;far;:;ne) i,j € Nand ¢ do;s no’t occur in E
s u=n’ (site) E[i/j]=FE
nu=z€S (site name) i € N and 4 occurs only once in E
Ai=¢|i€N| N@n | — (binding state) Ele/i]=E
° ° ° (a) Syntax. (b) Congruence.
Well-defined operational semantics T o= ail=0
A=A = n'Egn" Ar € NU{e} = n"[n""] =n""
- e R
allow us to reason precisely. s S L B
sEN,s1ANo ER, 01 — 50 =2, S, 01 (s,0)[s8r,07] = s[s;],0(0]
o E=E,00 = N(0) £, N(0) N(o)[N(or)] = N(ofo-])
FE ':E() € E[e] = F
aEp, i NEFEg, Bl = a,FE Eg,a,E (a,E)lar,E;] = alar],E[E]
(c) Matching. (d) Replacement.

agp(i,AQn) = A'@n’ where the site n’ in {Eo E, are mixtures, r = E;, E, € R
the agent A’ is the unique site distinct from o I
] . . the site » in A in the pattern E that is Eo = Eo, Eo }:E(’J Ee, BolEr] = En
[Figure due to Danos et al. 2009: Abstracting the ODE Semantics tagged with i. Fo —r B

. . (e) Look-up function. (f) Transitions.
of Rule-Based Models: Exact and Automatic Model Reduction.] :

Fig. 3. Syntax and operational semantics.

1: Predicates over models, in a logic

Second, devise a logic for quantifying over models.

1: Predicates over models, in a logic

Second, devise a logic for quantifying over models.

Datatypes:

* Graphs represent the state of a Kappa system

* Rules are sets of <graph, action> pairs
e action rewrites graph, creates new graph
* Models are sets of rules

[Conversations with Husson & Krivine, 2015-2016]

1: Predicates over models, in a logic

Second, devise a logic for quantifying over models.

Datatypes:
* Graphs represent the state of a Kappa system

* Rules are sets of <graph, action> pairs
e action rewrites graph, creates new graph

e Models are sets of rules
Predicates:
* Atomic predicates specify a set of rules

* Predicates specify a set of models
[Conversations with Husson & Krivine, 2015-2016]

Atomic predicates
class AtomicPredicate:

Top

Bottom

Equal

PreLabeled, PostlLabeled
PreUnlabeled, PostUnlabeled
PreParent, PostParent
PreLink, PostLink
PreHas, PostHas

Add, Rem

DoLink, DoUnlink
DoParent, DoUnparent
Named

Atomic predicates Predicates

class AtomicPredicate: class Predicate:
Top And
Bottom Not
Equal Or
PreLabeled, PostLabeled Implies
PreUnlabeled, PostUnlabeled ModelHasRule
PreParent, PostParent ForAllRules
PreLink, PostLink Top
PreHas, PostHas Bottom
Add, Rem

DoLink, DoUnlink
DoParent, DoUnparent
Named

Example predicate syntax tree

Agent(‘a’)

Agent(‘b’)

p = And(

ModelHasRule(lambda r:
PregraphHas(r, a.bound(b))),

ModelHasRule(lambda r:
PostgraphHas(r, a.unbound(b))))

C QL
i

Mechanistic rules
Non-mechanistic rules
Domain knowledge

3: Create 2: Implement
predicates 1: Predicates interpretation

— over models

7

‘[\;_
O\

oa o
0.\
\\\.

’I
)

[N
<]

P

U

M

Space of possible
models

2: Implement interpretation of predicates

* Solving predicates in this logic is reducible to first-order logic

2: Implement interpretation of predicates

 Workhorse: Z3 Theorem Prover

2: Implement interpretation of predicates

» Workhorse: Z3 Theorem Prover Z 3 ‘Research

2: Implement interpretation of predicates

Microsoft

 Workhorse: Z3 Theorem Prover Research
* Demo at http://rise4fun.com/z3 Z 3

2: Implement interpretation of predicates

Microsoft

 Workhorse: Z3 Theorem Prover Z 3 Research

* Demo at http://rise4fun.com/z3
* High-performance satisfiability solver

2: Implement interpretation of predicates

Microsoft

 Workhorse: Z3 Theorem Prover Research
* Demo at http://rise4fun.com/z3 Z 3
* High-performance satisfiability solver

* Wide variety of datatypes supported: arithmetic, fixed-size bit-vectors,
extensional arrays, datatypes, uninterpreted functions, and quantifiers

2: Implement interpretation of predicates

Microsoft

 Workhorse: Z3 Theorem Prover Z 3 Research

* Demo at http://rise4fun.com/z3
* High-performance satisfiability solver

* Wide variety of datatypes supported: arithmetic, fixed-size bit-vectors,
extensional arrays, datatypes, uninterpreted functions, and quantifiers

Is this formula satisfiable?

1 (declare-fun x () Int)
2 (assert (>= 5 x))

3 (check-sat)

4 (get-model)

2: Implement interpretation of predicates

Microsoft

 Workhorse: Z3 Theorem Prover Z 3 Research

* Demo at http://rise4fun.com/z3
* High-performance satisfiability solver

* Wide variety of datatypes supported: arithmetic, fixed-size bit-vectors,
extensional arrays, datatypes, uninterpreted functions, and quantifiers

Is this formula satisfiable?

1 (declare-fun x () Int)

2 (assert (>= 5 x))
3 (CheCk—SGt) —

4 (get-model)

2: Implement interpretation of predicates

Microsoft

 Workhorse: Z3 Theorem Prover Z 3 Research

* Demo at http://rise4fun.com/z3
* High-performance satisfiability solver

* Wide variety of datatypes supported: arithmetic, fixed-size bit-vectors,
extensional arrays, datatypes, uninterpreted functions, and quantifiers

Is this formula satisfiable? sat

1 (declare-fun x () Int)

2 (assert (>= 5 x))
3 (CheCk—SGt) —

4 (get-model)

2: Implement interpretation of predicates

Microsoft

 Workhorse: Z3 Theorem Prover Z 3 Research

* Demo at http://rise4fun.com/z3
* High-performance satisfiability solver

* Wide variety of datatypes supported: arithmetic, fixed-size bit-vectors,
extensional arrays, datatypes, uninterpreted functions, and quantifiers

Is this formula satisfiable? sat
1 (declare-fun x (O Int) (model
2 (assert (>= 5 x)) > (define-fun x () Int
3 (check-sat) 5)

4 (get-model)

2: Implement interpretation of predicates

* Using Z3 to interpret our predicates

* Declare Z3 datatypes to represent
* Recursively build 73 predicates from our predicate classes
* Use (check-sat) and (get-model)

2: Implement interpretation of predicates

e Value added:

e Extract models

* Detect inconsistencies (if P is our facts so far and Q is a new predicate, and P/\Q
is unsatisfiable, then Q is inconsistent with the existing facts)

» Detect redundancy (if Qis a new fact, and P => Q, then Q is redundant)

* Detect ambiguity (if model M satisfies predicate P, and P/\-(model=M) is
satisfiable, then P has multiple solutions)

Usage example: Inconsistency checking

>>> from syndra.engine import macros, predicate

Usage example: Inconsistency checking

>>> from syndra.engine import macros, predicate
>>> X = macros.directly phosphorylates("MEK", "ERK")

Usage example: Inconsistency checking

>>> from syndra.engine import macros, predicate
>>> X = macros.directly phosphorylates("MEK", "ERK")
>>> y = predicate.Not(x)

Usage example: Inconsistency checking

>>> from syndra.engine import macros, predicate

>>> X = macros.directly phosphorylates("MEK", "ERK")
>>> y = predicate.Not(x)

>>> x_and y = predicate.And(x, y)

Usage example: Inconsistency checking

>>> from syndra.engine import macros, predicate

>>> X = macros.directly phosphorylates("MEK", "ERK")
>>> y = predicate.Not(x)

>>> x_and y = predicate.And(x, y)

>>> print x_and y.check sat()

Usage example: Inconsistency checking

>>> from syndra.engine import macros, predicate

>>> X = macros.directly phosphorylates("MEK", "ERK")
>>> y = predicate.Not(x)

>>> x_and y = predicate.And(x, y)

>>> print x_and y.check sat()

False

Usage example: Redundancy checking
>>> from syndra.engine import macros, predicate

Usage example: Redundancy checking

>>> from syndra.engine import macros, predicate
>>> X = macros.directly phosphorylates("MEK", "ERK")

Usage example: Redundancy checking

>>> from syndra.engine import macros, predicate
>>> X macros.directly phosphorylates("MEK", "ERK")
>>> Y macros.phosphorylated is active("ERK")

Usage example: Redundancy checking

>>> from syndra.engine import macros, predicate

>>> X = macros.directly phosphorylates("MEK", "ERK")
>>> y = macros.phosphorylated is active("ERK")

>>> z = macros.directly activates("MEK", "ERK")

Usage example: Redundancy checking
>>> from syndra.engine import macros, predicate

>>> X = macros.directly phosphorylates("MEK", "ERK")
>>> y = macros.phosphorylated is active("ERK")
>>> z = macros.directly activates("MEK", "ERK")

>>> x_and_ y imply z =
predicate.Implies(predicate.And(x, y), z)

Usage example: Redundancy checking
>>> from syndra.engine import macros, predicate

>>> X = macros.directly phosphorylates("MEK", "ERK")
>>> y = macros.phosphorylated is active("ERK")
>>> z = macros.directly activates("MEK", "ERK")

>>> x_and_ y imply z =
predicate.Implies(predicate.And(x, y), z)
>>> print x_and y imply z.check sat()

Usage example: Redundancy checking
>>> from syndra.engine import macros, predicate

>>> X = macros.directly phosphorylates("MEK", "ERK")
>>> y = macros.phosphorylated is active("ERK")
>>> z = macros.directly activates("MEK", "ERK")

>>> x_and_ y imply z =
predicate.Implies(predicate.And(x, y), z)

>>> print x_and y imply z.check sat()

True

o 3: Create 2: Implement
Mechanistic rules predicates 1: Predicates interpretation Space of possible

Non-mechanistic rules — over models — models

Domain knowledge

A -
b
) 8
’/
7

Yk

’\1
SR

o

3: Tools for creating predicates

* Macros

3: Tools for creating predicates

* Macros

A PreLabeled(A, phosphorylated) /A
PreUnbound (A, B) A
PostLabeled(A, phosphorylated) A
B PostBound(A, B)

phosphorylates =——p

3: Tools for creating predicates

* Macros

A PreLabeled(A, phosphorylated) A
PreUnbound(A, B) A
PostLabeled(A, phosphorylated) A
B PostBound(A, B)

phosphorylates =——p

directly phosphorylates
phosphorylated is active

directly activates

negative residue behaves as if phosphorylated

3: Tools for creating predicates

e Interface with INDRA

[INDRA: Gyori et al. From word models to executable models of signaling networks using automated assembly. 2017]

3: Tools for creating predicates

e Interface with INDRA

 indra.statements.Phosphorylation
e indra.statements.Activation
e indra.statements.ActiveForm

[INDRA: Gyori et al. From word models to executable models of signaling networks using automated assembly. 2017]

Mechanistic rules
Non-mechanistic rules
Domain knowledge

3: Create 2: Implement
predicates 1: Predicates interpretation

— over models

b

N
/]
IN

- % N
‘ 2%
L
v)3
49
AR ”
N e

[N
l

sl

{
[

R/
A

M

Space of possible
models

Structure
of the 30S

N

\
!
i}

v

\ /]

g

Biochemical orks
Mapping thenitetabolic highways
‘“’\a\\

Cyelng, COKs and Survivel
S — K G Eapratalon Wkl Y%
Srosta 2 7 \
fet e Gono therapy trials

e Restofing confidoncs

T % ; : :

Requiation \ Nork Bt 0cean
3 o) s jfrdeep water

Triple Alempodirectomy

pronken) A
oIt

Wer™
o S
N M

Caspasos; 0

) (S

Structure
of the 30S

N

\
!
i}

v

\ /]

g

Biochemical orks
Mapping thenitetabolic highways
‘“’\a\\

Cyelng, COKs and Survivel
S — K G Eapratalon Wkl Y%
Srosta 2 7 \
fet e Gono therapy trials

e Restofing confidoncs

T % ; : :

Requiation \ Nork Bt 0cean
3 o) s jfrdeep water

Triple Alempodirectomy

pronken) A
oIt

Wer™
o S
N M

Caspasos; 0

) (S

Structure
of the 30S
ribosomal

DNA Repair

YAsIR
=D A%
v W52

4

mical

Biochemit etworks
Mapping theitetabolicsugethighways
T

ks Gona Exprataion
Rirorea, | 2 A
Gene thorapy rils
T
i o North Pacific Ocdan
Requiation)) ; aEwarmin

Caspasos; 0

) €SS

https://github.com/csvoss/syndra

