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The need for computer-generated models
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Some NLP output requires logical inference

NLP produces: 27?7 Executable model needs:

—
Mechanistic rules Mechanistic rules

MEK phosphorylates ERK1
Non-mechanistic rules

MEK phosphorylates the ERK protein
family

Active ERK phosphorylates RSK
Domain knowledge

When ERK1 is phosphorylated, it is
active

S151D-mutated ERK1 behaves as if
always phosphorylated

ERK1 and ERK2 are in the ERK protein
family



Some NLP output requires logical inference

NLP produces: 277 Executable model needs:
Mechanistic rules =" Mechanistic rules
MEK phosphorylates ERK1 * MEK phosphorylates ERK1
Non-mechanistic rules * MEK phosphorylates ERK2
MEK phosphorylates the ERK protein * Phosphorylated ERK1
family phosphorylates RSK
Active ERK phosphorylates RSK * Phosphorylated ERK2
Domain knowledge phosphorylates RSK
When ERK1 is phosphorylated, it is * S151D-mutated ERK1
active phosphorylates RSK

S151D-mutated ERK1 behaves as if
always phosphorylated

ERK1 and ERK2 are in the ERK protein
family
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Our contribution: how it works
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Our contribution: how it works

3: Create 2: Implement

Mechanistic rules predicates 1: Predicates interpretation Space of possible
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1: Predicates over models, in a logic

First, choose a modeling language.



1: Predicates over models, in a logic

First, choose a modeling language: Kappa.
O\ 1O



1: Predicates over models, in a logic

First, choose a modeling language: Kappa.
ppa

Kappa rules Simulation of resulting system
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1: Predicates over models, in a logic

First, choose a modeling language: Kappa. e -
mm ().,

Why Kappa?



1: Predicates over models, in a logic

First, choose a modeling language: Kappa.

E:=¢|a,E (expression) E ,A(o,s,8'0") ,E' =FE ,A(0,s',8,0") , E'
Wh K ? ]3 i?q|N_fta) (agcnz) E,a,a',lgig,g’,a,E’
y a p pa ° o ; € |i,g Eiaftir;far;:;ne) i,j € Nand ¢ do;s no’t occur in E
s u=n’ (site) E[i/j]=FE
nu=z€S (site name) i € N and 4 occurs only once in E
Ai=¢|i€N| N@n | — (binding state) Ele/i]=E
° ° ° (a) Syntax. (b) Congruence.
Well-defined operational semantics T o= ail=0
A=A = n'Egn" Ar € NU{e} = n"[n""] =n""
- e R
allow us to reason precisely. s S L B
sEN,s1ANo ER, 01 — 50 =2, S, 01 (s,0)[s8r,07] = s[s;],0(0]
o E=E,00 = N(0) £, N(0) N(o)[N(or)] = N(ofo-])
FE ':E() € E[e] = F
aEp, i NEFEg, Bl = a,FE Eg,a,E (a,E)lar,E;] = alar],E[E]
(c) Matching. (d) Replacement.

agp(i,AQn) = A'@n’ where the site n’ in {Eo E, are mixtures, r = E;, E, € R
the agent A’ is the unique site distinct from o I
] . . the site » in A in the pattern E that is Eo = Eo, Eo }:E(’J Ee, BolEr] = En
[Figure due to Danos et al. 2009: Abstracting the ODE Semantics tagged with i. Fo —r B

. . (e) Look-up function. (f) Transitions.
of Rule-Based Models: Exact and Automatic Model Reduction.] :

Fig. 3. Syntax and operational semantics.
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Second, devise a logic for quantifying over models.

Datatypes:

* Graphs represent the state of a Kappa system

* Rules are sets of <graph, action> pairs
e action rewrites graph, creates new graph
* Models are sets of rules

[Conversations with Husson & Krivine, 2015-2016]



1: Predicates over models, in a logic

Second, devise a logic for quantifying over models.

Datatypes:
* Graphs represent the state of a Kappa system

* Rules are sets of <graph, action> pairs
e action rewrites graph, creates new graph

e Models are sets of rules
Predicates:
* Atomic predicates specify a set of rules

* Predicates specify a set of models
[Conversations with Husson & Krivine, 2015-2016]



Atomic predicates
class AtomicPredicate:

Top

Bottom

Equal

PreLabeled, PostlLabeled
PreUnlabeled, PostUnlabeled
PreParent, PostParent
PreLink, PostLink
PreHas, PostHas

Add, Rem

DoLink, DoUnlink
DoParent, DoUnparent
Named



Atomic predicates Predicates

class AtomicPredicate: class Predicate:
Top And
Bottom Not
Equal Or
PreLabeled, PostLabeled Implies
PreUnlabeled, PostUnlabeled ModelHasRule
PreParent, PostParent ForAllRules
PreLink, PostLink Top
PreHas, PostHas Bottom
Add, Rem

DoLink, DoUnlink
DoParent, DoUnparent
Named



Example predicate syntax tree

Agent(‘a’)

Agent(‘b’)

p = And(

ModelHasRule(lambda r:
PregraphHas(r, a.bound(b))),

ModelHasRule(lambda r:
PostgraphHas(r, a.unbound(b))))

C QL
i
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2: Implement interpretation of predicates

* Solving predicates in this logic is reducible to first-order logic
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Is this formula satisfiable?

1 (declare-fun x () Int)
2 (assert (>= 5 x))

3 (check-sat)

4 (get-model)
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2: Implement interpretation of predicates

Microsoft

 Workhorse: Z3 Theorem Prover Z 3 Research

* Demo at http://rise4fun.com/z3
* High-performance satisfiability solver

* Wide variety of datatypes supported: arithmetic, fixed-size bit-vectors,
extensional arrays, datatypes, uninterpreted functions, and quantifiers

Is this formula satisfiable? sat
1 (declare-fun x (O Int) (model
2 (assert (>= 5 x)) > (define-fun x () Int
3 (check-sat) 5)

4 (get-model)



2: Implement interpretation of predicates

* Using Z3 to interpret our predicates

* Declare Z3 datatypes to represent
* Recursively build 73 predicates from our predicate classes
* Use (check-sat) and (get-model)



2: Implement interpretation of predicates

e Value added:

e Extract models

* Detect inconsistencies (if P is our facts so far and Q is a new predicate, and P/\Q
is unsatisfiable, then Q is inconsistent with the existing facts)

» Detect redundancy (if Qis a new fact, and P => Q, then Q is redundant)

* Detect ambiguity (if model M satisfies predicate P, and P/\-(model=M) is
satisfiable, then P has multiple solutions)



Usage example: Inconsistency checking

>>> from syndra.engine import macros, predicate



Usage example: Inconsistency checking

>>> from syndra.engine import macros, predicate
>>> X = macros.directly phosphorylates("MEK", "ERK")



Usage example: Inconsistency checking

>>> from syndra.engine import macros, predicate
>>> X = macros.directly phosphorylates("MEK", "ERK")
>>> y = predicate.Not(x)



Usage example: Inconsistency checking

>>> from syndra.engine import macros, predicate
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Usage example: Inconsistency checking

>>> from syndra.engine import macros, predicate

>>> X = macros.directly phosphorylates("MEK", "ERK")
>>> y = predicate.Not(x)

>>> x_and y = predicate.And(x, y)

>>> print x_and y.check sat()



Usage example: Inconsistency checking

>>> from syndra.engine import macros, predicate

>>> X = macros.directly phosphorylates("MEK", "ERK")
>>> y = predicate.Not(x)

>>> x_and y = predicate.And(x, y)

>>> print x_and y.check sat()

False



Usage example: Redundancy checking
>>> from syndra.engine import macros, predicate



Usage example: Redundancy checking

>>> from syndra.engine import macros, predicate
>>> X = macros.directly phosphorylates("MEK", "ERK")



Usage example: Redundancy checking

>>> from syndra.engine import macros, predicate
>>> X macros.directly phosphorylates("MEK", "ERK")
>>> Y macros.phosphorylated is active("ERK")



Usage example: Redundancy checking

>>> from syndra.engine import macros, predicate

>>> X = macros.directly phosphorylates("MEK", "ERK")
>>> y = macros.phosphorylated is active("ERK")

>>> z = macros.directly activates("MEK", "ERK")



Usage example: Redundancy checking
>>> from syndra.engine import macros, predicate

>>> X = macros.directly phosphorylates("MEK", "ERK")
>>> y = macros.phosphorylated is active("ERK")
>>> z = macros.directly activates("MEK", "ERK")

>>> x_and_ y imply z =
predicate.Implies(predicate.And(x, y), z)



Usage example: Redundancy checking
>>> from syndra.engine import macros, predicate

>>> X = macros.directly phosphorylates("MEK", "ERK")
>>> y = macros.phosphorylated is active("ERK")
>>> z = macros.directly activates("MEK", "ERK")

>>> x_and_ y imply z =
predicate.Implies(predicate.And(x, y), z)
>>> print x_and y imply z.check sat()



Usage example: Redundancy checking
>>> from syndra.engine import macros, predicate

>>> X = macros.directly phosphorylates("MEK", "ERK")
>>> y = macros.phosphorylated is active("ERK")
>>> z = macros.directly activates("MEK", "ERK")

>>> x_and_ y imply z =
predicate.Implies(predicate.And(x, y), z)

>>> print x_and y imply z.check sat()

True
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* Macros



3: Tools for creating predicates

* Macros

A PreLabeled(A, phosphorylated) /A
PreUnbound (A, B) A
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B PostBound(A, B)

phosphorylates =——p




3: Tools for creating predicates

* Macros

A PreLabeled(A, phosphorylated) A
PreUnbound(A, B) A
PostLabeled(A, phosphorylated) A
B PostBound(A, B)

phosphorylates =——p

directly phosphorylates
phosphorylated is active

directly activates

negative residue behaves as if phosphorylated



3: Tools for creating predicates

e Interface with INDRA

[INDRA: Gyori et al. From word models to executable models of signaling networks using automated assembly. 2017]



3: Tools for creating predicates

e Interface with INDRA

 indra.statements.Phosphorylation
e indra.statements.Activation
e indra.statements.ActiveForm

[INDRA: Gyori et al. From word models to executable models of signaling networks using automated assembly. 2017]
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